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Vibrational relaxation is a key issue in chemical reaction
dynamics in condensed phase and at the gas-surface inter-
face, where the environment is typically highly structured
and cannot be expressed in terms of a simple friction coef-
ficient. Rather, full knowledge of the coupling of the molec-
ular oscillator to the environment is required, as typically
subsumed in the spectral density of the environmental cou-
pling. Here, we focus on harmonic Brownian motion and
investigate the effectiveness of classical, canonical position
autocorrelation functions to compute the spectral density
of the coupling needed to describe vibrational relaxation
in complex environments. Classical dynamics is performed
on model systems, and several effects are investigated in
detail, notably the presence of anharmonicity, the role of a
high-frequency “Debye” cutoff in the environment and the
influence of the detailed structure of the latter. The spec-
tral densities are then used in standard independent oscil-
lator Hamiltonian models which are numerically solved at
T= 0 K to investigate quantum relaxation and decoherence.

1 Introduction

Vibrational relaxation plays a key role in many physical
and chemical processes in condensed phases [1]. In ac-
tivated barrier crossing, relaxation of reaction products
has to be faster than re-crossing, thereby determining
the reliability of transition-state approaches to reaction
dynamics. Ground-state molecules that are photoex-
cited to an electronically excited state may undergo fast
vibrational relaxation and get trapped into a local neigh-
boring minimum of the excited-state potential, or start
a fast, excited-state dynamics which ultimately leads
to the photo-reaction products. Vibrationally excited
molecules may store a comparatively large amount of
energy and thus open non-thermal reaction pathways

which would otherwise be impossible. Mode-selective
chemistry has to compete with energy relaxation and
re-distribution, conversely energy dissipation is a pre-
requisite for sticking of atoms and molecules to solid
surfaces, i.e. for surface chemistry.

Modeling vibrational relaxation requires information
on the relevant molecular vibrational degrees of free-
dom, and their coupling to the complicated environment
in which they are placed. While the former are accu-
rately described by many high-quality electronic struc-
ture methods available today, the latter is not always eas-
ily identifiable and, most often, is not in a form which is
readily usable for high-dimensional quantum dynamics.
The need of a quantum description arises since the vi-
brational energy is typically larger than thermal energy;
a problem which forces one to deal with a quantum sys-
tem interacting with a quantum bath which is typically
highly structured.

Progress in the quantum description can be made
with the Independent Oscillator (IO) model [1–5], since
the latter provides a rather general representation of
the system-bath dynamics and is particularly convenient
for numerically exact simulations of the open system
quantum dynamics. IO Hamiltonians can be managed
with exact wavepacket techniques (including possibly
Monte Carlo wavepacket sampling, for handling finite-
temperature situations [6]) up to several tens of degrees
of freedom [7–9]. Furthermore, detailed information on
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the structure of the environment can easily be encoded
in terms of bath oscillator frequencies and coupling pa-
rameters. However, a key problem is obtaining the spec-
tral density (SD) function in the first place. If an analyt-
ical form of the total potential is known, the SD, J0(ω),
can be computed by a careful small amplitude expansion
around the relevant global minimum. However, this may
be a difficult task for a complex potential (e.g. when the
separation between the system and the bath is not evi-
dent) or simply not possible in practice because the po-
tential is not explicitly available, or the environment is
dynamically evolving (i.e. well defined minima cannot be
singled out). Nowadays, one most often accesses dynam-
ical information bypassing the need of computing an ac-
curate potential, e.g. using on-the-fly simulations such as
ab initio molecular dynamics, and thus a method which
uses only dynamics as an input is highly preferred. For a
related discussion, see recent work of Ref. [10].

In the present work we describe and thoroughly check
a procedure for computing the spectral density from
molecular dynamics simulations. The approach makes
use of analytical results which can be obtained for har-
monic Brownian motion and its position (or velocity) au-
tocorrelation function, and essentially inverts the latter
to give J0(ω). We test this approach on a variety of mod-
els and discuss its limits and its range of applicability.

Furthermore, since the ultimate goal is to address
vibrational quantum dynamics, we also investigate vi-
brational relaxation and decoherence in the ensuing IO
models, and show that they can be tackled with numer-
ically exact methods, in a realistic range of parameters
describing molecular systems and coupling to typical en-
vironments. Hence, we provide a full description of the
procedure, from the classical equilibrium dynamics used
to infer the environmental coupling to the quantum dy-
namics. We emphasize here that this article does not ad-
dress the fundamental issue of whether and how a re-
duced dynamics can be exactly mapped into some sort of
generalized Langevin equation (GLE) and corresponding
IO model [11–13].

The paper is organized as follows. In Section 2, we
sketch our approach and in Section 3 we describe the
models and the methods used for the classical and the
quantum dynamical simulations. In Section 4 we present
our results, which are then discussed in Section 5. Finally
Section 6 summarizes and concludes.

2 Theory

The spectral density (of the environmental coupling)
[4, 5] J0(ω) appears in the generalized Langevin equation

for a Brownian degree of freedom s of mass m subjected
to a deterministic potential V and a stochastic force ξ

ms̈(t) + m
∫ +∞

−∞
γ (t − τ )ṡ(τ )dτ + V ′(s(t)) = ξ (t) (1)

J0(ω) is related to the real part of the frequency-
dependent memory kernel through J0(ω) = mω�γ̃ (ω)
where

γ̃ (ω) =
∫ ∞

0
γ (t)eiωtdt (2)

J0(ω) fully determines γ̃ (ω) by virtue of the Kramers-
Kronig relations and the Gaussian stochastic process ξ (t)
by virtue of the fluctuation-dissipation (FD) theorem
of the second kind. Specifically, if we define the sym-
metrized memory kernel κ(t) = γ (|t|) (in such a way that
γ (t) = �(t)κ(t)), the following relations hold

κ(t) = 2
πm

∫ +∞

0

J0(ω)
ω

cos(ωt)dω (3)

〈ξ (t)ξ (0)〉 = �

π

∫ +∞

−∞

J0(ω)
1 − e−�βω

e−iωtdω (4)

Here the force correlator has been written for a quantum
environment; the classical limit can be obtained at high
temperatures (β = 1

kB T → 0), where Eq. (4) reduces to the
classical FD expression, mκ(t)/β.

