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ABSTRACT
In Paper I [Litman et al., J. Chem. Phys. (in press) (2022)], we presented the ring-polymer instanton with explicit friction (RPI-EF) method
and showed how it can be connected to the ab initio electronic friction formalism. This framework allows for the calculation of tunneling
reaction rates that incorporate the quantum nature of the nuclei and certain types of non-adiabatic effects (NAEs) present in metals. In
this paper, we analyze the performance of RPI-EF on model potentials and apply it to realistic systems. For a 1D double-well model, we
benchmark the method against numerically exact results obtained from multi-layer multi-configuration time-dependent Hartree calculations.
We demonstrate that RPI-EF is accurate for medium and high friction strengths and less accurate for extremely low friction values. We also
show quantitatively how the inclusion of NAEs lowers the crossover temperature into the deep tunneling regime, reduces the tunneling rates,
and, in certain regimes, steers the quantum dynamics by modifying the tunneling pathways. As a showcase of the efficiency of this method,
we present a study of hydrogen and deuterium hopping between neighboring interstitial sites in selected bulk metals. The results show that
multidimensional vibrational coupling and nuclear quantum effects have a larger impact than NAEs on the tunneling rates of diffusion in
metals. Together with Paper I [Litman et al., J. Chem. Phys. (in press) (2022)], these results advance the calculations of dissipative tunneling
rates from first principles.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088400

I. INTRODUCTION

The transport kinetics of small molecules and atoms in metals
play an important role in technological applications in several areas,
such as fuel cells, batteries, and nuclear reactors, among others.1–4

In particular, accurate measurements of hydrogen diffusion are still
experimentally challenging since the diffusion coefficients are very
sensitive to the microstructure of the material and the composi-
tion of the alloy.5–7 As a consequence, reported values of diffusion

constants by different groups can be scattered over a few orders of
magnitude.

First-principles calculations have the potential to provide an
increased understanding of the transport dynamics of light particles
in well-defined structures throughout a wide range of thermo-
dynamic conditions (e.g., temperature and pressure), which can
complement experiments and guide further developments. Most of
the atomistic calculations performed to study nuclear dynamical
processes rely on Newtonian dynamics on the ground-state adiabatic
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potential energy surface (PES), as given by the Born–Oppenheimer
approximation (BOA). However, the coupling of the nuclear move-
ment with electrons in the metal can easily induce electronic exci-
tations, which represent a breakdown of the BOA and give rise to
non-adiabatic effects (NAEs).8,9 Furthermore, light particles, such as
hydrogen and deuterium, can exhibit strong nuclear quantum effects
(NQEs), which can either increase or decrease its mobility through
metals.10,11 As a consequence, an understanding of the interplay of
NQEs and NAEs in the transport process of light atoms in realistic
systems remains elusive.

Several exact methods to simulate non-adiabatic quantum
dynamics have been developed in the last few decades.12–14 How-
ever, due to the unfavorable scaling of these theoretical approaches
with the number of degrees of freedom, approximate but accu-
rate and efficient methods are required to capture NQEs and NAEs
in high-dimensional systems or to be used with costly ab initio
potentials. In Paper I,69 we presented the ring-polymer instanton
with explicit friction (RPI-EF) theory for the calculation of dissipa-
tive thermal tunneling rates, which has the potential to fulfill these
requirements. Briefly, RPI-EF allows for an easy and efficient incor-
poration of the electronic friction formalism, originally proposed
by Hellsing and Persson15 and Head-Gordon and Tully,16 into the
semi-classical ring-polymer instanton (RPI) rate theory.17–19 The
imaginary-time propagation inherent to instanton theory results in
a simple procedure for the determination of the instanton trajec-
tory in RPI-EF, involving a saddle-point optimization on an effective
potential modified by the friction tensor.

In this article, we show the merits and limitations of RPI-EF.
We benchmark the accuracy of RPI-EF rate predictions by com-
paring them with numerically exact theories in model potentials.
Subsequently, we examine the interplay of the reaction barrier height
and friction strengths on the tunneling rate in 1D and 2D model
potentials connected to a bath. Finally, the new approach is applied
to hydrogen and deuterium hopping reactions in bulk transition
metals, focusing on Pd, by employing Kohn–Sham density func-
tional theory. These calculations allow for a quantitative analysis
of the impact of different effects on the rate constants, such as the
dimensionality of the system, NQEs, and NAEs.

This paper is structured as follows: In Sec. II, the methods
employed to obtain the tunneling rates are briefly summarized and
the simulation details for each one are specified. In Sec. III, the
model potentials and the systems treated from first-principles are
described. Results of numerical simulations on low-dimensional
models for position-independent and position-dependent friction
tensors are discussed in Secs. IV A and IV B, respectively. Finally, the
first-principles results for the hydrogen and deuterium hopping in
metals are discussed in Sec. V. Section VI concludes by summarizing
the main results and giving an outlook to future directions.

