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ABSTRACT: We investigate the vibrational relaxation of a Morse oscillator, nonlinearly coupled
to a finite-dimensional bath of harmonic oscillators at zero temperature, using two different
approaches: Reduced dynamics with the help of the Lindblad formalism of reduced density matrix
theory in combination with Fermi’s Golden Rule, and exact dynamics (within the chosen model)
with the multiconfiguration time-dependent Hartree (MCTDH) method. Two different models
have been constructed, the situation where the bath spectrum is exactly resonant with the
anharmonic oscillator transition frequencies, and the case for which the subsystem is slightly off-
resonant with the environment. At short times, reduced dynamics calculations describe the
relaxation process qualitatively well but fail to reproduce recurrences observed with MCTDH for
longer times. Lifetimes of all the vibrational levels of the Morse oscillator have been calculated, and both Lindblad and MCTDH
results show the same dependence of the lifetimes on the initial vibrational state quantum number. A prediction, which should be
generic for adsorbate systems is a striking, sharp increase of lifetimes of the subsystem vibrational levels close to the dissociation
limit. This is contradictory with harmonic/linear extrapolation laws, which predict a monotonic decrease of the lifetime with
initial vibrational quantum number.

I. INTRODUCTION

Quantum dynamical processes in extended molecular systems
and condensed phases are ubiquitous in nature,1,2 and
constitute a major topic of growing interest in physics and
chemistry, and even in biology. Typical examples are electron
or proton transfer in large biological macromolecules,2

molecular isomerizations,3 photochemistry in solutions and
matrices,4 and sticking of adsorbates on surfaces.5,6

Such dynamical problems are usually studied within the
theory of open quantum systems,7,8 for which a discrimination
between primary and secondary modes is necessary. However,
one cannot study the dynamics of the subsystem in isolation
and completely neglect its interaction with the bath. Indeed, the
inclusion of the latter is mandatory as it is required to activate
the subsystem or to dissipate its excess energy.9,10 In addition,
the coupling to the bath also induces decoherence,11,12 i.e., a
loss of the phase coherence of the subsystem, a phenomenon
that plays a fundamental role in quantum information13 and
quantum control of atomic and molecular processes.14

“Open system density matrix theory” is a so-called reduced
method to treat open quantum systems,15 where the time
evolution of the reduced density matrix obeys the Liouville−
von Neumann equation with an additional term that accounts
for the coupling of the subsystem to the environment. This
dissipative term can be derived either by a microscopic model
or by using phenomenological assumptions. An example of a
microscopic approach is Redfield theory,16 which is based on
projection operator techniques and perturbation theory.
However, this method suffers from a lack of complete positivity,
which is not consistent with a probabilistic interpretation of the
reduced density matrix. To avoid this problem, Lindblad17 and

Gorini and Kossakowski18 derived a general form of a complete
positive, trace preserving dynamical semigroup Liouvillian.
Both the Redfield theory and Lindblad formalism are based on
many hypotheses such as the Markov approximation where
memory effects are neglected, and they also fail to describe
some system−bath situations like the case of an entangled
initial state of the full system, or a strong coupling to the bath
in the case of Redfield theory. Several ideas have emerged to
generalize reduced dynamics approaches to deal with non-
markovian dynamics.19

Another way to circumvent the problems of reduced
dynamics is to treat the full system (subsystem plus bath)
exactly and describe all its degrees of freedom in the same
manner using an exact quantum approach. But, because of the
exponential scaling of the standard quantum dynamics
methods, it is impossible to deal with these large systems
using current computational resources. However, tremendous
progress has been recently made in this direction, especially in
the development of time-dependent multiconfiguration meth-
ods such as the MCTDH (multiconfiguration time-dependent
Hartree) approach.20 This method has been successfully
applied to many quantum dynamical processes in polyatomic
molecules,21 and also to adsorbate−surface problems with a
large number of bath degrees of freedom.22,23 Other variants of
the method designed for true dissipative systems have also been
derived, such as G-MCTDH (Gaussian MCTDH10,25), ML-
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MCTDH (multilayer MCTDH26,27), CC-TDSCF (continuous-
configuration time-dependent self-consistent field28,29), and
LCSA (local coherent state approximation30,31).
In this paper, we confront exact dynamics using MCTDH

with reduced dynamics in the Lindblad formalism, to examine
dissipation and decoherence in a subsystem comprising a
Morse oscillator that is nonlinearly coupled to a finite-
dimensional bath of harmonic oscillators at zero temperature.
The current study is similar to previous ones,9,10,30 but we
investigate new aspects of the problem, such as the dependence
of dissipation dynamics on the discretization of the bath, in the
sense that baths that are resonant and off-resonant with the
subsystem are considered, and we show that the subsystem
relaxation behaves differently depending on the bath discretiza-
tion. We also investigate the dependence of the lifetimes of
Morse vibrational states on their vibrational quantum number.
The latter allows for the comparison with some extrapolation
techniques,24,39 often used in the literature to calculate
dissipation rates.
The paper is organized as follows: Section II describes the

subsystem−bath models under study. Section III summarizes
the different theoretical approaches used in our work, namely
the Lindblad reduced density matrix approach and MCTDH, as
well as the different measures used to characterize the
relaxation process. In section IV, we compare between reduced
and exact descriptions of the dynamics for both resonant and
nonresonant baths, and we also discuss the dependence of the
vibrational lifetimes on the initial vibrational state of the
subsystem, as well as isotopic effects. Section V concludes the
paper.