For classical harmonic Brownian motion,
V = 1

2 mω2
0s2, the spectral density determines not

only the correlation function of the environmental
fluctuations according to Eq. (4), but also the frequency-
dependent autocorrelation function of the position,
C̃(ω) = ∫ +∞

−∞ eiωtC(t)dt = ∫ +∞
−∞ eiωt〈s(t)s(0)〉dt, namely

through

1
2
ωC̃(ω) = kB T

m



(
1

ω2
0 − ω2 − iωγ̃ (ω)

)
(5)

which can be obtained by Eq. (1) upon performing a har-
monic analysis of that equation and applying the FD the-
orem [14].

In general, for realistic systems, the autocorrelation
function of the displacement 〈s(t)s(0)〉 (or, equivalently,
of the velocity 〈ṡ(t)ṡ(0)〉 = − d2

dt2 〈s(t)s(0)〉) is readily avail-
able from equilibrium classical simulations (or ab ini-
tio molecular dynamics calculations), and can be used
to infer the coupling to the environment provided Eq.
(5) can be “inverted” to give J0(ω) in terms of C̃(ω). This
can be accomplished by introducing the retarded corre-
lation function C+(t) = �(t)C(t) and exploiting the ana-
lytic properties of its Fourier transform (see Appendix A).
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The result is

J0(ω) = kB T
2

ωC̃(ω)
|
+(ω)|2

(6)

where 
+(ω) = limε→0+ 
(ω + iε), and


(z) = 1
π

∫ +∞

−∞

ωC̃(ω)/2
ω − z

dω (7)

is a “Cauchy transform” of the function f (ω) = ωC̃(ω)/2.
Eq. (6) is our working equation which translates dynam-
ical information into a coupling strength. Related proce-
dures for the Laplace inversion of the position autocor-
relation function have been used, e.g., in Ref. [15] in a
classical-mechanical context. In the following, we check
numerically its performance using the model systems
described below, but in general, classical atomistic simu-
lations can be used to generate the dynamics of interest.

Once J0(ω) is known it can be used to construct
a quasi-equivalent Independent Oscillator (IO) (also
known as Caldeira-Leggett) Hamiltonian [4, 5]

H I O = p2
s

2m
+ V (s) +

F∑
k=1

[
p2

k

2 mk
+ mk ω2

k

2

(
xk − ck

mk ω2
k

s
)2

]

(8)

where the s degree of freedom is coupled to a collection
of harmonic oscillators (xk, pk) of mass mk and frequency
ωk (in the following mk ≡ μ for all k is used, where μ is a
numerically convenient choice of the mass). To this end,
the coupling coefficients and the bath frequencies need
to sample the spectral density J0(ω) of the problem, e.g.
for evenly spaced frequencies ωk = k�ω the coefficients
are given by

ck =
√

2
π

mk ωk �ω J0(ωk) (9)

The equivalence between the two dynamical formula-
tions holds for finite times only, namely for times less
than the Poincaré recurrence time tP = 2π/�ω of the fi-
nite system; the latter needs to be set larger than the
time-scale of interest of the problem by choosing the ap-
propriate number of oscillators in the spectral range of
interest. In practice, this further implies the existence of
a frequency cutoff ωc which sets the shortest time that
can be resolved tc = 2π/ωc; higher frequencies, if present,
can always be absorbed in a mass-renormalization term
provided we are not interested in times smaller than tc.

The Hamiltonian of Eq. (8) can be quantized by
applying standard quantization rules and represents the
quantum problem that we tackle here at T = 0 K with a

Figure 1 Model spectral densities adopted in this work. In green,
the Ohmic spectral density corresponding to a relaxation rate of
γ −1 = 100 fs. In red a non-Ohmic spectral density randomly gen-
erated on the same scale as the reference Ohmic SD (atomic units).

Multi-Configuration Time-Dependent Hartree
(MCTDH) expansion of the wavefunction [7, 8], fol-
lowing previous works on similar model systems [16–20].
Further developments involving transformation of the
bath Hamiltonian into linear chain form [21–24] and
its application to similar problems have been discussed
elsewhere [25].

3 Models and methods

3.1 Models

In the following we apply Eq. (6) using dynamical infor-
mation extracted from several model systems. The sys-
tems are defined by the IO Hamiltonian of Eq. (8), and
make use of different system potentials and bath param-
eters.1 Two different model baths were considered, both
with a “Debye” cutoff frequency ωD ≈1000 cm−1. The
Markovian limit was represented by a truncated-Ohmic
bath, defined by J0(ω) = γ mω for ω ≤ ωD and zero other-
wise. A non-Markovian model J0(ω) was defined by gen-
erating 200 random Gaussian functions in the interval
[0, ωD], randomly choosing their widths in the 5 - 50 cm−1

range and fixing their intensity so that the integrated SD
approximately equals the Ohmic reference SD. This ran-
dom spectral density is plotted in Fig. 1, while all the pa-
rameters of the bath and the values adopted are listed
in Table 1. Two different models were used for the sys-
tem potential, a harmonic model with frequency ωs , i.e.

