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A recently developed effective-mode representation is employed to characterize the influence of a multi-
dimensional environment on the S2–S1 conical intersection in pyrazine, taken as a paradigm case of high-
dimensional dynamics at a conical intersection. We consider a simplified model by which four modes are
strongly coupled to the electronic subsystem while a number of weakly coupled tuning modes, inducing
energy gap fluctuations, are sampled from a spectral density. The latter is approximated by a series of
simplified spectral densities which can be cast into a continued-fraction form, as previously demon-
strated in Hughes et al. (K.H. Hughes, C.D. Christ, I. Burghardt, J. Chem. Phys. 131 (2009) 124108). In
the time domain, the hierarchy of spectral densities translates to truncated effective-mode chains with
a Markovian or quasi-Markovian (Rubin type) closure. A sequential deconvolution procedure is employed
to generate this chain representation. The implications for the ultrafast dynamics and its representation
in terms of reduced-dimensional models are discussed.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Due to the ultrafast time scale which is characteristic of the
dynamical events at conical intersection (CoIn) topologies, envi-
ronmental effects often fall into a distinctly non-Markovian re-
gime. Thus, neither the static limit nor the Markovian limit
(assuming rapid fluctuations) are appropriate, making it necessary
to explicitly account for the environment’s dynamical evolution.
Furthermore, due to the multi-dimensional nature of the environ-
ment in polyatomic molecules, clusters, or solute-solvent com-
plexes, the topology of the ‘‘funnel” region defined by the CoIn
can be modified as a function of the environment’s structure and
dynamics. As a consequence, the boundary between the subsystem
and its environment is not necessarily well-defined, and phenom-
enological models for the environment cannot be expected to be
accurate.

In view of the above, a supermolecular perspective including all
environmental modes on the same footing as the subsystem modes
may seem most appropriate. Various types of such supermolecular
approaches have indeed been developed over recent years, includ-
ing multi-mode vibronic coupling models [1] employed in con-
junction with quantum wavepacket dynamics, and quantum-
ll rights reserved.

x: +33 1 44 32 33 25.
dt).
mechanics molecular-mechanics (QM/MM) approaches in con-
junction with on-the-fly trajectory-based [2,3] or Gaussian wave-
packet-based [4–7] dynamical calculations.

Despite the significant advances in this direction, it is worth
investigating whether system-bath theory approaches can provide
an alternative perspective, which potentially offers more system-
atic insight into the influence of the environment on the dynamics
and topology. In Refs. [8,9], Markovian system-bath models have
thus been employed to model environmental effects on conical
intersections. Beyond the Markovian regime, one could conjecture
that collective environmental modes can play an important role in
the short-time, inertial dynamics. In particular, energy gap fluctu-
ations are expected to translate to a collective solvent coordinate
which could guide the dynamics, in line with the Marcus model
of charge transfer [10–13]. In the recent developments of Refs.
[14–19], this idea has been pursued in view of systematically
defining effective modes that characterize the environmental influ-
ence upon CoIn’s. The present paper connects to and continues
these developments.

The effective-mode models developed in Refs. [14–19] interpo-
late between the supermolecular perspective and conventional
system-bath theories, by identifying an explicit but reduced-
dimensional representation of the environment. The starting point
is a multi-mode vibronic coupling model [1] which describes the
coupling of a – high-dimensional or infinite-dimensional – bath
to an electronic subsystem, assuming an interaction which is linear
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in the bath coordinates. This allows one to introduce collective,
Brownian oscillator type modes, similar to the generalized reaction
coordinates which have previously been employed in the context
of charge transfer processes [10,20]. For conical intersection topol-
ogies, nel(nel + 1) effective modes have to be introduced for nel elec-
tronic states [14–16] so as to account for the fact that the
environment couples both diagonally and off-diagonally to
the subsystem. These modes can be shown to fully reproduce the
short-time dynamics at the conical intersection [14,15]. Connect-
ing to these developments, one can further introduce chains of
effective modes which successively unravel the dynamics as a
function of time [17,19,21–23].

In this paper, we apply and further develop the approach of
Refs. [22,23] which provides a bridge between the effective-mode
picture described above and the conventional description of the
environment in terms of spectral densities. For example, assume
that the environment gives rise to energy gap fluctuations associ-
ated with a spectral density JðxÞ ¼ p=2

P
nc2

n=xndðx�xnÞ which
is determined in terms of frequencies xn and vibronic coupling
parameters cn (and which is often available experimentally or by
simulations in terms of Fourier transforms of correlation func-
tions). We proceed by approximating J(x) in terms of an Mth order
continued-fraction expression, which can be shown to correspond
to an effective-mode chain terminated by a Markovian closure.
From the Mth order model, we successively generate a family of
lower-order models involving less effective modes, which, how-
ever, still reproduce the dynamics up to a certain time. In practice,
complicated spectral densities can be approximated by simpler
spectral densities which capture the short-time effects of the envi-
ronment upon the subsystem accurately. The underlying interpre-
tation is again that few collective modes can be identified which
fully describe the effect of the environment on the subsystem
dynamics over short-time scales.