II. MODEL HAMILTONIAN
The quantum calculations below consider the evolution of a
“subsystem” Morse oscillator interacting with a finite-dimen-
sional “bath” of harmonic oscillators at zero temperature. The
model to be used is well documented in the literature9,10,30 and
only its main characteristics and the specific choices made in
this work will be summarized here. The overall supermolecular
system evolves under the Hamiltonian Ĥ = ĤS + ĤB + ĤSB,
where ĤS, ĤB, and ĤSB describe the subsystem, the bath, and
their interaction respectively, which are given by

̂ = − ℏ ∂
∂

+ −α α− −H
M z
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2
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2 2

2
2
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In principle, due to the subsystem−bath coupling, the Morse
oscillator potential becomes distorded, and one has to add to
the full Hamiltonian a counter term for renormalization.9

However, in our work, as we are considering the weak coupling
regime, this term is omitted, and the “bare” Hamiltonian above
is used in all our calculations.
The numerical values of the different parameters character-

izing the subsystem are chosen to be typical for a (quasi-
)diatomic molecular system. In particular, a mass M = 0.9481
amu (the reduced mass of O−H), the depth of the potential
well D = 0.1994 Eh, and its parameter α = 1.189 a0

−1 have been

chosen here to roughly resemble an O−H vibration,32 whose
relaxation is to be studied. Diagonalizing ĤS by using the sinc-
function discrete variable representation (DVR),34 we get 22
bound states, the fundamental frequency being ω1,0 = (E1 −
E0)/ℏ = 3784 cm−1 when converted to wavenumbers. The
numerically obtained system eigenvalues represent well the
analytical solution of the Morse oscillator, Ev = ℏωh(v + (1/2))
− ℏωhxe(v + (1/2))2, where ωh = (2Dα2/M)1/2 is the harmonic
frequency obtained from harmonizing the Morse potential, and
xe = ℏωh/(4D) is the anharmonicity constant. Here we have ωh
= 3951 cm−1 and xe = 0.0208.
In most studies below, the bath consisted of N = 40

harmonic oscillators, with masses m = 1 amu in all cases. The
frequencies {ωb} were chosen according to two different
models. For a nonresonant bath model, the frequencies are
chosen to be equidistant

ω ω= Δbb (4)

with Δω = 153.6 cm−1 and the cutoff frequency ωN = 6145.3
cm−1. In this case, no bath frequency matches the subsystem
next-neighbor transition frequencies, but all the latter lie below
the highest frequency of the bath. The cutoff frequency ωN is
higher than for a realistic condensed phase environment, at
least if one thinks of the phonon bath of a solid or surface,
however, we wish to consider the wide-band limit with ωN >
ω1,0 in this model study.
For the resonant bath model, a subset of the N = 40 bath

frequencies is chosen to match the next-neighbor transition
frequencies of the subsystem. Because, for the Morse oscillator,
Ev+1 − Ev = ℏωh − 2ℏωhxe(1 + v), the corresponding bath
frequencies can also be chosen equidistant in this case with Δω
= 2xeℏωh. To fulfill the resonance conditions, also a shift has to
be made to match the subsystem frequencies, i.e., ωb = bΔω +
ω0 where Δω ∼ 179.5 cm−1 and ω0 ∼ 14 cm−1. This gives a
cutoff frequency of ωN ∼ 7195 cm−1 in this case.
Having specified the bath frequencies {ωb}, it is easy to

derive the damping constants {cb} characterizing the system−
bath interaction according to eq 3. In the Ohmic bath model,9

they are given as

ω γ
π ω

=
⎛
⎝⎜

⎞
⎠⎟c

mM
g

2
( )b b

b

1/2

(5)

where g(ωb), the density of bath states, is chosen to be
constant, i.e., g(ωb) = 1/Δω. As will be seen shortly, γ is a
parameter that determines the vibrational relaxation rate of the
first excited, subsystem vibrational state. Below, γ−1 = 500 fs will
be chosen.
In the present model we use a coupling f(z) that is nonlinear

in the system mode. Specifically, the coupling function is f(z) =
(1 − e−αz)/α, because we wish to describe vibrational relaxation
at a surface, for which no coupling should exist at all in the limit
of large values of z. Note that the coupling function becomes
linear in the limit of small-amplitude motions of the subsystem
relative to the surface, i.e., f(z) ≃ z for very small values of z.
We finally note that the fact that ĤSB is linear in the bath
coordinates and nonlinear in the subsystem coordinate allows
for only one phonon transitions in the bath, and for any many-
quanta transitions in the subsystem.
To avoid any confusion, we should emphasize that a finite

number of harmonic oscillators can act as a “true” bath, in the
thermodynamic sense, only at short times, as can be seen in the
next sections. Thus, our use of the bath terminology is not in its
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strict sense, i.e., a true dissipative reservoir, but as a generic
term to describe a finite size environment.

III. THEORETICAL APPROACHES FOR RELAXATION
DYNAMICS

In this paper, we compare reduced with “exact” dynamics as
outlined above. In the first approach, we use the reduced
density operator method,15 in which we solve the Liouville−
von Neumann (LvN) equation for an open system, with the
help of the Lindblad formalism. In the second approach, both
the subsystem and the bath degrees of freedom are treated
exactly and on the same footing with a wave function method,
namely the multiconfiguration time-dependent Hartree method
(MCTDH).20 As both approaches are well described in the
literature, we give the reader here only a brief summary of the
basic features of each method.
A. Reduced Dynamics: Lindblad Formalism and

Fermi’s Golden Rule. In this approach, we solve a Markovian
open-system Liouville−von Neumann (LvN) equation for the
time evolution of the reduced density operator ρ̂ = trBρ̂tot
(where ρ̂tot is the total density operator and trB denotes a trace
over bath modes).7,8 In the Lindblad approach,17 the Liouville−
von Neumann equation is

∑ρ ρ ρ ρ∂
∂

̂ = −
ℏ

̂ ̂ + ̂ ̂ ̂ − ̂ ̂† †
+⎜ ⎟

⎛
⎝

⎞
⎠t

H W W W W
i

[ , ]
1
2

[ , ]
k

k k k kS
(6)

Here, the square brackets [.,.]+ denote an anticommutator, and
Ŵk are Lindblad operators specifying the nature and the
strength of each dissipative channel (labeled by k), such as
energy relaxation or pure dephasing, for which different forms
were suggested.5 In our work, we are interested in the dynamics
of the vibrational energy relaxation of the subsystem, from the
eigenstate |i⟩ to the eigenstate |f⟩ of the subsystem, i.e., ĤS|n⟩ =
En|n⟩ (n = i, f). In this case, the Lindblad operators Ŵk are
conveniently chosen as