1 Below, wewill also briefly consider lifting the assumption of a bilin-
ear couplingmodel.
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Table 1 Parameters of the Hamiltonian

Model Hamiltonian Parameter Value

Harmonic Oscillator mass (m) 1.0078 amu

frequency (ωs ) 500/2500 cm−1

Morse Oscillator mass (m) 1.0078 amu

frequency (ωs ) 500/2500 cm−1

well depth (De) 1.5 eV

Morse α 0.5557 Å−1

Ohmic Bath mass (μ) 1.0000 amu

number (F ) 500/50

Debye freq (ωD) 1000. cm−1

relaxation time (γ −1) 100.0 fs

non-ohmic Bath mass (μ) 1.0000 amu

number (F ) 500/50

Debye freq (ωD) 1200. cm−1

V (s) = 1
2 mωss2, and a Morse model

V (s) = De
(
exp (−αs) − 1

)2
(10)

Here De is the well depth and α−1 its “width”, both of
which determine the system frequency ωs = α

√
2De/m.

In either case, two different values of ωs were considered:
one below the Debye cutoff frequency, ωs = 500 cm−1,
and one well above it, ωs = 2500 cm−1. Other relevant pa-
rameters are given in Table 1.

Ideally, for the models considered here, application of
Eq. (6) should give back the same spectral density used
above for defining the couplings, provided the system
trajectory remains well within the harmonic region of the
system potential (i.e. the dynamics is performed at low
enough T). In practice, however, as will be shown below,
the (realistic) case where ωs > ωD proves to be numeri-
cally challenging, because the δ−peak in C̃(ω) which ap-
pears at ωs necessarily broadens and this fact hides ei-
ther anharmonic effects or artificial damping introduced
in the dynamics.

3.2 Classical dynamics

For each of the two models above we computed the
autocorrelation functions of the oscillator coordinate s
by averaging a set of classical trajectories at a given

Table 2 Parameters of the molecular dynamics simulations

Parameter Value

Nr of trajectories 100

Temperature 5/300 K

Equilibration�t 0.2 fs

Equilibration τrelax = γ −1 10.0 fs

Equilibration time 200.0 ps

Propagation �t 0.05 fs

Propagation time 100.0 ps

Time step of trajectory sampling 2.5 fs

temperature. These trajectories were obtained by sam-
pling a set of initial conditions from a thermal distribu-
tion and propagating them in the microcanonical en-
semble. Canonical sampling was achieved with the help
of Langevin dynamics, integrated with a symplectic al-
gorithm [26] at two different temperatures, 5 K and 300
K. The other relevant parameters for the Langevin prop-
agation are reported in Table 2. For the microcanonical
dynamics, we used a velocity-Verlet algorithm, with pa-
rameters also reported in Table 2.

The frequency dependent correlation function C̃(ω)
was obtained with the help of the Wiener-Khinchin the-
orem

C̃(ω) = lim
T →∞

1
T 〈|ST (ω)|2〉 (11)

where ST (ω) is the finite-time Fourier transform of each
realization of the system trajectory s(t)

ST (ω) =
∫ T

0
dt s(t) eιωt

and the average is over the initial conditions. To
smoothen the autocorrelation function resulting from
our finite time propagations, we further applied a damp-
ing exponential factor in time, exp(−t/τ ), with τ = 1.0 ps
larger than any time-scale of interest here.

3.3 Quantum dynamics

Finally, in order to illustrate the implementation of the
whole procedure, the Hamiltonian of Eq. (8) – as defined
by the spectral densities computed from Eqs. (6) and (11)
for the models described above – was used for study-
ing vibrational relaxation and decoherence with fully
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quantum methods. Quantum simulations were per-
formed with the multi-configuration time-dependent
Hartree (MCDTH) method, using the Heidelberg
MCTDH package [8, 9, 27].

Although MCTDH is a powerful computational ap-
proach for quantum dynamics, the computational cost
of the calculations limits the bath size to 50 oscillators.
This number of oscillators corresponds to a recurrence
time of 1390 fs for the ωD =1200 cm−1 cutoff and 1668
fs for the ωD =1000 cm−1 cutoff, which, for both cases is
well above the relevant timings of the processes consid-
ered here. In the primitive discrete variable representa-
tion (DVR) grid, a Hermite basis set was chosen for all
degrees of freedom, including 20 points for the system
DOF and 6 for each of the bath DOF. The single particle
schemes adopted vary according to the bath representa-
tion, but in general the system was represented with a
single mode, and the bath degrees of freedom were di-
vided into combined modes of five oscillators. The initial
state was defined as a product of a wavefunction for the
system and one for the bath. The bath component con-
sisted of a product of the ground state functions of the
harmonic oscillators, which is the exact ground state of
the bath when coupling with the system is neglected. For
the system part, a different wavefunction was used de-
pending on the kind of simulation. In the case of vibra-
tional relaxation, an initially excited state of the system
potential was chosen and the relaxation dynamics was
investigated by looking at the vibrator energy. In the case
of decoherence, the initial state of the system was de-
fined as a superposition of two spatially separated Gaus-
sians. The coherence between these two Gaussian pack-
ets was analyzed by computing 〈s|ρ|s ′〉, the coordinate
representation of the reduced density matrix of the sys-
tem ρ = trx1...xF |�〉〈�|, where tr is the usual trace over the
indicated degrees of freedom. The off-diagonal elements
of 〈s|ρ|s ′〉 describe the spatial coherence of the two Gaus-
sians and decay in time due to the interaction with the
bath.

4 Results

When combining the model environments introduced
above with the system potential parameters four main
possibilities arise, depending on whether the oscillator
frequency ωs is larger or smaller than the bath Debye fre-
quency ωD (“High” and “Low” frequency cases, in the fol-
lowing, or “HF” and “LF” in short), and on whether the
bath is Ohmic or not (“Ohmic” and “non-Ohmic”). For
each of these possibilities, the system oscillator may be
harmonic (HO) or anharmonic of Morse (MO) type.