II. RATE CALCULATION METHODS
A. Ring-polymer instanton (with explicit friction)

The RPI rate theory17,18 is a semi-classical method that allows
for the calculation of tunneling rates. RPI theory can be interpreted
as the extension of Eyring transition state theory (TST)20 into the
deep tunneling regime since the rates are evaluated utilizing only a
limited amount (often a single) special configuration, circumventing

the necessity of real-time sampling. While in TST, this special con-
figuration is the first-order saddle-point connecting reactants and
products on the potential energy surface (PES), in RPI rate theory,
the special configurations are found at the first-order saddle-points
of the extended space of the ring polymer (RP) potential. These tra-
jectories in imaginary time are known as instanton trajectories. The
RPI rate expression is analogous to the one proposed by TST and
reads

kinst(β)∝ lim
P→∞

e−Usys
P (q̄ )/

̵h, (1)

where

Usys
P (q) =

P

∑
k=1

3N

∑
i=1

mi
ω2

P

2
(q(k)i − q(k+1)

i )
2
+

P

∑
k=1

V(q(k)1 , . . . , q(k)3N ) (2)

is the RP potential. In the previous equation, q(k)i is the position of
the ith degree of freedom of the kth bead of the ring polymer, mi is
the mass of the ith degree of freedom, N is the number of atoms, P is
the number of beads (replicas), q is an abbreviated notation to rep-
resent all the degrees of freedom, q̄ denotes the instanton geometry,
and ωP = (βPh̵)−1 with βP =

1
kBPT .

In Paper I,69 we showed how the RPI rate theory can be
extended to compute tunneling rates for systems connected to a har-
monic bath that simulates a dissipative environment. Irrespective
of the dissipative mechanism and assuming that the environment
degrees of freedom adjust adiabatically to the system position, one
can fully characterize the system–environment coupling by a posi-
tion (q) and frequency (λ) dependent friction tensor, η̃(q, λ). More-
over, when the frequency and position dependence is decoupled,
we proved that the RP potential that enters Eq. (1) is renormalized,
adopting the form

Ueff
P = Usys

P +

P/2

∑
l=−P/2+1

3N

∑
i=1

×
ωl

2
[

P

∑
k=1

Clk(∫

q(k)

qref
η̃(q′,ωk)

1/2
⋅ dq′)]

2

, (3)

where ωl = 2ωP sin(∣l∣π/P) are the free RP normal mode frequencies
and C is the transformation matrix between the RP normal modes
and Cartesian coordinates. In the limiting case of a position-
independent friction, the previous expression can be simplified to

Ueff
P = Usys

P +

P/2

∑
l=−P/2+1

3N

∑
i=1

η̃(ωl)ωl

2
(Q(l)i )

2, (4)

where Q(l) represent the free RP normal mode coordinates.
The RPI calculations were performed using the i-PI21 code.

The forces and energies required by the algorithm were passed to
i-PI from an external code through an interface based on internet
sockets. The RPI-EF calculations required an extension of the i-PI
communication protocol. We added to the existing communication
of the energy, forces, and stresses from external codes to i-PI, the
possibility to pass additional information as JSON-formatted strings.
In this way, it is possible to communicate any type of data, and more
importantly, when the data are numeric, they become available to
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be used by any implemented algorithm within i-PI. This enables the
use of quantities beyond energies and forces that change along the
simulation within different types of dynamics.

The FHI-aims code22 and an in-house Python code were
used in connection to i-PI for the density-functional theory (DFT)
and model calculations, respectively. Transition-state geometries
were obtained either by the string method23 combined with the
climbing image technique24 or using a minimum-mode-following
algorithm,25 as implemented in i-PI. The RPI calculations were ini-
tialized after finding the transition state by stretching the transition-
state geometry along the mode with imaginary frequency using a
number of replicas between 10 and 16. Optimizations were started
at a temperature of 10 K below the corresponding crossover tem-
perature, Tc

○. After converging the instanton pathway for the first
calculation, successive steps of temperature decrease and RP inter-
polation to increase the number of beads were performed until the
target temperature was reached. If required, further calculations
with more beads were performed to guarantee that in all cases and
for all temperatures, the final rates were converged within a 10%
error.26,27 See more details in Sec. I of the supplementary material.

B. Multi-configuration time-dependent Hartree
Numerically exact results for selected models in this paper were

obtained with the multi-layer variant28–30 of the multi-configuration
time-dependent Hartree method31–32 (ML-MCTDH), as imple-
mented in the Heidelberg package.33 MCTDH is a variational
method that relies on optimal, time-dependent basis functions to
alleviate the exponential scaling problem of standard methods based
on direct expansions on a time-independent basis. In the MCTDH
ansatz, the wave function ∣Ψ(t)⟩ is expanded on orthogonal con-
figurations ∣ΦJ(t)⟩, which, in turn, are products of “single particle”
functions (SPFs),