̂ = Γ | ⟩⟨ |→W f ik i f (7)

Now, k = (i, f) is a composite index, and Γi→f is an
environment-induced transition rate, a quantity that is
computed perturbatively using Fermi’s Golden Rule as
described shortly. Adopting the Lindblad formalism with the
dissipation operators of eq 7, the time evolution of the elements
of the reduced density matrix in the subsystem state
representation, is given by5
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for the diagonal elements (“populations”), and
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for the off-diagonal (k ≠ l) elements (“coherences”). Note that
in eq 9, no pure dephasing terms have been included. Within
the Lindblad formalism and the chosen dissipation operators,
the time evolutions of the populations and coherences of the
reduced density matrix are completely decoupled. In other
words, there is no population−coherence transfer, and no
coherence−coherence transfer. In reality, all matrix elements of
the reduced density matrix (populations and coherences) are

coupled. Further, the Markov approximation may not hold in
practice.
The vibrational relaxation rates of the subsystem, from an

initial state |i⟩ = |ψi⟩ to a final state |f⟩ = |ψf⟩, have been
calculated from Fermi’s Golden Rule as

∑π ψ ψ δΓ =
ℏ

|⟨ Φ | ̂ | Φ ⟩| −→ p H e e
2

( )i f
I F

I i I f F i I f F
,

SB
2

, ,
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where I = {i1, i2, ...} and F = {f1, f 2, ...} are bath indices, ei,I and
ef,F are the initial and final total energies of the full system, and
pI is the weight of the Ith bath initial state. Note that, as we are
studying the case where the bath is at zero temperature, only
subsystem downward transitions are possible, and only the
initial state I

∏ χΦ =
=

x x x( , ..., ) ( )I N
b

N
b

b1
1

0
( )

(11)

has to be considered, with unit weight, where χv
(b)(xb) is the

harmonic oscillator wave function for the bath oscillator b in
state v. Due to the linear form of ĤSB in the bath coordinates,
the only possible final states F are those describing one-phonon
excited configurations of the bath, namely
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for a single excitation in the kth oscillator. Using the system−
bath coupling ĤSB, and integrating over bath modes one gets

∑π
ω
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ℏ
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where ωk is the harmonic frequency of the kth bath oscillator,
and ωi,f = (Ei − Ef)/ℏ. In the Ohmic bath model, using eqs 4
and 5,

∑γ ω δ ω ω ωΓ =
ℏ

|⟨ | | ⟩| − Δ→
=

i f z f M
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( ) ( )i f
k

N

k i f k
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In the wide-band continuum limit, one can replace the discrete
sum over the bath frequencies by an integral, ∑kg(ωk)Δω →
∫ g(ω) dω and do the integral over the Dirac delta-function
analytically, which gives

γωΓ =
ℏ

|⟨ | | ⟩|→ i f z f M
2

( )i f i f
2

, (15)

This equation further simplifies under the double-harmonic
approximation, i.e., when the Morse functions are approximated
as harmonic oscillator functions ψv

h(z), and the coupling
function f(z) is replaced by z, to

δ γΓ = · · >→ + v v; 0v u v u, 1 (16)

Here, ⟨ψv
h|z|ψu

h⟩ = (vℏ/2Mω1,0)
1/2 if v = u + 1 and 0 otherwise,

has been used. Equation 16 demonstrates the equivalence Γ1→0
= γ in this limit, selection rules Δv = −1, and a linear increase of
the decay rate with initial quantum number, v, of the subsystem
oscillator.
In practice, we do not make these approximations here but

use anharmonic matrix elements ⟨i|f(z)|f⟩ instead, a discrete
bath, and represent the delta-functions by normalized
Lorentzians. That is, we use eq 14 in a form
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We should notice that the Lorentzian broadening amounts to
couple each discrete bath mode to a true dissipative bath; i.e., it
introduces a secondary bath with a relaxation time proportioanl
to σ−1. By choosing the Lorentzian width parameter as σ = Δω,
we obtain vibrational relaxation rates close to γ for the 1 → 0
transition, as demonstrated below.
In our calculations, we use all bound states of the Morse

oscillator as a basis to represent the reduced density matrix
operator. The initial state is the v0-th excited state of the Morse
oscillator, i.e.,

ρ =
= =⎧⎨⎩

k l v1 if

0 otherwisekl
0

(18)

The reduced density matrix propagation is done with a Newton
polynomial propagator36,37 of order 16.
B. Exact Dynamics: MCTDH. To assess the validity of the

assumptions introduced in the Lindblad/Golden Rule form of
the reduced density matrix for our problem, we have also
performed exact quantum calculations, with the help of the
multiconfiguration time-dependent Hartree (MCTDH) meth-
od.20 In the MCTDH approach when applied to a system−bath
problem, we solve a Schrödinger equation of the form

ℏ ∂Ψ
∂

= ̂ + ̂ + ̂ Ψ
t

H H Hi ( )S B SB (19)

The wave function of the whole system is expanded into a sum
of Hartree products

∑ ∑ ∑
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N
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where Aj0j1...jN are time-dependent expansion coefficients and
φjκ

(κ) are coordinate- and time-dependent single-particle
functions (SPF) for the κth degree of freedom, which are in
turn defined on a time-independent primitive basis such as a
discrete variable representation (DVR) grid.33,34 Both the
expansion coefficients and the SPF are variationally optimized
using the Dirac-Frenkel variational principle.
The efficiency of this method over standard wavepacket

methods is due to the small number of SPF required for
convergence compared to the number of primitive basis
functions needed to correctly describe each degree of freedom.
Another important feature of MCTDH, which is exploited in
our calculations, is the mode-combination technique. This
allows us to combine several degrees of freedom in a
generalized SPF defined on a direct product grid, and hence
reducing the length of the expansion coefficient vector Aj0j1...jN.
Numerical details of the MCTDH propagations are summar-
ized in Table 1. For the solution of the MCTDH equations of
motion, we use the Heidelberg MCTDH program package.35