Figure 2 Frequency-dependent autocorrelation functions of the
system coordinate C̃(ω) (atomic units) as obtained from classical
simulations sampling different canonical equilibrium ensembles,
blue for T = 5 K and red for T = 300 K. The different panels re-
fer to the models considered (Ohmic-LF/HF and non-Ohmic-LF/HF,
from bottom to top and from left to right; see text for details).
Dashed (solid) lines for the harmonic (Morse) oscillator, whose cen-
tral frequency ωs is marked with the dashed vertical bar.

4.1 Spectral Density

The classical autocorrelation function of the system co-
ordinate and its Fourier transform C̃(ω), were computed
using the methodology explained in Section 3. For the
different models considered, Fig. 2 depicts C̃(ω). As ex-
pected, the autocorrelation function scales linearly with
the temperature T (see Eq. (5) for the Harmonic Brown-
ian dynamics), but only approximately for the Morse os-
cillator, because of an additional broadening of the signal
which depends on the temperature. Apart from this, the
details of the spectra can be easily understood in terms
of the oscillations of the system at its natural frequency
ωs and their coupling with the bath.

When the oscillator frequency lies within the spectral
range of the bath (“LF” cases), the spectrum has a sin-
gle band which arises from the superposition of the ωs =
500 cm−1 system peak and the bath signal. For frequency
larger than the bath cutoff ωD, the band sharply de-
cays. Anharmonic effects introduce a broadening of the
spectrum which is larger as the temperature increases;
hence at high temperature a much slower decay of C(ω)
is found.

However, when the oscillator frequency lies above the
bath spectral range (“HF” cases), there is a clear sep-
aration between the peak of the system and the band
of the bath. Furthermore, the shape of the latter is al-
most independent of the system, i.e. whether it is har-
monic or anharmonic. For the system, the HO case fea-
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Figure 3 The spectral densities (atomic units) obtained by “invert-
ing” the dynamical information of Fig. 2 (color coded as in that fig-
ure) are compared to the original ones used to define the models
(green lines).

tures a single Lorentzian peak (robust against variations
of the bath and/or the temperature) which is the nu-
merical representation of a δ−Dirac contribution, as ex-
pected from Eq. (5) when ωs lies outside the support
of J0(ω). Anharmonicity has two strong effects: on one
hand it causes the appearance of a higher harmonic of
the oscillator at a frequency ω = 2ωs =5000 cm−1, on the
other hand it induces a broadening of the δ−Dirac signal
that is about twice as large as the spectral width of the
bath.

Next, we used the transformation of Eq. (6) and ex-
tracted the spectral density of the environmental cou-
pling from the dynamical information contained in C̃(ω).
Since the underlying dynamical models are always of the
IO type - in which J0(ω) was explicitly defined - we are
able to thoroughly test our methodology by comparing
the original spectral density with the one obtained by
“inverting” the autocorrelation function. All these func-
tions are plotted in Fig. 3. Several things are worth notic-
ing.

When the system is HO, the transformation perfectly
recovers the original spectral density up to the bath De-
bye frequency, irrespective of the temperature and of
the model bath. For higher frequencies, the spectrum
is not identically zero and shows an increasing base-
line that is due to the numerical implementation of the
Cauchy transform of Eq. (7), which used an unbiased cut-
off frequency well above the spectral range of interest
(ωc = 4000 cm−1). However, this problem could be eas-
ily amended here by setting ωc equal to the bath Debye
frequency. On the other hand, applying blindly the trans-
formation of Eq. (6) when the system frequency is larger
than ωD, a sharp peak appears for ω ∼ ωs which is the

Figure 4 Frequency-dependent autocorrelation functions com-
puted at 300 K for a HO system using the spectral densities ob-
tained at the same temperature from the MO simulations. Blue
lines for the HO results and red lines for the original MO ones.

remnant of the numerical realization of the δ−Dirac con-
tribution mentioned above. A fictitious coupling to the
bath appears here because numerically the autocorrela-
tion function needs to be damped.

System anharmonicity introduces further complicat-
ing issues, as can be seen from the dramatic effect that
the temperature has on the computed spectral density. At
low T, the results are consistent with the harmonic case.
At “high” temperature, and in contrast to the HO case,
the remnant of the δ−peak undergoes substantial broad-
ening, as can be seen from the shape of the computed
spectral density around ωs (notice though that J0(ω) is
given on a logarithmic scale in Fig. 3). On close inspec-
tion the region most sensitive to the temperature extends
to ωs ± ωD and the shape of the computed J0(ω) in this
region is reminiscent of mode combinations ωs ± ωk be-
tween the system frequency ωs and the frequency of the
bath oscillators ωk. This is reasonable since the inversion
procedure of Eq. (6) was designed for a harmonic sys-
tem, and is here applied to an anharmonic system. Obvi-
ously, such temperature-dependent background in J0(ω)
is unphysical and reflects just the anharmonicity in the
system potential which can always be included in the IO
models used for the quantum simulations, without any
additional cost.

Interestingly, the above results suggest that anhar-
monic effects of the systems can be effectively incor-
porated in the bath. We checked this by computing the
correlation functions using the HO system model in con-
junction with the spectral densities obtained from the
MO models. As shown in Fig. 4, such correlation func-
tions are in remarkable agreement with the original ones
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obtained for the MO 2, thereby suggesting that the trans-
formation of Eq. (6) establishes a map between an anhar-
monic system and a harmonic one, by “moving” the an-
harmonic effects from the system to the bath. The price
to pay for this suggestive transformation is of course a
temperature-dependent spectral density.

From a general perspective this empirical observation
follows from the possibility of projecting out the system
dynamics and describing it by means of a generalized
Langevin equation [11, 12]. When employing Mori’s pro-
jection operators this mapping is exact for arbitrary sys-
tems and provides a Brownian oscillator model with an
effective, temperature-dependent frequency and mem-
ory kernel; here, the temperature dependence of the
frequency is minimal.