In the present paper, we focus on the example of the S2(p–p*)–
S1(n–p*) CoIn in pyrazine which has been previously studied in
various works by the Munich and Heidelberg groups [24–28]. We
construct a model by which an intramolecular or external environ-
ment is modeled as a collection of diagonally coupled (tuning type)
modes which modulate the subsystem’s energy gap, in line with
our previous study of Ref. [23]. A more complete treatment would
involve fully accounting for the symmetry of the environment
modes and for several available system-bath coupling mechanisms –
both diagonal and off-diagonal – at the CoIn. A detailed account
of these aspects is given in Refs. [29,30].

While a closely related analysis for a tuning mode bath coupled
to a nonadiabatic process has been presented in Refs. [23,29], the
present paper demonstrates the first application of the general
procedure which necessitates approximating an initially given,
arbitrary spectral density by an Mth order continued-fraction
expression. As detailed below, we have developed a procedure
which allows sequential approximations to be carried out in a ro-
bust way.

In the remainder of the paper, we first present the relevant CoIn
Hamiltonian and spectral densities (Section 2). Following this, re-
duced effective-mode representations and the associated reduced
spectral densities are introduced (Sections 3 and 4). Section 5 pre-
sents dynamical results and Section 6 concludes.
2. System-bath Hamiltonian

Along the lines of previous work on the nonadiabatic dynamics
in pyrazine [24,26,28] and related vibronic coupling systems
[1,27], we consider a multi-mode vibronic coupling Hamiltonian
representing the relevant conical intersection including the
environment:
bH ¼ bHS þ bHB þ bHSB; ð1Þ

where the system part ðbHSÞ contains the electronic subsystem and a
small number of modes which couple strongly to the electronic sub-
system, while the bath part ðbHBÞ is composed of a – potentially very
large – number of modes which also couple to the electronic sub-
system. In the case of the pyrazine S2(p–p*)–S1(n–p*) CoIn, the sys-
tem part comprises a subset of four strongly coupled modes [24].
The bath part could correspond either to the remaining intramolec-
ular modes of the polyatomic system (for pyrazine, an intramolec-
ular bath composed of 20 modes) or else could include an
external bath with a large or infinite number of degrees of freedom.
The system-bath coupling ðbHSBÞ is of purely vibronic type, i.e., the
bath modes couple to the electronic system but not among each
other, see Eq. (5) below.

2.1. Subsystem Hamiltonian

For the S2(p–p*)–S1(n–p*) CoIn in pyrazine, the subsystem
Hamiltonian corresponds to a second-order vibronic coupling
model including the coupling mode m10a and three of the totally
symmetric modes (m6a, m1, and m9a) [24]. Parameters were taken
from the analysis by Raab et al. [26] which has established a com-
plete second-order model for this CoIn in the full space of 24 nor-
mal modes. The system Hamiltonian reads as follows:

bHS ¼ bV D þ
XNS

i¼1

1
2

p̂2
S;i þ

x2
S;i

2
x̂2

S;i

 !
1̂þ bV Sðx̂SÞ; ð2Þ

where bV D ¼ �Dr̂z gives the electronic splitting, with r̂z ¼ j1ih1j�
j2ih2j the operator representation of the Pauli matrix, and
p̂i ¼ ð�h=iÞ@=@xi. We use mass-weighted coordinates throughout, dif-
ferently from the convention of Refs. [14,15,17,21]. The potential
part bV S represents the coupling of the system modes to the elec-
tronic subsystem and is of the form:

bV S x̂Sð Þ ¼
X
i2G1

jð1ÞS;i x̂S;i þ
X
i;j2G2

cð1ÞS;ij x̂S;ix̂S;j

 !
r̂11

þ
X
i2G1

jð2ÞS;i x̂S;i þ
X
i;j2G2

cð2ÞS;ij x̂S;ix̂S;j

 !
r̂22

þ
X
i2G3

kS;ix̂S;i þ
X
i;j2G4

lS;ijx̂S;ix̂S;j

 !
r̂12 þ r̂21ð Þ; ð3Þ

where r̂nm ¼ jnihmj. The Hamiltonian Eq. (3) can alternatively be
expressed in terms of the Pauli matrices and the unit matrix,
ðr̂x; r̂z; 1̂Þ. This form of the potential, in conjunction with the diag-
onal form of the kinetic energy, corresponds to a (quasi-)diabatic
representation [1,31–33].

The relevant subsets of modes in the (G1, . . .,G4) groups are
determined from symmetry considerations. The coupled S2 and
S1 states have B3u and B2u symmetry, respectively. These states
are linearly coupled by the m10a mode which is of b1g symmetry;
this mode constitutes the G3 subset in Eq. (3). The modes that cou-
ple linearly to the diagonal constitute the G1 set comprising the a1g

modes (m6a,m1, m9a). The G2 and G4 sets involve bilinear combina-
tions of modes whose product is of a1g symmetry (G2) or of b1g

symmetry (G4), respectively.
Finally, a note of caution is necessary regarding the choice of

coordinates, i.e., mass-weighted coordinates as used in Eq. (2), as
compared with mass-and-frequency weighted coordinates as pre-
viously employed, e.g., in Refs. [15,21]. The effective-mode trans-
formations resulting from these different choices are not
identical. Similarly to Refs. [22,23], we prefer to use mass-
weighted coordinates in the present context since the kinetic
energy is invariant under orthogonal transformations in this
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representation, and the bilinear residual bath couplings addressed
below are purely of coordinate type. However, it should be pointed
out that the moment conservation rules described in Refs. [15,21]
have been proven with respect to mass-and-frequency weighted
coordinates.