The initial state of the whole system is chosen such that there
is again no correlation between the subsystem and the bath,

with the subsytem in state v0, and the bath in its ground state,
i.e.,

∏ψ χΨ = =
=

z x x t z x( , ,..., , 0) ( ) ( )N v
b

N
b

b1
1

0
( )

b0 (21)

where ψv0(z) is an eigenstate of the Morse oscillator and
χ0b
(b)(xb) are harmonic oscillators ground state functions. From
the propagated wave function Ψ(z,x1,...,xN,t), we can construct
a reduced density matrix

ρ ̂ = |Ψ ⟩⟨Ψ |t t t( ) tr { ( ) ( ) }B (22)

by integrating out the bath modes.
C. Analyzing Results. Once we have calculated the

reduced density matrix elements at all times, with either
method, it is easy to calculate the time evolution of any
subsystem observable. This is done by taking the trace of the
product of its corresponding operator and the reduced density
matrix, i.e., ⟨Ô⟩(t) = tr{ρ(t)Ô}. For instance, the quantities that
are going to be used in the following section to quantify
dissipation are the mean energy of the subsystem ⟨HS⟩(t), and
the populations of the Morse oscillator vibrational states, given
by Pv(t) = tr{ρ̂(t)|v⟩⟨v|} = ρvv. The dissipation, described by an
energy loss of the subsystem in favor of its environment, is
accompanied by a decoherence of the subsystem, that is, a loss
of phase information of the subsystem over time. However, in
the present context, it makes no sense to talk about
decoherence of the Morse oscillator, meant as the decay of
the off-diagonal elements of the reduced density matrix in the
subsystem state representation. This is because in the Lindblad
formalism, all coherences are and remain, exactly zero in our
example. In contrast, for the full MCTDH dynamics, the off-
diagonal elements of the reduced density matrix can be
nonzero.
Instead of decoherence, we use another measure to quantify

entanglement between the subsystem and the bath, which is the
purity of the reduced density matrix.15 This quantity is defined
as the trace of the square of the reduced density matrix, tr(ρ̂2).
It is equal to unity for a pure state and to 1/M for a maximally
incoherent mixture of M states of the subsystem.11,12 Although
the initial state of the whole system (Morse plus bath) is an
uncorrelated state, the system−bath interaction entangles the
total system so that the total state becomes inseparable
(entangled) over time, leading thus to the decay of the purity of
the reduced density matrix.
Another measure on the subsystem state is given by the von

Neumann entropy

ρ ρ= − ̂ ̂S k tr{ ln }B (23)

where kB is the Boltzmann constant. Notice that the purity
defined above is a form of entropy, and it is related to what is

Table 1. Grid Parameters for MCTDH Calculationsa

mode DVR minimum maximum Np n(n ̃)

z (system) sin −1 a0 19 a0 501 15
Q1−7 (bath) HO 6 4−6

aThe DVR types are denoted “sin” for the sinc-function DVR and
“HO” for the Hermite (harmonic oscillator) DVR. Minimum and
maximum define the grid extentions, where known. Np is the number
of primitive grid points, and n(n ̃) is the number of SPF for a given
(combined) mode. Notice here the use of mode combination giving
rise to seven combined modes of the 40 bath oscillators.
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called “linear entropy”.8 For instance, the von Neumann
entropy is equal to zero for pure states, and to (kB ln M) for a
maximally incoherent mixture of M states of the subsystem.

IV. RESULTS AND DISCUSSION
In this section, we present the main results of our calculations.
We begin with the vibrational relaxation dynamics of the Morse
oscillator interacting with a resonant bath, and then with a
nonresonant bath, where we compare the predictions of “exact”
and reduced dynamics calculations. Finally, we discuss the
behavior of the lifetimes of all the vibrational states up to the
dissociation limit.
A. Resonant Bath. A.1. Lindblad Model. The first

calculations we have performed deal with vibrational relaxation
of a Morse oscillator, initially in a well-defined vibrational state
|ψv0⟩, interacting with a resonant bath, meaning that the bath
spectral density contains a subset of frequencies matching
exactly all the one-quantum transition frequencies between the
different eigenstates of the subsystem. This situation is
ubiquitous in system−bath problems such as adsorbate−surface
dynamics, where the environment is usually composed of a
huge number of degrees of freedom giving rise to an almost
continuous density of states. (This statement is of course only
true if the subsystem transition frequency lies within the
phonon band.) The calculations were performed for all the
vibrations of the Morse oscillator up to the dissociation limit,
using the two approaches described above.
To facilitate interpretations, we will mainly show the results

for the case where the subsystem is initially in its first
vibrational excited state (v0 = 1). In Figure 1a we follow the
transfer of the excess energy from the subsystem to the bath
according to Lindblad calculations, where the expectation value
of the energy of the Morse oscillator decays exponentially on
the time scale of ∼γ−1 = 500 fs and reaches a steady state after

∼3000 fs, the time for which we observe a full transfer of
energy from the subsystem to the bath. This is due to a
population transfer in the Morse oscillator, from the initial state
(v0 = 1) to the ground state (v = 0), as shown in Figure 1b.
Figure 1b shows, in addition to populations, also the

evolution of the purity of the reduced density matrix and the
entropy of the subsystem. The purity of the reduced density
matrix is an information measure of entanglement. At times t =
0 and t ≥ 3000 fs, the Morse oscillator is in a pure state, v = 1
and v = 0, respectively, which shows by the purity tr(ρ̂2) being
1. During the time interval in between, we have a mixture of
two states and the purity is smaller than 1, going through a
minimum equal to 1/2 when both states are maximally mixed.
This is the case after the half lifetime, T1/2 ∼ ln 2 γ−1 ∼ 350 fs.
In a Lindblad two-level system at a temperature T = 0, the
purity is given analytically as

ρ ̂ = − −τ τ− −tr 1 2(e e )t t2 / 2 /1 1 (24)

where τ1 ∼ γ−1 is the vibrational lifetime of the first excited
state. This behavior of the purity over time is similarly shown in
the evolution of the entropy of the subsystem, but with an
opposite evolution, it increases from S(t=0) = 0, reaching a
maximum at t = T1/2 ∼ 350 fs, and then decreases toward S = 0
at longer times again. In the present case, the entropy is
analytically given as