∣Ψ(t)⟩ =∑
J

AJ(t)∣ΦJ(t)⟩ =∑
J

AJ(t)∏
k
∣ϕ(k)jk
⟩(t), (5)

and both the expansion coefficients (AJ) and the SPFs (∣ϕj(t)⟩)
are variationally optimized. Here, J = ( j1, . . . , jk, . . . , jF) is a multi-
index, the index k = 1, 2, . . . , F runs over the single particles, and
jk = 1, . . . , nk labels the SPFs used for the kth mode. Conventional
MCTDH uses single particles for each degree of freedom or small
groups thereof and represents their SPFs by a direct expansion
on a grid/basis-set (the so-called primitive grid) designed for the
single particle at hand. This limits its capability of handling large
systems. In contrast, in ML-MCTDH, the single particles are high-
dimensional modes whose SPFs are described by further MCTDH
expansions employing lower dimensional SPFs. The procedure can
be indefinitely iterated until reasonably small single particles are
defined that can be described on primitive grids. This recipe, sim-
ilarly to tensor networks and matrix-product states,34 endows the
wave function with a hierarchical, flexible structure that allows
for the treatment of considerably larger systems. In particular,
ML-MCTDH has been successfully applied to the calculation of
thermal rate constants in condensed-phase problems35,36 in the
framework of the reactive flux-side approach, where k(T) is given
by the long-time limit of the equilibrium flux-side time-correlation
function.37,38

In this work, we followed closely the original work by Wang
and Thoss,40,41 who introduced an importance sampling technique
to recast the trace expression of the flux-side correlation function
as an accessible ensemble-average over time-evolving wavepackets.
In a nutshell, the evaluation of the rate constant is reduced to (i)
a preparation step where the wavepackets are initialized by com-
bining (system) Boltzmannized flux eigenvectors with bath states
drawn from the canonical ensemble of the uncoupled bath, (ii)
an equilibration step where imaginary-time dynamics introduces
the correlations present in the coupled system, and (iii) a prop-
agation step where the real-time dynamics is followed up to the
onset of the kinetic regime (the long-time limit alluded to above).
Details about the calculations, including an overview of the flux-
side approach, the Monte Carlo sampling, the tree structure of
the ML-MCTDH wave function, and the number of SPFs and the
primitive grids used, are provided in Sec. II of the supplementary
material. Converged calculations were obtained with 50 bath modes
and using 128–256 realizations for each value of T and coupling
strength.

III. SIMULATION DETAILS AND PARAMETERS
A. 1D and 2D double-well models

We analyze the performance of RPI-EF on a double-well model
similar to the ones usually employed to study quantum dynamics in
system–bath models.39,40 The potential energy surface of the system
is given by

VDW(q) = −
1
2

mω‡2
(q − q0)

2
+

m2ω‡4

16V0
q4, (6)

where, unless otherwise specified, we set m as the mass of atomic
hydrogen and ω‡

= 500 cm−1. The coupling between the system and
the bath can be made position-dependent according to41

f (q) = q[1 + ε1 exp(−Δq2
/2) + ε2 tanh(Δq)], (7)

where Δq = (q − q‡
)/δ, δ determines the length-scale of the nonlin-

ear couplings, and ε1 and ε2 are the magnitudes of its symmetric
and anti-symmetric components, respectively. The calculations with
position-independent friction were obtained by setting ε1 = ε2 = 0.
Naturally, the position-dependent couplings of real systems do not
generally adopt such simple forms. However, as it will be shown in
Sec. IV B, this simplified form will prove sufficient to expose the
importance of including this position-dependence in the tunneling
rates.

We consider an Ohmic (linear) spectral density multiplied by
an exponential cutoff, leading to

η̃il(q, λ) =
2
π∫

+∞

0
dωη̃0(

∂ f (q)i

∂ql
)

2 λ
ω2 + λ2 e−ω/ωc , (8)

where η̃0 is the static friction coefficient and, unless otherwise
specified, we set ωc = 500 cm−1.

To illustrate the tensorial nature of the friction, we also con-
sidered a two-dimensional double double-well (DDW) potential
given by

VDDW(q1, q2) = VDW(q1) + VDW(q2) + Cq1q2, (9)
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where C is a constant to be specified. Additionally, for the sake of
simplicity, we considered that the bath couples to each degree of
freedom independently, and the coupling function is given by

f (q1, q2) = ( f (q1), f (q2)), (10)

where f (qi) is given by Eq. (7).

B. Fcc metals
We also perform first-principles atomistic simulations to show-

case the methodology developed in this paper. More specifically, we
focus on hydrogen and deuterium hopping reactions within inter-
stitial sites in different bulk fcc metals: Pd, Pt, Cu, and Ag. The
bulk systems were modeled by 2 × 2 × 2 cubic supercells containing
one hydrogen or deuterium atom and 32 metal atoms. Energies and
forces were computed employing density-functional theory (DFT)
using the FHI-aims22 code and the Perdew, Burke, and Ernzerhof
(PBE) exchange–correlation functional.42 Geometries were relaxed
using the standard light settings (in the case of Pd, increasing the
radial multiplier to two) from FHI-aims until all forces were below
10−3 eV/Å. Minimum-energy pathways (MEPs) were obtained with
the string method23 combined with the climbing image technique24

as implemented in the aimsChain package provided with the FHI-
aims code. The BroydenBorn–FletcherBorn–GoldfarbBorn–Shanno
(BFGS) algorithm was used as the optimization procedure, and the
residual forces converged below 10−3 eV/Å. Unless specified oth-
erwise, a 6 × 6 × 6 k-point sampling was used. This setup ensures
that errors in relative energies are below 1 meV/atom. We obtained
lattice constants of 3.95, 3.97, 3.63, and 4.16 Å for Pd, Pt, Cu, and
Ag, respectively, in good agreement with Ref. 43. See Sec. III A of
the supplementary material for more details regarding convergence
tests.