2.2. Bath Hamiltonian and spectral density

In the present model, the bath modes ðx̂B;1; . . . ; x̂B;NB Þ, are as-
sumed to couple diagonally to the electronic subsystem, within a
linear vibronic coupling (LVC) approximation [1,15]. This is along
the lines of the model suggested in Ref. [24], such that the intramo-
lecular bath modes are taken as a collection of tuning modes
inducing energy gap fluctuations. While this model is not accurate
and realistic in the particular case of pyrazine, since the symme-
tries of the individual modes are not properly accounted for [26],
it will serve here as a vehicle to illustrate the effective-mode tech-
niques addressed below.

The bath Hamiltonian thus reads:

bHB ¼
XNB

i¼1

1
2

p̂2
B;i þ

x2
B;i

2
x̂2

B;i

 !
1̂; ð4Þ

and the system-bath coupling is given as

bHSB ¼
XNB

i¼1

jB;ix̂B;ir̂z; ð5Þ

where r̂z ¼ r̂11 � r̂22 and bHSB is of spin-boson form [11].
The couplings {jB,i} are sampled from the reference spectral

density shown in Fig. 1 (r.h.s. panel). This spectral density was gen-
erated from a discrete set of N0 = 20 coupling parameters obtained
by Krempl et al. [24] from a weighted random distribution, see the
l.h.s. panel of Fig. 1. These couplings relate to the intramolecular
bath modes of the pyrazine molecule, assuming that four of the
24 normal modes have been absorbed into the subsystem part,
as explained in Section 2.1.

The fitting procedure was based upon a Lorentzian broadening:

JðxÞ ¼ p
2

XN0

i¼1

j2
B;i

xB;i
d x�xB;i
� �

� p
2

XN0

i¼1

j2
B;i

xB;i

1
p

Dx
x�xB;i
� �2 þ Dx2

ð6Þ
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Fig. 1. Left panel: Equidistantly sampled coupling parameters {jB,i} (grey circles) based u
20-mode tuning mode distribution adapted to the S2–S1 CoIn in pyrazine. The latter dat
Right panel: resulting continuous spectral density whose discretization Eq. (7) correspo
where Dx is an equidistant sampling interval. Once the continuous
reference spectral density has been generated, it can be re-discret-
ized for an arbitray number of NB bath modes:

JðxÞ ¼ p
2

XNB

i¼1

j2
B;i

xB;i
d x�xB;i
� �

: ð7Þ

Conversely, the discretized coupling coefficients can be obtained as
follows from the spectral density J(x), again given an equidistant
sampling interval Dx [22,44]:

jB;i ¼
2
p

JðxB;iÞxB;iDx
� �1=2

: ð8Þ

The calculations reported in Section 5 were carried out for NB = 20
bath modes, corresponding to the number of N0 original data of
Ref. [24]. Table 1 reports the relevant frequencies and coupling
parameters. The procedure illustrated here is more general, though,
and could equally apply to an external environment with a much
larger number of modes.

The bHB þ bHSB portion of the Hamiltonian is identical to the one
addressed in Refs. [22,23], and we will therefore be able to largely
draw upon this previous analysis in the following. After recapitu-
lating the main elements of that analysis, we will focus on the
application to the spectral density of Fig. 1. The analysis is signifi-
cantly more challenging than the one of our previous examples
since continued-fraction approximants to the realistic spectral
density of Fig. 1 are required.

3. Reduced effective-mode representations

We summarize in this section the main steps of the analysis
that was previously reported in Refs. [14–18,22,23]. Given a dis-
cretized version of the spectral density Eq. (7), the goal of the anal-
ysis is (i) to map the environment upon a chain of effective modes
which allow one to unfold the system-bath dynamics as a sequen-
tial process, and (ii) to construct a reduced-dimensional effective-
mode representation of the environment while approximating the
residual bath by a Markovian closure. These steps will be detailed
in the following, using transformation techniques which we previ-
ously introduced. In addition, a novel iterative deconvolution ap-
proach will be presented in Section 3.2. These developments are
the prerequisite for the spectral density construction which will
be addressed in Section 4.
0 1000 2000 3000 4000 5000
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Table 1
Sampling frequencies and coupling coefficients of the tuning mode bath employing a
20-mode discretization. The l.h.s. data are taken from Krempl et al. [24] and the r.h.s.
data correspond to the reference spectral density depicted in Fig. 1. A frequency
spacing of Dx = 219.48 cm�1 was used for the reference spectral density data. The
20-mode discretization of the spectral density was employed in the calculations of
Section 5, while a finer discretization was used in the representation of the spectral
densities in Fig. 2.

Couplings from Krempl et al. [24] Reference couplings (this work, c.f. Fig. 1)

xn (cm�1) jn (a.u.) xn (cm�1) jn (a.u.)