τ
= − − + − −τ τ τ− − −

⎡
⎣⎢

⎤
⎦⎥S k

t
e (1 e ) ln(1 e )t t t

B
1

/ / /1 1 1

(25)

giving S = kB ln 2∼0.69kB for the maximally mixed state at t =
T1/2. Note also that in the first time interval 0 < t < τ1, one can
observe that purity decays faster than the population of the
initial state.
The general features in the evolution of the different

information measures shown in Figure 1b are the same
independent of the initial vibrational state of the subsystem.
This is illustrated in Figure 1c where the Morse oscillator is in
an initial vibrational state v0 = 6. Again, we observe a full energy
(and population) transfer at long times. However, this does not
occur via the |6⟩ → |0⟩ transition, although this is (weakly)
allowed, but through a cascade of transitions |6⟩→ |5⟩→ |4⟩→
|3⟩ → |2⟩ → |1⟩ → |0⟩, where the intermediate states are
populated (and then depopulated) over time. As for purity, we
observe the same behavior as before, it first decays from its
initial value (tr(ρ̂2) = 1) with a higher rate than the decay of
initial population, then it reaches a plateau when the state of the
system gets mixed, and it finally increases to unity as the
subsystem evolves toward its final pure state (v = 0). This trend
is also illustrated on the same graph by the curve of the entropy
of the subsystem, which increases when the system is in a mixed
state and then drops toward zero when the excess energy of the
Morse oscillator is completely transferred to the bath. We
finally note that the decay of the initial state with v0 = 6
proceeds on a shorter time scale than v0 = 1. The dependence
of the vibrational relaxation time on initial state v0 will be
examined below in detail.
In summary, it is obvious that the reduced density matrix

does not show any size effect of the bath, but it treats it as a true
infinite reservoir. The Lindblad dynamics is Markovian with an
exponential population decay, and the density matrix remains
diagonal if no external field or other Hamiltonian coupling
mechanisms are present. The question one may ask is whether
that is exactly what happens in the case of a finite bath.

Figure 1. Vibrational relaxation of a Morse oscillator interacting with a
resonant bath using reduced density matrix calculations. (a) Time
evolution of the subsystem average energy with an initial vibrational
state v0 = 1. (b) Time evolution of the subsystem populations, purity
and entropy (in units of kB), where the initial vibrational state of the
subsystem is v0 = 1. (c) Same as (b) for a different initial vibrational
state of the subsystem v0 = 6.
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A.2. MCTDH Model. To check the veracity of the previous
results, we have performed exact quantum calculations where
both the subsystem and the bath are treated on the same
footing using the MCTDH wave function approach. Figure 2a

shows MCTDH results for the time evolution of the same
information measures as in Figure 1b, and Figure 2b shows
system and bath energies, for an initial Morse oscillator state v0
= 1, suddenly coupled to 40 bath oscillators. Up to 500 fs, we
observe that the subsystem’s observables behave similarly to the
reduced density matrix method. The population of the initial
state drops to zero while populating the vibrational ground
state, the purity reaches the value 1/2 after a “half lifetime”
time, which is ∼250 fs now, and the entropy reaches its
maximum of (kB ln 2) at this time. Similarly, the system energy
decreases and the bath energy increases by the corresponding
amount.
There are, however, also marked differences to the Lindblad

model. First of all, the decay is nonexponential, with a slope
dP1/dt = 0 at t = 0, which is a clear signature of nonmarkovian
behavior.38 Second, at times longer than 500 fs, when P1 = ρ11 =
0 and P0 = ρ00 = 1, the excited state population rises again,
reaching ρ11 = 1 after t = 1000 fs. In fact, an oscillatory behavior
is observed with a period of ∼1000 fs. As a further difference to
the Lindblad case we find that the reduced density matrix in the
energy representation, when calculated from the full wave
function Ψ(t) according to eq 22, acquires small admixtures of
the population-normalized off-diagonal elements (coherences)
with time, which show also an oscillatory behavior. Albeit very
small in the present example (on the order of 10−4), this is a
clear signature of population-coherence transfer which is absent
in Lindblad dynamics.
For the resonant bath model the oscillations observed in

Figure 2a are dominated by the coupling of the system to a
single bath oscillator, which is resonant with the |1⟩ → |0⟩
transition within the system. This is demonstrated in Figure 3a,
where, for the populations of the v = 0 and v = 1 states, the full
bath MCTDH results are compared to MCTDH using a single

bath oscillator with ωb = ω1,0. With the single bath mode, the
dynamics follows the same oscillatory behavior, with only small
deviations from the full-bath case, which has a slightly more
complicated structure. The smooth oscillations for the case of
the single bath oscillator (the bath oscillator b = 21), can be
interpreted as Rabi oscillations in a degenerate two-level
system, between the initial state |1s0b⟩ (one quantum in the
system mode, none in the bath mode), and |0s1b⟩ (no quantum
in the system mode, one in the bath mode), coupled by a
matrix element V. In this case, the exact solution of the time-
dependent Schrödinger equation is analytically given as

= = | |
ℏ

⎜ ⎟⎛
⎝

⎞
⎠P P

V t
sin0 1 0

2
s b (26)

= = −P P P11 0 1 0s b (27)

with the corresponding oscillation period

π= ℏ
| |

T
V (28)

The coupling term V = ⟨1s0b|ĤSB|0s1b⟩ is

ω
γ ω

π
= ⟨ | | ⟩ ℏ = ℏ Δ⎜ ⎟⎛

⎝
⎞
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c1 ( ) 0

2 2z b
1,0

1/2

(29)

in the resonant single-oscillator case, where the approximate
relation expressed in eq 29 holds under the double-harmonic
approximation of above. In that case, T ∼ (2π3/γΔω)1/2. Using
Δω as specified above and γ−1 = 500 fs, gives T ∼ 960 fs, in
good agreement with the observed period in the full bath case.
Adding more bath oscillators has only a small effect in the

resonant-bath MCTDH model. This is also demonstrated in
Figure 3a, which shows that with N = 3 bath oscillators (the
resonant one, b = 21, and the two oscillators that are closest in
energy to the resonant one, b = 22 and b = 20), the full-bath

Figure 2. Vibrational relaxation of a Morse oscillator (v0 = 1)
interacting with a resonant bath using MCTDH calculations. (a) Time
evolution of the subsystem populations, purity and entropy (in units of
kB). (b) Time evolution of the subsystem and the bath average
energies.