As explained in Paper I69 of this paper, the electronic friction
tensor was computed as

η̃ij(q, λ) = h̵∑
ν,ν′
⟨ψν∣∂iψν′⟩⟨ψν′ ∣∂jψν⟩( f (εν) − f (εν′)) ×

λΩνν′

λ2 +Ω2
νν′

,

(11)

where f (ε) is the state occupation given by the Fermi–Dirac distri-
bution,ψν and εν are the KS electronic orbitals and orbital energies of
the νth level, i and j label the nuclear degrees of freedom, ∂i = ∂/∂qi,
and Ωνν′ = (εν − εν′)/h. The calculation of the non-adiabatic cou-
pling elements was obtained through a finite-difference approach,
as currently implemented in the FHI-aims code.44 Equation (11)
is the Laplace transform of the time-dependent electronic fric-
tion tensor, thus differing from expressions commonly used in the
literature,45 as we discussed in Paper I.69 While the expression
in Eq. (11) is the appropriate one for RPI-EF, other expressions
have been correctly used for the calculation of vibrational life-
times and molecular dynamics with electronic friction simulations
in the Markovian limit.16,44,46,47 We used a step length of 0.001 Å
for the finite-difference evaluation, and a 16 × 16 × 16 k-point
sampling for the friction tensor. We only calculated the tensor
components related to the hydrogen or deuterium atoms. More
details regarding convergence tests can be found in Sec. III B of the
supplementary material.

IV. NUMERICAL RESULTS ON MODEL POTENTIALS
A. Position-independent friction

We start by analyzing the linear coupling case and benchmark-
ing the RPI-EF results against the ML-MCTDH results. In Fig. 1,
the rate constants calculated for the DW potential [Eq. (6)] at differ-
ent temperatures and friction values are shown. The RPI-EF results
are in good agreement with the exact calculations for η̃0/mω‡

> 0.1
at all the temperatures considered. We note that the lowest temper-
ature, 50 K, represents less than half of the crossover temperature
evaluated without friction. Even at considerably higher friction val-
ues, where the RPI approach has been predicted to be inadequate,17

the agreement is quite remarkable, showing that real-time dynamical
effects, such as recrossing, play a minor role in these cases. At lower
friction values, specially below η̃0/mω‡

= 0.05, the agreement dete-
riorates. The poor performance of the RPI-EF method in the weak
coupling regime is not surprising since the RPI predicts a finite value
for the rate even at η̃0 = 0, where the dynamics in such a 1D model
would be described by a Rabi oscillation and, strictly speaking, a
rate process cannot be defined. Indeed, RPI-EF reaches a plateau at
η̃0/mω‡

≈ 0.05, which might be interpreted as “an intrinsic” dissi-
pation inherent to that theory, as a consequence of ignoring recur-
rences that are associated with semiclassical pathways that leave the
barrier region and make real-time bounces on the walls of the poten-
tial well. When η goes to zero, the exact results approach the limit of
coherent tunneling dynamics, yielding ML-MCTDH rates that are
larger than the ones calculated with RPI. In passing, we note that
both methods present a minimum of the rate at around 70 K in the
weak-friction regime (see the inset in Fig. 1), which differs from the
low-temperature power law observed in metastable systems.48,49 A
deeper study of this subtle but interesting quantum effect is beyond
the scope of the current work and will be the subject of future
research.

FIG. 1. Reaction rate constants for the DW potential (V0 = 258 meV,
ωc = 500 cm−1, and q0 = 0) for temperatures between 50 and 100 K for different
friction values computed with RPI-EF (solid lines with filled circles) and ML-MCTDH
(dashed lines with empty circles).
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FIG. 2. Tunneling enhancement factors log10[κtun] as a function of the energy
barrier height and friction strength on the DW potential with q0 = 0.0 Å (symmetric
reaction profile) at T = 0.7Tc

○ = 80 K. The color-scale is logarithmic, and contour
lines are drawn for isosurfaces spaced by two logarithmic units.

One way to evaluate the relative importance of tunneling to
the total rate is to analyze the tunneling enhancement factor, κtun,
defined as

κtun
(β, η̃) =

kinst(β, η̃)
kTST(β, η̃)

, (12)

with kTST(β,η) being the TST rate.26 Figures 2 and 3 show the cal-
culated tunneling enhancement factors for different barrier heights
and friction values for symmetric and asymmetric reactions, respec-
tively. For the range of parameters considered here, it can be
observed that the tunneling enhancement factor calculated with and
without friction can differ up to almost ten orders of magnitude,
that it increases with the increase in the barrier height, and that it
decreases with the increasing friction strength. For barriers larger

FIG. 3. Same as Fig. 2 with q0 = 0.08 Å (asymmetric reaction profile). The exoergic
reaction is considered.

than 500 meV, the isosurfaces are approximately straight lines with
a slope one, meaning that barrier heights and friction strengths have
a comparable but opposite effect on tunneling.