4.2 Quantum Dynamics

The IO models were also used to investigate vibra-
tional relaxation, as an illustration of what can cur-
rently be done for the quantum dynamics once a poten-
tially complicated environment is replaced by a spectral
density. The quantum simulations to be discussed here
were performed by evolving in time a high-dimensional
wavepacket which represents a T = 0 K situation, but
extensions to finite temperatures are possible, e.g. with
a Monte Carlo sampling of the appropriate initial-state
wavefunction [6]. Details of the numerics were given in
Section 3.

Results for the system energy decay are reported in
Fig. 5 for the two interesting (fast) processes in which
the molecular frequency ωs lies within the Debye limit.
Several different initial states were considered, as evident
from the value of the energy at initial time, as well as
the two model spectral densities described above (Ohmic
and non-Ohmic for bottom and top panel, respectively).
The energy given in Fig. 5 is the expectation value of the
system Hamiltonian plus half the interaction energy, to
account for the energy that at any time is in the coupling
term; the adopted equal splitting of the coupling may be
justified with the help of the virial theorem [17].

As depicted in Fig. 5, relaxation proceeds in few hun-
dreds of fs, regardless of the initial state; in contrast,
no relaxation is found on the same time-scale for the
case ωs > ωD (not shown). Results are given only for the
Morse oscillator, but the harmonic oscillator behaves

2 The absence of the highest frequency peak is only due to the fact
that a smaller value of the cutoffwas used in the Eq. (6), namely
ωc = 4000 cm−1.

Figure 5 Time evolution of the system energy (as defined in the
main text) for relaxation from different ν states. Average energies
(in units of ωs ) are given for the low-frequency ωs = 500 cm−1

Morse oscillator coupled to an Ohmic (bottom) or to a non-Ohmic
(top) bath.

very similarly, the main difference being only the value
of the initial energy which reflects the influence of the
anharmonic effects in the molecular spectrum. More in-
terestingly, the relaxation rates are very similar for the
two bath models, and no pronounced feature due to
the structured environment is found. The reason for
this behavior is that with the chosen coupling strength
the width of the vibrational resonances is still relatively
small that the system dynamics has no chance to sample
the spectral density. Indeed, the effective relaxation time
γ −1

ef f = mωs/J0(ωs) for the non-Ohmic model is close to
γ −1 =100 fs appropriate for the Ohmic bath (in line with
the observed energy decay rates), and corresponds to
δω ∼ 60 cm−1, a value too small to provide detectable sig-
natures of non-Markovian dynamics. This is confirmed
by the distribution of the system energy into the bath os-
cillators, as provided by the evolution of their average oc-
cupation numbers shown in Fig. 6. This figure shows that
energy exchange takes place almost entirely between the
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Figure 6 Time evolution of the average
excitation number of the bath oscillators
during relaxation of the ν = 5 vibrational
state of theMorse potential withωs = 500
cm−1. Left and right panels for the Ohmic
and non Ohmic baths.

system and the few quasi-resonant oscillators, and that
the coupling at ω = ωs =500 cm−1 has the same value for
both the spectral densities.

Finally, the loss of coherence of the wavepacket as in-
duced by the interaction with the environment was also
investigated, following the same approach used in Ref.
[18]. The initial wavefunction for the system was a sum
of two Gaussians, symmetrically placed around the min-
imum of the potential at a distance of 1.8 a0 for ωs =
500 cm−1 and 0.8 a0 for ωs = 2500 cm−1; the bath was
taken in its ground-state, as above. Figure 7 illustrates
the system reduced density matrix ρ(s ′, s) = 〈s ′|ρ|s〉 at
the beginning of the simulation, and after one, two and
three vibrational periods Tvib; results are shown for the
low-frequency harmonic oscillator (Ts =66.7 fs), but sim-
ilar results were obtained for the Morse oscillator at the
same frequency. In Fig. 7, on the diagonal s = s ′, ρ(s, s)
represents a bimodal probability distribution for the s

coordinate, with two distinct peaks that tend to merge
on the time scale of vibrational relaxation. On a much
shorter time scale, however, Fig. 7 shows the disappear-
ance of the off diagonal peaks, describing the coherence
between the two Gaussian states. Disappearance is com-
plete in less than one vibrational period, in accordance
with the much faster decoherence rate γdec. As shown
in Ref. [18], in the Markovian regime at T = 0 K, γdec =
�decγ , where the “decoherence factor” �dec = mωsδ

2

2�
de-

pends on the mass and the frequency of the system, as
well as on δ, which is a characteristic length scale of the
problem, here the spatial separation between the Gaus-
sians.

To quantify decoherence, and compare the different
situations considered, we computed the coherence norm
considered in Ref. [18], by running independent calcula-
tions for the ± combinations of the Gaussians. The re-
sults are depicted in Fig. 8, for all possible combinations
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Figure 7 Contour map of the magnitude of
the reduced density matrix of the system
ρ(s ′, s) = 〈s ′|ρ|s〉 during a relaxation dy-
namics. The initial state of the system was
a superposition of two Gaussians, symmetri-
cally placed around the minimum of the po-
tential, 1.8 a0 apart from each other. The sys-
tem was HO with ωs = 500 cm−1, and the
bath was Ohmic in the left panels and non-
Ohmic in the right panels. Results at initial
time and after one, two and three vibrational
periods Tvib (from top to bottom).
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Figure 8 Coherence norm during the relaxation dynamics of
the superposition of two Gaussians symmetrically placed around
the minimum of the potential. The initial distance between the
wavepackets was set in such a way that a decoherence factor
�dec = 10 results in theMarkovian regime atT = 0K. Also given,
for comparison, the ideal decoherence rate inMarkovian regime at
T = 0 K, when γdec = 10γ = 0.1 fs−1 (dotted line).

of model environments and system potentials and with
initial state parameters chosen in such a way that �dec =
10 always holds. As can be seen from that Figure, and as
could be expected on general grounds, only the low fre-
quency cases (ωs < ωD) show appreciable decoherence.
However, a surprising observation is that the behavior of
the system is essentially the same, irrespective of the de-
tails of the bath: the deviations from the “ideal” exponen-
tial decay of the norm are similar for the Ohmic and non-
Ohmic models, and likely relates only to the bath Debye
cutoff (ωD ≈ 1000 cm−1 for both models, corresponding
to tD = 2π/ωD ≈ 33 fs).