322.62 9.72 � 10�6 570.63 3.47 � 10�5

475.06 1.92 � 10�5 790.11 5.49 � 10�5

627.50 2.00 � 10�5 1009.58 7.64 � 10�5

780.75 4.15 � 10�5 1229.06 8.46 � 10�5

933.18 6.25 � 10�5 1448.53 9.49 � 10�5

1086.43 7.96 � 10�5 1668.01 1.13 � 10�4

1238.87 5.80 � 10�5 1887.48 1.44 � 10�4

1392.11 7.76 � 10�5 2106.96 1.95 � 10�4

1544.55 6.04 � 10�5 2326.43 2.30 � 10�4

1697.80 9.08 � 10�5 2545.91 2.86 � 10�4

1850.24 9.58 � 10�5 2765.38 3.21 � 10�4

2003.48 1.27 � 10�4 2984.85 2.80 � 10�4

2155.92 2.04 � 10�4 3204.33 1.91 � 10�4

2309.17 1.63 � 10�4 3423.80 1.28 � 10�4

2461.60 2.43 � 10�4 3643.28 9.44 � 10�5

2614.85 2.88 � 10�4 3862.75 7.69 � 10�5

2767.29 3.23 � 10�4 4082.23 6.58 � 10�5

2920.53 3.31 � 10�4 4301.70 5.81 � 10�5

3072.97 1.17 � 10�4 4521.18 5.24 � 10�5

3226.22 1.36 � 10�4 4740.65 4.79 � 10�5
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3.1. Effective-mode transformations

We focus here on the simplest possible version of the effective-
mode transformations described in Refs. [14–16], with a single
effective tuning mode which absorbs the system-bath interaction
Eq. (5) such that:

bHSB ¼
XNB

i¼1

jB;ix̂B;ir̂z � DbXB;1r̂z: ð9Þ

This relation defines the first column of an overall coordinate trans-
formation bX ¼ Tx̂. With the requirement of orthogonality of the
transformed coordinates, the remainder of the bath Hamiltonian
comprising the residual NB � 1 modes has the following structure:bHB ¼ bH0

B þ bH int
B ð10Þ

with

bH0
B ¼

XNB

i¼1

1
2
bP2

B;i þ
X2

B;i

2
bX2

B;i

 !
1̂

bH int
B ¼

XNB

i;j¼1

di;j
bXB;i
bXB;j1̂

ð11Þ

The new frequencies {XB,i} and couplings {di,j} result from the coor-
dinate transformation introduced above, such that X2

B;i ¼
PNB

j¼1x2
B;jt

2
ji

and di;j ¼
PNB

k¼1x
2
B;ktkitkj where tji are the elements of the transforma-

tion matrix T. The residual modes are thus seen to be coupled bilin-
early to the effective mode bXB;1 and among each other, but do not
couple directly to the spin subsystem.

Given the above, general form of the transformed bath Hamilto-
nian bHB, several particular realizations can be envisaged, which we
now outline. These realizations correspond to different orthogonal
transformations, resulting in different intra-chain couplings.

3.1.1. Model 1: secondary bath coupled to primary effective mode
In this case, the bilinear coupling matrix {di,j} is diagonalized in

the subspace of the bath modes {2, . . .,NB} such that only couplings
{d1,j} between the primary bath mode bXB;1 and the secondary bath
modes bXB;j; j ¼ 2; . . . ;NB, are retained:

bH int
B ¼

XNB

i¼2

d1;i
bXB;1

bXB;i1̂: ð12Þ

The secondary modes now act as a bath with respect to the primary
mode. The residual couplings {d1,i} are entirely determined by the
original parameter set and the transformation. They define the
residual spectral density:

Jð1ÞresðxÞ ¼
p
2

XNB

i¼2

d2
1;i

XB;i
d x�XB;i
� �

: ð13Þ

A particularly simply case is given if the {d1,i} conform to an Ohmic
spectral density:

Jð1ÞresðxÞ ¼ gx expð�x=KÞ; ð14Þ

with the friction coefficient g and a suitable cutoff frequency K. In
this case, the primary bath mode bXB;1 becomes a simple Brownian
oscillator mode whose time evolution is characterized by the com-
plex frequency ~X1 ¼ XB;1 � ig (where the frequency shift induced by
the secondary bath has been neglected) [34].

Even if the actual set of residual couplings do not correspond to
the spectral density Eq. (14), the Ohmic distribution may be used
as an approximation, by which the residual bath is taken to exert
a Markovian damping effect.

3.1.2. Model 2: Mori-type chain
In this scheme, the bilinear coupling matrix is cast into a band-

diagonal form:

bH int
B ¼

XNB

i¼1

di;iþ1
bXB;i
bXB;iþ11̂: ð15Þ

We have referred to this variant as a hierarchical electron-phonon
(HEP) model [17–19]. This representation is closely related to a
Mori chain [35–37] and to the Rubin model [11,38].

It has been shown in Refs. [15,17,19] that a low-order trunca-
tion of the chain will accurately reproduce the short-time dynam-
ics of the system. Higher-order truncation of the band-diagonal (or
tridiagonal in this case) form of bH int

B successively improves the
dynamics as each collective member of the hierarchy is included
in the chain. For a bath at zero temperature, this can be shown
explicitly in terms of a moment expansion of the Hamiltonian
propagator [15,17], leading to the conclusion that at the nth order
of the chain (here, n modes), the first (2n + 1) Hamiltonian mo-
ments are fully determined.