Figure 3. Time evolution of the subsystem and the bath populations
for a resonant bath using MCTDH calculations, with an initial
vibrational state of the subsystem v0 = 1. (a) Populations of the
subsystem taking into account the full bath, only one or three bath
modes. (b) Population of the vibrational state v = 1 of the subsystem
and the three dominant bath modes, 20, 21, and 22. (c) Population of
the subsystem vibrational state v = 1 using three different subsystem−
bath coupling strengths (in Eh/a0

2 units) to resonant oscillator 21.
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model with N = 40 oscillators is already well reproduced. In
Figure 3b then, the system mode evolution is accompanied by
the full excitation of the resonant bath oscillator 21, whereas
modes 20 and 22 are only very weakly populated, up to about
0.03 at most. Their particiaption cannot be entirely neglected,
though and is responsible for the nonsmooth behavior of P1
around t ∼ 180 fs, t ∼ 370 fs, .... At t ∼ 180 fs, for example, the
system oscillator loses energy only to the resonant bath
oscillator 21, the other two modes restitute energy back to the
system, and this is due to their different Rabi frequencies. The
oscillation period of a nonresonant bath mode is roughly given
by

π= ℏ
+ Δ

T
V

2

4 2 2 (30)

where V is its coupling to the Morse oscillator and Δ is its
frequency detuning from resonance, i.e., Δ = ωb − ω1,0. For
instance, for bath modes 20 and 22, having the same detuning
|Δ| = Δω and almost the same coupling V to the subsystem,
their oscillation period is T ∼ 180 fs.
Figure 3c shows the decay of the population of the subsystem

interacting with only the single, resonant oscillator but with
different coupling strengths, c21. As the coupling between the
subsystem and the bath gets stronger, the recurrence time gets
smaller, and this is related to the Rabi frequency, which is
inversely proportional to the coupling strength according to eqs
28 and 29. Equation 29 shows that the coupling matrix element,
and thus the oscillation period, are dominated by the decay
parameter, γ, and the bath frequency spacing, Δω.
Before closing this section, we want to clarify an important

point regarding the recurrences observed in the time evolution
of the subsystem. In true dissipative systems, where very large
discrete baths are used, the “nominal” recurrence time is given
by Trec = (2πℏ/Δω), where Δω is the smallest bath frequency
spacing. It sets the time scale of an irreversible behavior; that is,
energy cannot flow from the zero-temperature bath into the
subsystem for times less than this recurrence time, also called
Poincare ́ period. Thus, one may think that reversibility starts to
occur exactly at this time. However, our study shows that for a
small finite-size bath, the time at which recurrences in the
subsystem observables start to occur can be longer, depending
on the choice of the bath frequencies and the system−bath
couplings. For instance, in our model of a resonant bath of 40
oscillators, with a frequency spacing Δω = 179.5 cm−1, the bath
nominal recurrence time is Trec = 186 fs. However, recurrences
in the subsystem start to occur at further times, namely at T =
500 fs for the subsystem |1⟩ → |0⟩ transition, as shown in
Figure 3a. In fact, in this case, the subsystem interacts mainly
with one resonant oscillator of the finite bath, and with a few
oscillators close to resonance for a nonresonant bath, as can be
seen in the next section. Consequently, a complete energy
transfer from the subsystem to the bath is observed beyond the
bath recurrence time, namely at half the Rabi oscillation period
of the leading bath oscillator, given by eq 30. As such, the
“subsystem recurrence time” depends on the detuning Δ, the
coupling strength γ and also the bath frequency spacing Δω,
through the coupling of the subsystem with the main bath
oscillator. This can be seen, for example in Figure 3c where, for
baths with the same frequency spacing Δω = 179.5 cm−1, but
different coupling strengths γ, we obtain different “subsystem
recurrence times”.

B. Nonresonant Bath. B.1. Lindblad Model. In this
section, we present the results of vibrational energy transfer for
the same system described above with the same parameters.
The only difference is that the bath is slightly off-resonant with
the Morse oscillator. This condition is encountered in many
situations. For instance, if the bath is an extended molecular
system, the frequencies of its vibrations may not necessarily
match those of the subsystem it is interacting with. In our case,
frequencies of the finite-dimensional bath are chosen to be
equidistant as described above.
Figure 4 is equivalent to Figure 1b but for the nonresonant

bath and demonstrates the Lindblad dynamics for the v0 = 1

initial state, when coupled to the bath of 40 oscillators, treated
by Fermi’s Golden Rule. We observe that Lindblad calculations
show the same behavior for population and information
measures, whether the bath is resonant with the subsystem or
not. In particular, a full energy transfer from the system to the
bath is found. In fact, by the choice σ = Δω for the Lorentzians
in eq 17, we get approximately the same decay rate Γ1→0 ∼ γ−1

= 500 fs as for the resonant Lindblad model. More precisely, we
find Γ1→0 = 520 and 610 fs−1, respectively, for the resonant and
nonresonant model. The similarity of both cases is not a
surprise, as the Lindblad formalism is tailored for true
dissipative systems.