5 Discussion

We have seen in the previous Section that the “inversion”
procedure used to recover the spectral density is remark-
ably accurate for frequencies smaller than the Debye fre-
quency of the bath. Noise at higher frequencies appears
when ωs > ωD and, in the bilinear coupling model, re-
flects just a numerically broadened δ−peak in C̃(ω). An-
harmonicity introduces further dynamical effects which
should not be associated with the bath: the apparent
higher cutoff in the LF simulations or the diffuse back-
ground found in the HF cases do not correspond to any
true physical property of the bath. They are markedly
temperature dependent –a clear-cut criterion for distin-
guishing these features from true features of the bath–
hence the need to minimize the temperature used in

the simulation. Notice that system anharmonic effects
pose no real problems to modeling, as they are easily
introduced in the working IO models by selecting the
correct system potential.

In realistic situations, however, structures in the spec-
tral region ω > ωD are expected quite generally from the
failure of the bilinear coupling model when ωs > ωD. In
such cases the coupling at frequencies beyond the Debye
limit does have a physical origin, and thus the question
arises whether J0(ω) at such frequencies can be a surro-
gate for a more complicated coupling model, a rather in-
tricate issue related to the general problem of whether
a mapping of the system dynamics to a GLE exists and
how it can be realized in practice (see e.g. Ref. [13] for
a recent, in-depth analysis of this issue, and Appendix
A for a connection to the present work). In general, real
molecular oscillators are not harmonic and the system-
bath coupling is not bilinear -especially if highly excited
vibrational states are being probed- two factors which
are hard to disentangle in finite-temperature cases where
non-linearities in the coupling may be more marked
(and more interesting). In such cases the present “dy-
namical” approach, when considered in the low-T limit
above, can only provide the small-amplitude expansion
of the coupling term and needs to be integrated with
some empirical knowledge about the interaction be-
tween the molecular vibration and the environment.

For instance, a shape function f (s) with the property
f (s) ≈ s for s ≈ 0, can be used to modulate the strength
of the coupling to the bath depending on the system po-
sition s and in a way that is consistent with the bilinear
coupling model where f (s) ≡ s. Such function alone pro-
duces state-dependent friction, and seems to be a neces-
sary (and simple) modification to address realistic situa-
tions; for instance, if s is the height of an adsorbate above
a surface, the coupling should vanish for large s and be
exponentially increasing for small s.

As for the bath, on the other hand, an exponential
interaction model seems to be appropriate in typical
situations where vibrational relaxation occurs, i.e. as a
consequence of close encounters between the molecular
vibrator and the atoms/molecules making up the envi-
ronment. One simple ansatz of this kind, for instance, is
the replacement of the term s

∑
k ckxk in Eq. (8) with

D̄eα X̄ eα X̄ − 1
α

s

which can be justified in the context of a linear-chain
representation of the bath (see Appendix B). Here X̄
is the first effective mode of the linear-chain repre-
sentation of the bath, D̄ its coupling coefficient to the
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Figure 9 Left: frequency dependent position autocorrelation func-
tion for a high-frequency harmonic oscillator (ωs =2500 cm−1 >

ωD) coupled to an Ohmic bath via a non-linear interaction term.
Dashed and solid lines for T = 5 and 300 K, respectively, and red,
green andblue lines for different values of the characteristic length
parameter, α−1 =10, 2, and and 1.0 Å. Right: “effective” spectral
densities obtained by using the results of the left panels as input.

system, α−1 a characteristic length of the interaction and
D̄X̄ ≡ ∑

k ckxk by construction [21–24].3 Such exponen-
tial interaction model makes use of the spectral prop-
erties of the proper bath (i.e. for frequencies ω < ωD)
to introduce multiphonon relaxing pathways already at
the lowest order in perturbation theory, and is simple
enough to be easily handled with the MCTDH method
used above, provided the bath is first transformed in
order to introduce its first effective mode X and its resid-
ual counterpart. Notice though that relaxation at such
frequencies is slow enough that a master equation based
on Fermi-golden rule state-to-state rates should suffice
in most cases; with the coupling above, the necessary
thermal rates kji can be obtained analytically [1], and
only need the characteristic length α−1 and the spectral
density J0(ω) as inputs.

We checked the influence that the above non-linear
interaction term has on the classical results, by comput-
ing the system autocorrelation function of the position in
the simplest case, i.e. the harmonic oscillator with a fre-
quency higher than the Debye cutoff, for several values of
the characteristic length α−1. The results of such simula-
tions are reported in Fig. 9, where a structure for ω > ωD

appears at high temperatures which can be clearly as-
signed to non-linearities in the interactions.