3.1.3. Model 3: truncated Mori-type chain
This variant uses the Mori-type construction of Section 3.1.2 but

the hierarchy of modes is now terminated at a chosen order M,
such that the bilinear interaction Hamiltonian takes the form:

bH int
B ¼

XM�1

i¼1

di;iþ1
bXB;i
bXB;iþ11̂þ bHðMÞdiss ð16Þ

where bHðMÞdiss corresponds to a residual bath composed of modes
{M + 1, . . .,NB} which are all coupled to the Mth mode of the chain:

bHðMÞdiss ¼
XNB

i¼Mþ1

dM;i
bXB;M

bXB;i1̂: ð17Þ

The Brownian oscillator model of Section 3.1.1 represents a special
case of this construction with M = 1. Again, the distribution of resid-
ual bath modes (M + 1, . . .,NB) may be approximated in terms of an
Ohmic spectral density, see Eq. (14). In this case the picture of a
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Mori-type chain with Markovian truncation at the Mth order
results.

3.2. Iterative deconvolution approach

In Model 3, the sequential extraction of a series of effective
modes from the bath entails that the residual bath space spanning
the modes (M + 1, . . .,NB) is successively reduced in dimension. If
the modes are sampled from a spectral density representing an
infinite-dimensional bath rather than a finite-dimensional intra-
molecular environment, it is desirable, though, to preserve the
same bath discretization at every step of the reduction procedure.
This can be achieved by an iterative deconvolution approach which
is now outlined. The results coincide with those of the tridiagonal-
ization described in Sections 3.1.2 and 3.1.3 if the initial set of
modes is large as compared with the relevant subspace of effective
modes.

The starting point is again an NB-dimensional bath obtained by
the discretization prescription of Eq. (7). We follow the approach of
Model 1, yielding the effective-mode coupling D, frequency XB,1,
and couplings d01;i; i ¼ 2; . . . ;NB to the residual bath modes (here
denoted as primed quantities since they are intermediate in the
present procedure). The latter conform to the spectral density of
Eq. (13).

Differently from the previous transformation approach, we now
construct a continuous version of the residual bath spectral density
by replacing the d-functions of Eq. (13) with their Lorentzian
approximation. This procedure is entirely analogous to Eq. (6).
The resulting continuous spectral density is then re-discretized
with the same NB-mode discretization as used for the original bath.
The total number of bath modes is thus augmented in each step.

The above procedure is now repeated to yield the successive
effective chain couplings and frequencies:

d2
i;i ¼

XNB

k¼1

ðd0i;kÞ
2;

X2
B;iþ1 ¼

1

d2
i;i

XNB

k¼1

x02B;kðd
0
i;kÞ

2
;

ð18Þ

and the corresponding effective modes:

bXB;iþ1 ¼
1

di;i

XNB

k¼1

d0i;kx̂0B;k ð19Þ

The successive residual bath spectral densities are re-discretized at
each step. At the order M, a truncated Mori chain is obtained as in
Section 3.1.3, except that the residual bath is not reduced in dimen-
sion. This deconvolution procedure has been used below to gener-
ate the effective-mode chain parameters. We have verified that
the results agree with those obtained from the tridiagonalization
approach of Model 3 (Section 3.1.3).
4. Continued-fraction hierarchy of spectral densities

Using the series of approximate bath realizations that are gen-
erated from Model 3 or the corresponding deconvolution proce-
dure, leading to an Mth order Mori chain representation with
Markovian closure, we now identify the spectral density that each
of these realizations is associated with. The family of bath spectral
densities that are thus generated define coarse-grained representa-
tions of the bath, which lead to an accurate system-bath dynamics
over increasing times as the order of the Mori chain is increased. In
the following, we explicitly formulate these spectral densities in
terms of continued-fraction expressions [22,23]. The derivation is
analogous to the one presented in these latter references.
Among the various procedures which can be used to construct
spectral densities, we refer here to an approach that expresses
the bath-induced relaxation properties of the subsystem in the
Heisenberg picture [20,22]. The spectral density J(x) can then be
defined as follows in terms of the bath-induced portion of the Hei-
senberg evolution, described by an operator bLB:

JðxÞ ¼ lim
�!0þ

ImbLBðzÞ
����

z¼x�i�
; ð20Þ

where bLBðzÞ determines the dissipative evolution of the subsystem
Heisenberg operators in a Fourier/Laplace transformed representa-
tion. Eq. (20) corresponds to the definition of the spectral density
as the imaginary part of the dynamic susceptibility [10,20].