B.2. MCTDH Model. For the nonresonant case, exact
dynamics calculations with MCTDH match neither the
Lindblad results nor the exact dynamics for the resonant
bath. This is demonstrated in Figure 5a, which is the same as
Figure 2a for the nonresonant bath. It shows the populations of
the states (v = 0, 1), the purity, and the entropy of the
subsystem. We see qualitatively the same behavior as in the
resonant case, namely a decay of the system excited state
population, and recurrences. At short times (up to ∼180 fs),
the nonresonant bath describes the same relaxation dynamics as
with the resonant bath (notice that, up to the mentioned time,
there is no difference between Figures 5a and 2a). However, at
longer times, significant differences emerge. For instance, the
subsystem does not lose all its excess energy before recurrences
occur, and this is in contrast with what we observe with the
resonant bath, and also in reduced density matrix calculations,
showing a full energy transfer from the subsystem to the bath. It
is seen that the population of system state v = 1 does not drop

Figure 4. Time evolution of the subsystem populations, purity and
entropy (in units of kB), where the initial vibrational state of the
subsystem is (v0 = 1), using reduced density matrix calculations. Case
of a nonresonant bath.
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far below ρ11 = 0.7, and it is further observed that the
oscillations are not smooth, with kinks and plateaus instead.
Figure 5b shows the populations of the subsystem vibrational

states (v = 0, 1), using three different sets of calculations, taking
into account (i) the full bath (i.e., 40 oscillators), (ii) two bath
oscillators that are close to resonance (i.e., modes 24 and 25),
and (iii) 7 bath oscillators with the closest frequencies to the
frequency of the system (i.e., modes 22−28). The bath
frequencies ω24 and ω25 are 3687 and 3841 cm−1, respectively,
detuned by Δ = −97 and +57 cm−1 from the fundamental
system frequency of 3784 cm−1. From Figure 5b we see that the
two bath oscillators close to resonance dominate the dynamics,
and with seven oscillators, we have almost achieved
convergence.
To understand the irregular oscillations of the subsystem

populations, especially the plateau region around 440−650 fs,
we plot in Figure 5c the populations of state v = 1 of the
subsystem and a bath with only the two most important modes
(24 and 25). First, we should notice that the Rabi frequencies
of the two modes are not the same, because of their different
detunings with the system frequency. Their characteristic
oscillation times, defined by eq 30, are T24 ∼ 345 fs and T25 ∼
535 fs, respectively. As a result, it happens that one mode is
populated whereas the other gives its energy back to the
subsystem, and this gives almost no change in the population of
the system state as shown by the plateau. With similar
arguments, the kinks around t = 210 fs and at later times can be
explained. Note further that bath oscillator 25, which has the
smallest detuning of all bath oscillators, acquires more maximal
population (∼0.2) than mode 24 or any other mode.
The fact that one, at most two, nonresonant bath oscillators

determine the dynamics, explains also the incomplete
population transfer from system to bath. For two states with
coupling V and detuning Δ, the populations analogous to eq 26
are
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+ Δ

+ Δ
ℏ
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Finite Δ accounts for a prefactor smaller than 1 and so for
inclomplete population and energy transfer.

C. Lifetimes. In this section, we describe the dependence of
lifetimes of the vibrational levels of the Morse oscillator on the
vibrational quantum number. We then compare our exact
results with the scaling law

τ
τ

=
vv
1

(32)

as arising from eq 16.24 Accordingly, lifetimes of vibrational
levels are inversely proportional to their vibrational quantum
number. Therefore, one usually calculates the lifetime of the
first excited state and adopts this law for highly vibrational
excited states. This law is derived from the assumptions that the
vibrational mode of the subsystem is treated as harmonic and
the system−bath coupling is linear in the system coordinates as
outlined above. One can also compare the MCTDH results
with another scaling law derived for a Morse oscillator linearly
coupled to a bath of harmonic oscillators, which is given by39

τ τ=
−
−

E E
E E

( )
( )v

v
1

1 0

0 (33)

where En are the Morse oscillator vibrational energies. Again,
this law predicts a monotonic decrease of the lifetimes with
increasing vibrational quantum number. In our work, neither
the vibrational mode is harmonic nor the system−bath
coupling is linear in the system coordinate. So, it is interesting
to investigate whether the scaling laws given by eqs 32 and 33
hold for our problem. Here, we do not analyze the nonresonant
bath case, where some vibrational states merely lose a small
amount of their populations before the appearance of
recurrences, but only the resonant bath, for which the decay
of the subsystem initial vibrational levels populations is
complete. In other words, in the latter case, the recurrence
time is large enough that a reasonable lifetime can be extracted
from the first time window (i.e., before recurrences occur.)
Also, because in the resonant model the population decay is not
exponential, as a measure of lifetime, we take the time required
for the population to drop to half of its initial value, i.e., the
half-life time, T1/2 = ln 2·τ.
Figure 6a shows a comparison between MCTDH calcu-

lations and the above scaling laws (eq 32 and 33) for the half-
life times of the vibrational levels of the Morse oscillator as a
function of the vibrational quantum number. For fair
comparison, the half-lifetimes have to be used in eqs 32 and
33 also. It is clear from the graph that the results given by both
scaling laws are quite the same, so we will limit our discussion
to a comparison between the results of MCDTH and the
harmonic oscillator scaling law. The graph also shows that, for
the low-lying vibrational levels (up to v0 = 10), both the scaling
laws and MCTDH show a decrease of the half-lifetimes with
increasing quantum number of the initial vibrational state. In
the graph, the values for v = 1 have been aligned, i.e., T1/2(v = 1,
MCTDH) = T1/2(v = 1, ideal). However, even for these low
energy levels, there is no quantitative agreement between the
results given by the two curves. Apart from the increase in the
anharmonicity of the Morse oscillator as the quantum number
increases, the discrepancy between the scaling law and
MCTDH in this vibrational range is mainly due to the form

Figure 5. Vibrational relaxation of a Morse oscillator (v0 = 1)
interacting with a nonresonant bath using MCTDH calculations. (a)
Time evolution of the subsystem populations, purity and entropy (in
units of kB). (b) Populations of the subsystem taking into account the
full bath, only two or seven bath modes. (c) Population of the
vibrational state v = 1 of the subsystem and the two dominant bath
modes.
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of the system−bath coupling being nonlinear. But the most
striking result of our MCTDH calculations is the increase of the
lifetimes of highly excited vibrations (v0 > 10). Indeed, unlike
the scaling law, which shows a continuous decrease of the
lifetime when v0 increases, exact calculations show a sharp rise
in the lifetimes as we approach the dissociation limit.
The explanation for this behavior is also illustrated by Figure