We now proceed to discuss why the friction strength and the
barrier height impact the tunneling contribution to the rate. The
friction value determines the system–bath coupling strength. As
evidenced by κtun

∼ 1 at higher friction values, the stronger the cou-
pling, the more classical the system behaves. However, the reason
why the impact of the friction becomes more relevant at higher bar-
rier heights is less straightforward to understand and requires the
analysis of the instanton pathways. In Fig. 4, we show the decompo-
sition of the instanton geometry into the free RP normal mode basis.
We first consider the case without coupling to the bath. For sym-
metric barriers, Fig. 4(a), the instanton pathway expands only along
the odd RP normal modes due to the symmetry of the underlying
potential, and the first two degenerate RP normal modes (l = ±1)
contribute with more than 99% to the path. For asymmetric barriers,
Fig. 4(c), even though all normal modes are, in principle, allowed
by symmetry, the first two degenerate RP normal modes exhibit
the highest contribution with the centroid mode (l = 0) present-
ing a non-negligible contribution as well. For both barrier shapes,
the population of the l = ±1 modes increases with the barrier height
simply because the pathway from reactants to the product becomes
longer. The same trends are observed for calculations with inter-
mediate system–bath coupling, Figs. 4(c) and 4(d), where the only
difference is an overall smaller population of the RP normal modes
due to the shorter instanton pathway. Thus, higher barriers correlate
with a relatively larger impact of the friction on the rate. This is due
to an increase in the RP normal mode population, which leads to an
increase in the last term in Eq. (4). We note that this might not be
true for other barriers with arbitrary shapes.

Grote–Hynes (GH) theory50–52 defines a relationship between
reaction rates obtained with a finite friction strength and those
obtained with vanishing friction strength in the classical limit. In
Paper I,69 we showed an extension of GH theory to the deep tunnel-
ing regime for the case of position-independent friction. Briefly, we
proposed that tunneling rates with finite friction strength—RPI-EF
rates—at a given temperature can be related to tunneling rates with-
out friction—RPI rates—performed at a scaled temperature. The
scaling relation for the temperatures is given by

Tb/Tc
○
=

¿
Á
ÁÀ
(
η̃(ωb

l )

2mω‡ )

2
1
l2 + (

Ta

Tc○
)

2
−
η̃(ωb

l )

2mω‡

1
l

, (13)

where Tc
○ is the crossover temperature without friction, Tb is the

target temperature at which the RPI-EF result is desired, Ta is the
temperature at which the RPI calculation must be performed, and
ωb

l is the l free RP normal mode frequency at Tb. Since ωb
l depends

on Tb, this equation has to be solved self-consistently. Even though
Eq. (13) must be fulfilled for all l, from Fig. 4, one can expect that
considering only ωl=±1 should be a good assumption.

In Fig. 5, the error obtained by computing the rate using only
ωl=±1 in Eq. (13) for different temperatures and coupling strengths
in the symmetric DW potential is presented. The estimated RPI
rates at the scaled temperatures are within one order of mag-
nitude from the full RPI-EF rates for all friction strengths, but
they are in better agreement for η̃0/mω‡

< 0.5. Similar accuracy is
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FIG. 4. Decomposition of instanton
geometry into the free RP normal mode
basis at a representative temperature of
T = 0.70Tc

○ = 80 K for (a) symmetric
DW with η̃0/mω‡ = 0.00, (b) symmetric
DW with η̃0/mω‡ = 0.50, (c) asym-
metric DW (q0 = 0.08 Å) with η̃0/mω‡

= 0.00, and (d) asymmetric DW
(q0 = 0.08 Å) with η̃0/mω‡ = 0.50.
Five different barrier heights were
considered: 125 meV (purple), 258 meV
(green), 500 meV (red), 750 meV (light
blue), and 1000 meV (gray). Coefficients
are ordered and grouped by their
corresponding RP normal mode (NM)
index (l).

FIG. 5. Error on the RPI rate values obtained by the scaling relation shown in
Eq. (13) (kGH

RPI) compared to RPI-EF rates (kRPIEF). The error is reported as the
logarithm of the ratio between these rates in the symmetric DW model. Tempera-
tures of 0.70Tc

○ (squares) and 0.55Tc
○ (circles) and reaction barriers of 258 meV

(red), 500 meV (blue), and 1000 meV (black) are shown. An analogous plot for an
asymmetric barrier is presented in the supplementary material.

observed for an asymmetric DW model with this approximation
even though the l = 0 mode is appreciably activated (see Sec. IV in
the supplementary material).