If only a single system-bath interaction mechanism is involved,
as is the case in the situation studied here, the nature of the sub-
system operators is not of importance and one can formally replace
an arbitrary subsystem operator by the coordinate operator
[20,22]. Exact Laplace-domain equations can then be obtained as
detailed in Ref. [22], leading to a continued-fraction (CF) represen-
tation of bLBðzÞ. The latter can be truncated at successive orders so
as to generate a series of approximate effective-mode chains which
correspond to Mth order CF’s of the following form [22]:

bLðMÞB ðzÞ ¼ �
D2

X2
1 � z2 �

d2
1;2

X2
2 � z2 � � � �

d2
M�2;M�1

X2
M�1 � z2 �

d2
M�1;M

X2
M � z2 � z2IðMÞðzÞ

;

ð21Þ

where the closure function I(M)(z) is defined as

IðMÞðzÞ ¼
XN

k¼1

c2
k

x2
k x2

k � z2
� � ’ 2

p

Z 1

0
dx

JðMÞres ðxÞ
x x2 � z2ð Þ ; ð22Þ

with the Mth order residual spectral density JðMÞres . In the following,
two choices for approximate residual spectral densities and the
associated closure functions are addressed, i.e., an Ohmic residual
bath as is Eq. (14), and the quasi-Ohmic closure introduced by Ru-
bin [11,38] in the construction of an oscillator chain model which is
a special case of the present one.

Using Eqs. (20)–(22), an Mth order reduced spectral density can
be defined by analogy with Eq. (20):

JðMÞðxÞ ¼ lim
�!0þ

ImbLðMÞB ðzÞ
����
z¼x�i�

: ð23Þ

These Mth order approximants to the spectral density are the cen-
tral object under study in the remainder of the paper.

4.1. Ohmic closure

The Ohmic closure has already been defined in Eq. (14) in the
discussion of Model 1, and corresponds to the spectral density
JðMÞres ðxÞ ¼ gx expð�x=KÞ where g is the friction coefficient of the
corresponding Langevin description and K is the frequency cutoff.
The closure function Eq. (22) takes the following form in the Ohmic
case:

IohmðzÞ ¼ �i
g
z
: ð24Þ

With Iohm, the first order M = 1 of Eqs. (21)–(23) yields a Lorentzian
form, as previously obtained by Garg et al. [20,22]:

Jð1ÞðxÞ ¼ gxD2

X2
1 �x2

� �2
þ g2x2

: ð25Þ

The second order can also be obtained analytically [22]:
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Jð2ÞðxÞ ¼
D2 X2

2 �x2
� �2

þ g2x2

	 

gxd2

1;2

A2ðxÞ þ B2ðxÞ
; ð26Þ

where A(x) and B(x) are the �? 0+ limits of AðzÞ ¼ ðX2
1 � z2Þ

jbL2ðzÞj2 � d2
12 RebL2ðzÞ and BðzÞ ¼ d2

12ImbL2ðzÞ, with bL2ðzÞ ¼ X2
2 � z2þ

igz.

4.2. Rubin closure

In the Rubin model [11,38], the residual spectral density takes
the quasi-Ohmic form:

JðMÞres ðxÞ ¼
xKR

2
1�x2

K2
R

 !1=2

HðKR �xÞ; ð27Þ

where H is the Heaviside step function and KR is a cutoff frequency.
The closure function is now given as

IRubinðzÞ ¼
1
2z

K2
R � 2z2 þ 2iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

R � z2
q

zþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

R � z2
q : ð28Þ

Comparison with the Ohmic case corresponds to equating KR = 2 g;
however, the Rubin cutoff frequency is fixed by the frequency range
employed in the numerical discretization, KR = NDx.

In the numerical construction of the reduced spectral densities
J(M) described in the next section, the Rubin closure proved signif-
icantly more stable than the Ohmic closure in the limit �? 0+.

4.3. Application to model spectral density

In Fig. 2, Eqs. (21)–(23) were applied in conjunction with the
Rubin closure in order to generate a family of approximate spectral
densities approaching the reference spectral density of Fig. 1. The
reference spectral density (r.h.s. of Fig. 1) was re-discretized
according to Eq. (7) for a large number of points, between
NB = 250 and NB = 1000. The iterative deconvolution procedure of
Section 3.2. was then applied in order to obtain the chain parame-
ters. For this large number of points, the band diagonalization pro-
cedure of Section 3.1.3 (Model 3) was shown to yield very similar
results. Finally, Eqs. (21)–(23) in conjunction with the Rubin clo-
sure of Section 4.2 were employed to generate the Mth order CF
approximants shown in the figure.

Fig. 2 illustrates that the lowest-order approximants J(M), M = 1,
2, are not centered on the reference spectral density, even though
Fig. 2. Spectral densities J(M)(x), M = 1, . . .,5, M = 15, and M = 100, approaching the refere
The successive J(M) approximants are generated from Eq. (23) employing the Rubin clo
density by employing the iterative deconvolution procedure of Section 3.2.
their construction guarantees that they reproduce the short-time
dynamics. In this sense, the J(M)’s cannot be understood as simple
coarse-grained versions of the actual spectral density. From M = 3
onwards, the successive approximants coincide more closely with
the center of the reference spectral density and tend to converge.
The M = 15 case is a rather good approximation, even though it is
not converged yet. At higher orders, e.g., M = 100, oscillatory fea-
tures appear which are presumably numerical artifacts and should
be eliminated in a more refined procedure.

Overall, the present analysis shows that convergence at the le-
vel of the spectral densities necessitates relatively high orders in
the CF development. In the following, the convergence of the Mth
order approximations will be considered from the complementary
time-domain viewpoint. Here, one would expect more rapid con-
vergence since the effective-mode procedure is designed as an
expansion in the time domain.
5. System-bath dynamics for the S2–S1 CoIn in pyrazine

In line with the model Hamiltonian described in Section 2, the
reference spectral density of Fig. 1 is now taken to represent a tun-
ing mode bath that is coupled to a 4-mode subsystem model of the
S2–S1 conical intersection in pyrazine, described according to the
second-order vibronic coupling Hamiltonian of Raab et al. [26].
As explained in Section 2, a linear vibronic coupling approximation
is only made for the bath part.