6 Conclusions

In this work the effectiveness of the position (or ve-
locity) autocorrelation functions of bound systems in

3 In Refs. [23, 24] X and D were introduced in amass-scaled form,
i.e. X = √

μX̄ and D̄ = D
√

μ, whereμ is a typicalmass for the
environment.

computing the spectral density of the environmental
coupling needed to describe relaxation and decoherence
of molecular vibrations in a condensed phase environ-
ment was investigated. Although applied to relatively
simple models, the proposed approach has been shown
to be robust and accurate for proper frequencies of
the bath (i.e. ω < ωD ). At higher frequencies, effects
from the anharmonicity in the system potential and/or
non-linearities in the coupling have been identified
and discussed in detail, and a simple extension to
non-linear coupling models was suggested. Finally,
quantum dynamics has been shown to be feasible to
address vibrational relaxation and decoherence. Work is
in progress to investigate such issues in realistic “molec-
ular” systems comprising real molecular oscillators
coupled to complicated environments.

Appendix A: Derivation of Eq. (6)

In this Appendix a derivation of Eq. (6) is given based on
the analytic properties of the Fourier-Laplace transform
of the retarded correlation function C+(t) = �(t)C(t).
The same results follow with the help of Laplace trans-
forms. Let Ĉ(z) = ∫ +∞

−∞ eiztC+(t)dt (
z > 0) be the Fourier-
Laplace transform of C+(t) and Ĉ+(ω) = limε→0 Ĉ(z)
its limit on the real axis, satisfying 2�Ĉ+(ω) = C̃(ω) =
C̃∗(ω) = C̃(−ω) where C̃(ω) is the ordinary Fourier trans-
form of C(t). In the following we make use of the disper-
sion relation in the form

f (z) − f∞ = 1
π

∫ +∞

−∞


 f (ω) − 
 f∞
ω − z

dω

which is valid for any function which is analytic in the
upper half complex plane (u.h.p.), 
z > 0. We put f (z) =
izĈ(z), for which f∞ = −C(0) = − ∫ +∞

−∞ C(t)dt, as it fol-
lows from Cauchy theorem in the u.h.p.

c = i
π

∫ +∞

−∞
Ĉ+(ω)dω ≡ i

2π

∫ +∞

−∞
C̃(ω)dω = iC(0)

(notice that the imaginary part of Ĉ+(ω) is odd). Hence,


(z) = f (z) + C(0) = 1
π

∫ +∞

−∞

ωC̃(ω)/2
ω − z

dω

The integrand can be re-written with the help of Eq. (5),
thereby introducing the function (ω2

0 − ω2 − iωγ̃ (ω))−1

which can be analytically continued in the u.h.p.4 It thus

4 Notice thatω2
0 − z2 − izγ̃ (z) cannot vanish in the upper half

plane. This is evident in the IO (equivalent) representation of the
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follows


(z) = kB T
m

1

ω2
0 − z2 − izγ̃ (z)

Solving for izγ̃ (z) and taking the imaginary part of the re-
sulting expression for z = ω + iε, ε → 0+, we obtain the
desired result

J0(ω) = kB T

S+(ω)
|
+(ω)|2

= kB T
2

ωC̃(ω)
|
+(ω)|2

Notice that for z = 0, it also follows


(0) = C(0) ≡ 〈s2〉 = kB T
m

1

ω2
0

which is the classical equipartition theorem, as it should
be from the FD theorem.

To establish the connection with more general ap-
proaches using two correlation functions (see e.g. Ref.
[13]), we start from the following form of the GLE

ṗ(t) +
∫ +∞

0
γ (t − τ ) p(τ )dτ − F (t) = ξ (t)

where the initial time has been reset to t = 0 and the
conservative force F (s) = −V ′(s) has been introduced.
It follows that the following relation holds between the
momentum-momentum (C pp(t)) and force-momentum
(CF p(t)) correlation functions

Ċ pp(t) = CF p(t) −
∫ ∞

0
γ (t − τ )C pp(τ )dτ

Hence, introducing the retarded correlation functions
C+

XY (t) = �(t)CXY (t) for X = p, F and Y = p and notic-
ing that

∫ ∞
0 eiωtĊ pp(t)dt = −C pp(0) − iωĈ+

pp(ω) we obtain
the frequency-dependent memory kernel in terms of the
above two correlation functions

γ̃ (ω) = Ĉ+
F p(ω) + C pp(0)

Ĉ+
pp(ω)

+ iω

For Harmonic Brownian motion C pp(t) and CF p(t) are
mutually dependent

dCF p(t)
dt

= −ω2
0C pp(t)

(where ω0 is the system frequency), and the Langevin
equation for the correlation functions can be re-written

problem,where this condition follows from the requirement that
no imaginary frequency appears among the eigenfrequencies of
thewhole system.

as

C̈ pp(t) = −ω2
0C pp(t) −

∫ ∞

0

dγ (t − τ )
dt

C pp(τ )dτ

and Fourier-Laplace transformed to give

Ĉ+
pp(ω) = iωC pp(0)

ω2 − ω2
0 + iωγ̃ (ω)

Equivalently, in terms of the frequency-dependent po-
sition autocorrelation function Ĉ+(ω) introduced in the
main text

iωĈ+(ω) + C(0) = kB T
m

1

ω2 − ω2
0 − iωγ̃ (ω)

where Ĉ+
pp(ω) = m2(−iωC(0) + ω2Ĉ+(ω)) has been used

and thermal equilibrium conditions assumed to hold at
t = 0 (C pp(0) = mkB T). When analytically continued in
the upper half plane this expression is just the equation
obtained above for the function 
(z).