B. Position-dependent friction
We now consider the case where the coupling between the sys-

tem and the bath depends on the position of the system coordinate,
i.e., a position-dependent friction. Figure 6 shows instanton path-
ways obtained for different system–bath coupling strengths on a

DDW potential, as described by Eq. (9), at a temperature consid-
erably lower than Tc

○ in this model. The parameters of the model
were chosen such that the PES presents two global minima, two local
minima, four first order saddle points that connect each global min-
imum with the closest local minimum, and one second order saddle
point at (q1, q2) = (0, 0), as shown in Fig. 6(a). The optimal tunnel-
ing pathway in the absence of dissipation is represented by the black
curve in Fig. 6, and it is a linear trajectory that connects the two
global minima by crossing the second order saddle point. For η̃ > 0,
the anisotropy of the friction [see Fig. 6(b)] results in a modification
of the instanton pathway, which bends toward regions of lower fric-
tion values. The magnitude of the bending of this path increases as
the strength of the friction becomes larger. This shows that the opti-
mal dissipative tunneling pathway is a compromise between the path
with the shortest length, the path with the lowest potential energy,
and the path with lowest friction. Indeed, for η̃0/mω‡

> 0.5, the dis-
sipation is so strong close to the second-order saddle point that no
instanton pathway that connects directly the two global minima can
be found.

V. HOPPING OF HYDROGEN AND DEUTERIUM
IN BULK METALS
A. Minimum energy paths, barrier heights,
and friction strengths

Having characterized the performance of RPI-EF in model
potentials, we now address the interplay of NAEs and NQEs on the
hopping reaction of H within bulk metals, which we calculate from
first-principles electronic-structure simulations.

We first analyze the MEP of the reactions in Pd, Pt, Cu, Ag,
and Al. We note that we focus on the hopping reaction between
neighboring octahedral → tetrahedral interstitial sites. Even though
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FIG. 6. Instanton pathways obtained at 40 K using the DDW model with
V0 = 258 meV, q0 = 0 Å, C = 97.1 meV/Å2 (0.001 a.u.), ε1 = 0, ε2 = −0.8, and
Δ = 1.0 for η̃0/mω‡ = 0, 0.10, 0.25, and 0.50 represented by full black, red,
orange, and blue lines, respectively. The pathways are shown on top of (a) a heat
map representing the underlying potential energy surface and (b) a heat map that
helps visualize the position-dependence of the friction tensor. The map is com-
puted as the sum of the diagonal elements of η̃ for η̃0/mω‡ = 0.50 [see Eqs. (8)
and (10) in the main text].

in perfect solids these reactions determine the diffusion rate, in real
materials other mechanisms might become the rate determining
step of the diffusion process.53,54 A visualization of the MEP in Pd
is shown in the inset of Fig. 7(b). In Table I, we report the reac-
tion energy, reaction barrier, and electronic-friction values along
the MEP for the reactions considered in this work. As shown in
column 3, the energy barriers are in the 100–300 meV range in
accordance with previous studies.55

We continue by analyzing the electronic friction tensor η̃il(q, λ)
on the hydrogen atom along the MEPs. In Fig. 7(a), we present
the electronic friction values evaluated at the first non-zero ring-
polymer normal mode frequency at 100 K, projected onto the
direction parallel to the reaction coordinate for the case of Pd. The
friction values vary up to almost an order of magnitude, indicating
the necessity of having a rate theory that takes into account such
position dependence. The electronic friction along the MEP for the
other metals shows a strong position dependence as well (see Sec. III
B of the supplementary material). As shown in column 4 of Table I,
the values vary from 0.7 to 3.1 ps−1. The magnitude of the fric-
tion coefficients is large enough to impact vibrational lifetimes,44

FIG. 7. (a) Minimum energy pathway (MEP) and friction along the reaction coordi-
nate for the H hopping reaction in Pd (PBE functional). The energy is set to zero at
the reactant geometry. (b) Frequency dependence of the friction tensor projected
on the reaction coordinate at the reactant (red), transition state (black), and product
(blue) states. To ease visual comparison, all curves in panel b have been scaled
to adopt the value of one at the highest friction value. The first three non-zero ring-
polymer normal mode frequencies at 100 K are depicted as vertical dashed gray
lines. Inset: minimum energy pathway (MEP) corresponding to the hydrogen atom
migrating from the octahedral site (red) to the tetrahedral site (blue). Pd atoms are
depicted in gray.

adsorption mechanisms,56 and scattering experiments.56,57 How-
ever, the dimensionless coefficient η̃/mω‡ yields at most a value of
0.05 (for Al), which, given the relatively low barrier heights, would
result in a reduction in the tunneling rates by less than a factor of 5,

TABLE I. Reaction energy, ET-O = ET − EO, and energy barrier heights,
ETS-O = ETS − EO, for the different fcc metals considered in this work. ET,
EO, and ETS refer to the potential energy corresponding to structures where the H
atom is located at the tetrahedral (T), octahedral (O), and transition state (TS) sites,
respectively. Values are reported without ZPE corrections. Minimum and maximum
values adopted by the electronic friction, η̃, along the MEP are presented in column
four. Values are evaluated at 54 meV (which corresponds to the first non-zero
ring-polymer normal mode frequency at 100 K) and considering a projection of η̃ on
the reaction coordinate. Columns 5 and 6 show the crossover temperature, Tc

○, and
imaginary frequency at the TS, ω‡, respectively.