From the above discussion, two approaches can be followed for
carrying out the dynamics at a given level M of the effective-mode
hierarchy: (i) In the first approach, the transformed representation
of the Hamiltonian is employed and M effective modes are in-
cluded in the dynamical calculation, along with the residual bath
which is treated at the level of an Ohmic or quasi-Ohmic (Rubin)
closure. Here, the residual bath is treated either implicitly, by a
master equation, or else explicitly in terms of a discretized, fi-
nite-dimensional representation [22,23]. (ii) In the second ap-
proach, the reduced spectral densities of Section 4 are employed,
which can be discretized in the same way as the original spectral
density. In both approaches, a reduced-dimensional representation
of the bath is aimed at, which is realized in the first case by
employing few effective modes, and in the second case by simpli-
fied low-order spectral densities. At a formal level, the approaches
(i) and (ii) are equivalent.

While we have followed the approach (i) in a number of appli-
cations [14–19], we demonstrate here the second approach, with
nce spectral density of Fig. 1, which is also shown in both panels (solid black line).
sure of Section 4.2. The CF parameters were obtained from the reference spectral
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the aim of testing the time-domain convergence of the spectral
densities shown in the preceding section.

All calculations are carried out for the combined subsystem plus
bath at zero temperature, using the multiconfiguration time-
dependent Hartree (MCTDH) method [39–42] and employing basis
sets similar to those specified for previous calculations for the
same type of system [26–28]. Initial conditions correspond to the
Franck–Condon geometry, which is also the reference geometry
for the Taylor expansion underlying the vibronic coupling model
of Section 2. We choose a discretization for NB = 20 bath modes,
which together with the 4-mode subsystem can be taken to corre-
spond to the 24 normal modes of pyrazine. However, while the
perspective developed here can be applied to a finite-dimensional
intramolecular bath, it is equally suitable to describe an external
bath with a large or infinite number of degrees of freedom. As is
clear from the preceding section, the procedure can be straightfor-
wardly extended to an arbitrary number of modes sampled from a
given spectral density. Since the relevant observation time scale is
short, of the order of 100 femtoseconds, the dynamics induced by
the discretized bath is effectively irreversible.

The reference spectral density of Fig. 1 as well as the M = 1, . . .,3
approximants of Fig. 2 are discretized in exactly the same fashion
for NB = 20 bath modes, see Fig. 3. Table 2 summarizes the param-
eters determining the corresponding Mth order CF approximants.
Time-dependent calculations for the different realizations of the
spectral density were then compared, as illustrated in Fig. 4. The
figure shows the time-evolving S2 diabatic state populations along
with the wavepacket autocorrelation function jC(t)j = jh w(0)jw(t)ij.
For comparison, results for the bare 4-mode system are shown,
which features significantly stronger recurrences and a different
population dynamics.

All calculations reported in Fig. 4 agree on the shortest time
scale (�5 fs), and the orders M = 2, 3 are found to be very close over
0 2500 5000
0

0.005

0.01

0.015

J(M
) (ω

)

Reference
M=3
M=2
M=1

ω / cm-1

Fig. 3. Lowest-order spectral density approximants J(M)(x), M = 1, . . .,3, as com-
pared with the reference spectral density of Fig. 1 (black line). The Mth order
spectral densities correspond to those shown in Fig. 2, but exhibit a coarser
discretization, using 20 frequency-domain points. This discretization has been
employed in the dynamical calculations illustrated in Fig. 4.

Table 2
Effective-mode parameters for the closure levels M = 1, 2, 3. The effective-mode frequenci
friction coefficient g is defined in terms of the cutoff frequency of the Rubin model, g = KR/
deconvolution procedure of Section 3.2.

M XB1 XB2 XB3 d01

3 3035.25 8539.05 4756.33 7.18
2 3035.25 5170.96 NA 7.18
1 2174.77 NA NA 7.18
the complete observation interval. The M = 3 result is virtually
indistinguishable from the result obtained from the reference spec-
tral density and can be considered as converged. The M = 1 order
gives a qualitatively correct picture of the dynamics, which is inter-
mediate between the bare subsystem dynamics and the full
dynamics over the whole observation interval. The results shown
here are qualitatively similar to the preliminary analysis presented
in Ref. [29].

The fact that convergence in the time domain is achieved al-
ready at the order M = 3 may seem surprising, given that the corre-
sponding spectral density is far from converged as far as the
detailed frequency-domain structure goes, see Figs. 2 and 3. The
reason lies in the short time scale of the relevant decay process,
over which the details of the bath spectral density cannot be fully
resolved.
6. Discussion and conclusions

To summarize, we have illustrated a general procedure for the
systematic reduction of environmental spectral densities within
the framework of a vibronic coupling model. Following our earlier
developments [22,23], a family of approximate spectral densities
are generated, which are sequentially resolved by the subsystem
in the course of the dynamics. The model presented here is in line
with the concept of Refs. [14–16] where the subsystem is repre-
sented by a vibronic coupling model of higher than linear order,
while the bath part is restricted to the LVC level of treatment.
The bath is thus amenable to the effective-mode transformations
detailed above.