In closing this Appendix we compare the approach we
used in the main text with the two-correlation function
approach described above. The first uses a single corre-
lation function and requires no a priori knowledge of the
system potential; the latter, on the other hand, proves to
be a general, exact method to extract the memory ker-
nel provided the system dynamics can be exactly mapped
to a GLE. Two cases are typically discussed. The first oc-
curs when Mori’s linear projector operators are used to
exactly map the reduced system dynamics into an effec-
tive (temperature-dependent) Brownian harmonic sys-
tem; the second when the Hamiltonian is of the IO-type
(Eq. (8)) with an arbitrary system potential. In the first
case, the standard, Mori-projected GLE equation for the
system coordinate is exact for arbitrary systems but in-
herently linear, and cannot be used to describe nonlin-
earities (i.e. only dynamical variables which lie in the
Hilbert subspace spanned by s and ps are guaranteed to
be correctly reproduced). At low temperature the Mori-
projected GLE (and its memory kernel) reduces to the
GLE for a Brownian HO used in the main text, provided
the system has a single, stable configuration: hence the
mapping is equivalent to the one used above and the
two-correlation method provides exactly the same re-
sults as our single-correlation function approach. The
same holds in the second case, again provided the sys-
tem potential Vs has a single stable point. Indeed, for an
arbitrary Vs potential, the IO model is described by a T-
independent spectral density. Hence, the spectral den-
sity can be obtained, for instance, at low enough T where
the system dynamics is effectively Brownian HO, i.e. with
the approach described in the main text. However, when
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an exact mapping cannot be established, the method
proposed above provides one IO model and memory ker-
nel, namely the limiting one holding at low T, which is
then supposed to work at higher temperatures. In this
case, the above mentioned two-correlation function ap-
proach, when used with a ‘guessed’ conservative force,
does provide a different memory kernel and correspond-
ing IO model.

Appendix B: Anharmonic chain representation

In this Appendix it is shown how a simple exponen-
tial interaction model can be obtained by extending the
linear chain representation of the bath [21–24, 28] to in-
clude anharmonic effects. The approach has the advan-
tage of preserving the thermodynamic stability of the
original IO Hamiltonian of Eq. (8) and of requiring just
one representative length as a parameter. By thermody-
namic stability we mean the existence of a ground state
of the combined system for any reasonably well-behaved
system potential V (s), as it follows e.g. from H ≥ V0 when
V (s) is bound from below (V ≥ V0) and H is of the form
given in Eq. 8.

The starting point is the effective mode transforma-
tion that brings the bath Hamiltonian of Eq. (8) in linear
chain form [21–24]

H = p2
s

2m
+ V (s) + δV (s) −

∞∑
n=0

D̄nX̄nX̄n+1

+
∞∑

n=1

(
P̄2

n

2μ
+ μ�2

n

2
X̄2

n

)
(B1)

Here X̄0 ≡ s and X̄n are unscaled effective-mode coordi-
nates with mass μ; correspondingly, Xn = X̄n

√
μ for n =

1, 2, .. are the mass-scaled coordinates introduced in Ref.
[23], and D̄0 = √

μD0, D̄n = μDn (n ≥ 1) relate the cou-
pling coefficients used here to those introduced in Ref.
[23]. The effective mode parameters D̄n and �2

n+1 (n =
0, 1, 2, ..) are determined by the spectral density Jn(ω) de-
scribing the residual bath after the nth effective mode has
been introduced, and in turn all these quantities can be
computed recursively using J0(ω) only as input [23]. Fur-
thermore, δV (s) is the counter-term providing the ther-
modynamic stability of Eq. (8).

We first show that the Hamiltonian of Eq. (B1) can
be re-expressed in order to make its stability evident,
namely as

H = p2
s

2m
+ V (s) +

∞∑
n=1

{
P̄2

n

2μ
+ μω̄2

n

2

(
X̄n − βnX̄n−1

)2
}

(B2)

where βn = D̄n−1/μω̄2
n and ω̄n is a renormalized effective

mode frequency,

ω̄2
n = �2

n − δ�2
n

Here the renormalization frequency is given by δ�2
n ≡

2
π

∫ ∞
0

Jn(ω)
ω

dω, as usual [23]. In order to prove this, with
the definition of βn above, we only need to show that

ω̄2
n ≡ D2

n−1

δ�2
n−1

holds, since Eq. (B2) is easily shown to reduce

to Eq. (B1) under such circumstance. To see that this is
indeed the case, we consider the fundamental propaga-
tors

Wn(z) = 2
π

∫ ∞

0

Jn(ω)dω

ω − z

and their two-term recurrence relation

Wn(z) = �2
n − z2 − Dn−1

Wn−1(z)

and notice that Wn(0) ≡ δ�2
n, hence

�2
n − δ�2

n ≡ ω̄2
n = Dn−1

δ�2
n−1

Next we modify the chain to introduce anharmonic
effects in the dynamics of the first effective mode of the
bath. This is accomplished by replacing the harmonic os-
cillator potential with a Morse potential having the same
frequency,

H = p2
s

2m
+ V (s) + P̄2

1

2μ
+ De

(
eα(X̄1−β1s) − 1

)2
+ Hres

(B3)

where De = μω̄2
1/2α2, α−1 is a characteristic length and

Hres =
∞∑

n=2

{
P̄2

n

2μ
+ μω̄2

n

2

(
X̄n − βnX̄n−1

)2
}

is the residual bath. The Hamiltonian of Eq. (B3) contains
an exponential system-bath coupling and reduces to the
standard IO Hamiltonian for α → 0. For s ≈ 0 it gives

H = HS + HSB + HB

where HS is the bare system Hamiltonian,

HB = P̄2
1

2μ
+ De

(
eα X̄1 − 1

)2
+ Hres

is the modified (anharmonic) bath, and

HSB = −α−1 D̄0eα X̄1

(
eα X̄1 − 1

)
s
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Meyer, The MCTDH Package, Version 8.2, (2000). H.-
D. Meyer, Version 8.3 (2002), Version 8.4 (2007), Ver-
sion 8.5 (2011). Current version: 8.5.3 (2013). See
http://mctdh.uni-hd.de.

[28] M. P. Woods, R. Groux, A. W. Chin, S. F. Huelga, and M.
B. Plenio, J. Math. Phys. 55(3), 032101 (2014).

C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 569www.ann-phys.org