System ET–O (meV) ETS–O (meV) η̃ (ps−1) Tc
○ (K) ω‡ (cm−1)

H@Pd 43 148 0.7–2.7 115 501
H@Pt −35 44 0.8–2.8 96 420
H@Cu 188 300 0.7–1.1 140 612
H@Ag 52 160 0.7–1.0 116 504
H@Al −71 88 1.8–3.1 84 365
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according to our study on model potentials presented in Sec. IV A
(see Figs. 2 and 3).

A closer look at the expression used to compute the electronic
friction tensor, Eq. (11), allows us to rationalize the reasons behind
such small coefficients.58 Large friction values will arise in the case of
a high DOS close to the Fermi level and due to the presence of hydro-
gen states close to the Fermi level. The former contributes to Eq. (11)
via the Fermi–Dirac factors; the latter contributes via the strength
of the nonadiabatic coupling. While the former depends mainly on
the metal at hand, the latter is affected by both the impurity and the
metal.59 We analyzed the atomic projected DOS (see Sec. III C in the
supplementary material) and confirmed that Pd and Pt are, at the
same time, the systems that present the largest electronic friction val-
ues and the highest DOS at the Fermi level among the transition met-
als. Surprisingly, Al presents slightly larger friction values without a
high DOS at the Fermi energy. This might suggest that the nonadia-
batic couplings are comparatively large in this case. However, in all
cases, the hydrogen atom neither creates new states nor affects the
DOS appreciably in the vicinity of the Fermi level, which ultimately
leads to rather small friction coefficients along the MEP for these
systems.

Up to this point, we have considered values of the friction
tensor at a single frequency. However, the calculation of the tun-
neling rates require the evaluation of the friction tensor at all the
RP normal mode frequencies [Eq. (3)], and more importantly, in
the derivation of RPI-EF with a position-dependent friction ten-
sor, we have assumed that a separable coupling ansatz is valid. This
ansatz is equivalent to assuming that the frequency dependence of
the friction tensor remains the same at all (relevant) positions. As an
illustrative example, we present in Fig. 7(b) the frequency depen-
dence of the friction tensor at the stationary points of the MEP
(reactant, transition, and product state) for the hydrogen hopping
reaction in Pd. The frequency dependence shows a non-monotonic
profile with a maximum around 0.6 eV and remains fairly simi-
lar along the MEP, suggesting that the non-adiabatic couplings in
bulk metals are, to a great extent, well described by a “separable
coupling.” This observation is equally valid for the other metals (see
the supplementary material, Sec. III B). A different type of coupling
might be observed in scattering reactions, where atoms or molecules
transition from vacuum to electron-rich environments.56,60 As dis-
cussed in Sec. IV A, only the first few ring-polymer normal
modes are appreciably activated. For this reason, only a rela-
tively small fraction of spectral density contributes to the rates
[see Fig. 7(b)].

B. Tunneling rates: The case of Pd
We performed full-dimensional instanton calculations on Pd

in order to gauge the predictive power of our studies on low-
dimensional models and static estimators presented in Sec. IV. We
selected Pd because it presents high values of friction along the MEP,
and the diffusion of H in Pd has been well studied theoretically and
experimentally before. In order to reduce the computational cost, we
performed instanton calculations on a fcc cubic cell containing four
Pd atoms and one H or D atom. These calculations were performed
using a 12 × 12 × 12 k-point sampling. The relatively small size of the
unit cell induces an effective increase in the barrier when compared
to larger unit cells, and the new Tc

○ increases to 136 K (see Sec. I in

FIG. 8. Reaction rates for octahedral → tetrahedral-site hopping reaction of H
(black) and D (orange) in Pd, calculated by TST (dashed lines) and RPI rate theory
(solid lines). RPI-EF rates with position-independent friction, fixed at a value of
4 ps−1, are shown by black and orange circles for H and D, respectively, while the
RPI-EF rates with position-dependent friction are depicted as a red cross. RPI rate
calculations with the Pd atoms fixed at their reactant, transition, and product states
are presented by diamond, square, and circle gray symbols, respectively. Tc

○ for
H and D is marked by vertical black and orange dotted lines, respectively.

the supplementary material). Since the larger barriers magnify the
effect of the friction on the rates, these calculations can be consid-
ered an upper-limit estimation of the impact of the friction on these
rates.