The hierarchy of spectral densities presented here originates in
the effective-mode transformation approach, but goes beyond
these developments in that it abstracts from the discrete nature
of the environment. Instead, the reduction is achieved at the level
of the CF representation of the continuous spectral densities of Eqs.
(21)–(23). This framework is best suited to a system-bath theory
perspective. Indeed, the use of the Markovian or quasi-Markovian
(Rubin) closure of Section 4, which underlies the spectral density
construction, implies that no artifacts appear due to the truncation
of the effective-mode chain. The excitation thus cannot ‘‘propagate
back” along the chain, and an irreversible dynamics results. This is
in contrast to the effective-mode approximations which were car-
ried out in the analyses of Refs. [14–16,19] for finite-dimensional
polyatomic systems.

The perspective resulting from the present analysis is that the
subsystem sequentially resolves the environment’s spectral den-
sity as time proceeds. Thus, at short times the subsystem sees a
coarse-grained view of the environment, with a spectral density
that corresponds to a low-order continued-fraction representation
(note, though, that these coarse-grained versions do not simply in-
volve a coarse-graining in the frequency domain, see Section 4.3).
Successive higher-order CF’s approach the true spectral density.
In keeping with Refs. [22,23], the present analysis underscores
the formal equivalence between approximate CF spectral densities
and truncated Mori chain representations, i.e., effective-mode
chains with (quasi-) Markovian closure. While this relation
es are quoted in cm�1 and the dn�1,n coupling terms are quoted in atomic units. The
2 (Section 4.2), where KR = NDx is determined by the discretization employed in the

d12 d23 g (a.u.)

� 10�4 2.27 � 10�4 6.71 � 10�4 0.055
� 10�4 2.27 � 10�4 NA 0.108
� 10�4 NA NA 0.152
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Fig. 4. Upper panel: time dependence of the S2 state (diabatic) population for successive 4 + 20-mode models based on the bath spectral densities J(M),M = 1,2,3 illustrated in
Fig. 3. Lower panel: time dependence of the wavepacket autocorrelation function (absolute value), jC(t)j = jhw(0)jw(t)ij. For comparison, results for the bare subsystem
dynamics are also shown.
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connects to various previous results in the literature [35–37], its
implications have not been previously explored in the context of
high-dimensional quantum dynamics.

In the present work, the focus has been on demonstrating the
equivalence between the truncated effective-mode chains and
the reduction at the level of the associated spectral densities. The
calculations reported in Section 5 in fact did not involve a reduc-
tion in the number of sampling points as compared with the refer-
ence spectral density. The general prescription to be followed in
view of a true reduced-dimensional dynamics involves the trans-
formed, effective-mode representation and the treatment of the
residual bath at an implicit level, e.g., involving master equations
[22,23]. Indeed, the effective-mode picture offers a unique ‘‘mini-
mal discretization” of the bath.

Even though convergence can be analyzed with respect to both
the frequency and time-domain perspective, the present applica-
tion illustrates that time-domain convergence remains the most
natural viewpoint, since the effective-mode chains represent a per-
turbation theory in time. Furthermore, the fast processes under
consideration favor a rapid convergence of the effective-mode
expansion. Thus, in the example discussed above, the M = 3
approximant is found to yield a converged dynamics even though
the corresponding spectral density is still perceptibly different
from the reference spectral density. Indeed, the effective-mode ap-
proach is ideally tailored to the ultrafast dynamics at CoIn’s, where
the chain representation is expected to converge rapidly. For an
arbitrary, possibly complicated spectral density constructed, e.g.,
from molecular dynamics (MD) simulations, we conjecture that
the lowest-order approximants will capture the dominant effects
of the environment on the CoIn dynamics.

Beyond the present level of analysis, we will formally demon-
strate in a forthcoming publication [43] that the present approach
is of considerable generality and systematically converges for arbi-
trary baths. The present reduction procedure thus offers a general
approach for deconvoluting complicated, structured spectral den-
sities in terms of an underlying collective mode ensemble.

Finally, the case addressed here, i.e., a tuning mode bath giving
rise to energy gap fluctuations, covers many physically relevant sit-
uations, but is restricted in that the environment is taken to couple
only diagonally to the CoIn. The more general case where the envi-
ronmental modes couple both diagonally ð/ r̂zÞ and off-diagonally
ð/ r̂xÞ, has been addressed in Refs. [29,30]. In these references, we
also considered simultaneous bath couplings to several subsystem
operators, which necessitates a generalization of the present treat-
ment to cross-correlated spectral densities.

We expect the effective-mode models described here to be ver-
satile tools that can predict general trends, and that can be used in
conjunction with microscopic information provided from other
sources, e.g., spectral densities, energy gap correlation functions,
etc. Further, model parametrizations could be provided by QM/
MM type simulations, and the model-based dynamics could be em-
ployed to analyse the wealth of microscopic information provided
by such simulations. Such complementary strategies would bridge
the gap between system-bath theory approaches and explicit mul-
ti-dimensional simulations for ultrafast photochemical processes
in various types of environments.
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