In Fig. 8, the reaction rates for the hopping reaction of H and D
in Pd from the octahedral to the tetrahedral site using TST, RPI the-
ory, and RPI-EF theory are presented. At temperatures below Tc

○,
the tunneling effects, evidenced by the difference between the RPI
and TST rates, become increasingly important, enhancing the rate by
several orders of magnitude. The comparison of the TST predictions
for H and D indicates an inverse kinetic isotope effect (KIE). The
inverse KIE can be traced back to the softening of the normal modes
orthogonal to the reaction pathway at the transition-state geome-
try.61 Since this effect is mainly due to ZPE, it is also present at tem-
peratures above Tc and has been reported experimentally.5 Below Tc,
the emergence of tunneling creates a competition between ZPE and
tunneling effects as already reported by Kimizuka et al.62 Moreover,
the similarity of the reaction rates for both isotopologues around
80 K is in agreement with the results of Ref. 62 and with experiments.
However, the absolute values reported here are considerably smaller
as a consequence of the rather small unit-cell employed in the
calculations.

We now inspect the impact of the lattice on the reaction rates.
For this purpose, we performed RPI calculations where the Pd atoms
were fixed at the reactant, product, and transition state positions at
115 K. The rate obtained when the Pd atoms are fixed at their reac-
tant positions is seven and four orders of magnitude slower than
the RPI and TST estimates, respectively. This confirms the signifi-
cant contribution of the lattice fluctuations to the reactive process10

and highlights the multidimensional nature of the reaction. In con-
trast, the rate estimates obtained from the calculations with the Pd
atoms fixed at their transition-state or product positions are within
an order of magnitude of the RPI estimates. The former result is
expected since we are analyzing the rates at only 20 K below Tc

○ such
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that the instanton pathway lies very close to the TS geometry. The
latter result, instead, shows that the lattice relaxation between the
transition state and the product is of comparatively lower relevance.

Finally, we consider the effect of the electronic friction on the
rate. At 100 K, we performed a calculation with on-the-fly esti-
mations of the friction tensor along the instanton pathway (also
included in the instanton optimization). In order to gauge the
importance of the spatial dependence of the friction, we also per-
formed, at the same temperature, an instanton calculation using a
constant value of 4 ps−1 for the friction (slightly higher than the
maximum value reported in Table I). The results were numeri-
cally indistinguishable within the accuracy of our calculations, which
may seem an unexpected result, at first. We proceeded to perform
calculations with a constant and spatially independent friction value
(which is less computationally demanding) at several other temper-
atures. In Fig. 8, we show these results, and as predicted by our
earlier assessment, the friction coefficients are not large enough
to produce a significant effect on the rates. This explains why
the spatial dependence also does not appreciably change the rate
constants.

VI. CONCLUSIONS
We have benchmarked the RPI-EF method and showed its

performance in model potentials and first-principles calculations.
By performing numerically exact simulations in 1D model systems
including a spatially independent friction, we showed that RPI-EF
yields accurate rates for all but very small friction coefficients at a
much reduced computational cost. A systematic analysis of 1D and
2D double-well potentials allowed us to determine the magnitude of
the decrease in the tunneling rates caused by friction as a function of
the coupling strength and barrier height. We found that the suppres-
sion of tunneling is promoted by high coupling strengths and high
energy barriers. We were also able to demonstrate that for a spatially
dependent friction tensor, the instanton pathway can be consider-
ably deformed toward low-friction regions when compared to the
“non-dissipative” path (without friction). In comparison to previ-
ous similar approaches,63,64 the RPI-EF method is advantageous
because it is highly efficient, more intuitive, and mathematically
simpler.

In the context of reactions involving atoms and molecules in
metallic environments, RPI-EF allows for the inclusion of NQEs
and NAEs as described by an effective electronic friction. While
here we used an electronic friction formulation that disregards elec-
tronic correlation,16,44,45 the RPI-EF approach is rather general and
can be combined with other flavors of electronic friction that go
beyond the independent quasi-particle picture. As a consequence of
the relatively low computational cost of both RPI and the employed
ab initio electronic friction formalism, RPI-EF allows the study of
high-dimensional systems with on-the-fly ab initio evaluation of the
forces and the electronic friction tensor.

In this work, we presented calculations of hydrogen and
deuterium hopping between nearest interstitial sites of selected fcc
metals, employing density-functional theory calculations. By eval-
uating the impact that different factors have on the reactions rates
of this reaction in bulk Pd, we established that nuclear tunnel-
ing and lattice relaxation play a larger role in determining the
magnitude of the rate than electronic friction. The latter turned out

to have a negligible impact on the reaction rates of these systems.
This negative result, however, answers an important theoretical
question regarding the interplay between NAEs (modeled by elec-
tronic friction) and NQEs65 and also validates the rate constants cur-
rently used in this context for multiscale modeling.66 Nonetheless,
we anticipate that for impurities or adsorbates that present electronic
levels in the vicinity of the Fermi energy of the metal, NAEs might
play a more prominent role in connection with tunneling. We also
expect to observe a larger effect for lighter particles, such as Muons,67

or for surface reactions with higher energy barriers.68

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed description of
the MCTDH simulations and convergence tests of the DFT and
RPI(-EF) calculations. Also included are rate estimations for the
asymmetric double well potential and the DFT energies, electronic
friction values, and the projected density of states along the MEP for
the H hopping reaction in Pd, Pt, Ag, Cu, and Al.
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