6a, where we plot besides the half-life times, taken as the time
required for the population to drop to half its initial value, also
the coupling matrix elements between neighboring vibrational
levels (⟨v|exp(−αz)|v − 1⟩), as functions of the initial
vibrational quantum number. Although each initial vibrational
state is coupled to all the lower vibrational levels, the couplings
to the closest neighbors are dominant in the relaxation
dynamics. Therefore, this coupling matrix element gives a
good indication on the evolution of the transition rates as a
function of the initial vibrational quantum number. The
coupling matrix element is stronger for the vibrational levels
in the middle of the spectrum of the subsystem; that is why
their lifetimes are very low. However, it gets weaker for the low-
lying states and those close to the dissociation limit. This is the
reason for the sharp increase in the lifetimes of the highly
excited states. For the scaling law, as it is derived assuming the
vibrational levels being harmonic and the Hamiltonian
interaction being linear in the subsystem coordinate, the
squared coupling matrix elements of Figure 6a are then
proportional to the quantum number v. Using these
assumptions and Fermi’s Golden Rule instead of the
MCTDH propagation, leads then to the scaling law eq 32.
In Figure 6b, we compare the lifetimes of all the vibrational

states obtained with MCTDH, and the Golden Rule/Lindblad
formalism, which is mainly tailored for a true dissipative bath.
The reduced dynamics results show the same behavior as
MCTDH in the variation of the half-life times as a function of v.
Thus, we draw an important conclusion on the surprising v

dependence of the vibrational lifetimes: Although our MCTDH
calculations deal with a finite-size bath, this behavior also holds
for true dissipative environments. In fact, an exponential fitting
of the short time vibrational population dynamics shows
qualitatively the same behavior, i.e., a sharp increase of the
lifetimes of the highly excited vibrational states. Therefore, we
predict nonmonotonic behavior of lifetimes for adsorbate−
surface vibrations with the level of vibrational excitation.
In passing we note that we have also investigated isotopic

effects in the vibrational relaxation of the Morse oscillator by
replacing OH by OD, coupled to a resonant 40-oscillator bath.
Not surprisingly, on both the Lindblad/Golden Rule and
MCTDH levels of theory, a behavior analogous to the one
demonstrated in Figure 6 was found.

V. CONCLUSIONS

In this work, we have studied the vibrational relaxation of a
Morse oscillator interacting nonlinearly with a finite size bath of
harmonic oscillators at zero temperature with the help of two
different approaches: exact dynamics (within the selected
model) with MCTDH and reduced dynamics using the
Lindblad formalism of reduced density matrix theory with
rates obtained from Fermi’s Golden Rule. We have investigated
the dynamics of the process for all the vibrational states up to
the dissociation limit, where we considered resonant and
nonresonant baths. In the case of a resonant bath, for short
times up to half the Rabi oscillation time dictated by the
coupling to a resonant bath oscillator, reduced dynamics results
agree reasonably well with exact dynamics results obtained with
MCTDH. However, at longer times, Lindblad results fail to
reproduce the recurrences in the time evolution of the
subsystem observables as predicted by exact results. This is
due to the markovian approximation introduced in the reduced
density matrix formalism, a method tailored to describe truly
dissipative dynamics, and as such, it does not take into account
size effects of the environment.
For the subsystem |1⟩ → |0⟩ transition, with MCTDH

calculations, we find that the single, resonant bath oscillator
clearly dominates the dynamics, in agreement with general
expectations (which are usually based on perturbative argu-
ments). This situation may occur for instance in the case of a
molecule in a solvent cage. Whenever the subsystem couples
resonantly and weakly to one cage mode, the dynamics will
essentially be trapped in a two-dimensional reduced space for
all times.
In the nonresonant case, energy transfer from the system to

the bath is incomplete and dominated by a few bath oscillators
with the smallest detuning from the subsystem frequency. This
means that, in the latter, the bath frequencies are poorly
sampled to describe true dissipative dynamics. For such
situations, a better frequency sampling of a bath, with a given
number of modes, would be given by the eigenfrequencies of a
chain with N-effective modes as suggested recently.40

On both the Lindblad/Golden Rule and MCTDH levels of
theory, the time required for initial energy transfer from system
to bath up to a “half-life time”, decreases first with initial
vibrational quantum number of the Morse oscillator and then
increases again due to the effects of system anharmonicity and
nonlinearity of the system−bath coupling in the system mode.
This nonmonotonic lifetime behavior can be expected for all
systems with large anharmonicities in system and coupling,
notably for atoms or molecules at surfaces.

Figure 6. (a) Half-life times of the Morse oscillator vibrational levels
obtained with MCTDH, and the harmonic and Morse oscillators
scaling laws given by eqs 32 and 33. The matrix elements of the
nonlinear interaction coupling (⟨v|exp(−αz)|v − 1⟩) are also shown
(in arbitary units). (b) Comparison of MCTDH and Lindblad
dynamics with golden rule rates (LDGRR) vibrational half-life times.
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The next step of this study is toward the inclusion of larger
baths to be able to describe true dissipative systems. This is
clearly unfeasible with standard MCTDH due to its exponential
scale limitation. However, new approximating schemes derived
from the MCTDH formalism, such as Gaussian MCTDH (G-
MCTDH)25 or the local coherent state approximation (LCSA)30

have been developed to tackle problems involving baths with a
huge number of vibrational modes. In this thermodynamic limit
the transition from discretized system−bath dynamics via the
time-dependent Schrödinger equation to incoherent, dissipative
dynamics via a reduced density operator formalism should
become visible. The “exact” dynamics can always serve as a
benchmark to test long-standing approximations of the reduced
description, such as bath approximation, perturbation theory,
Markov approximation, and secular approximation.15 Other
extensions of this work are to consider the temperature effects
on the vibrational relaxation,22 as well as the inclusion of the
interaction with a laser field.5,6 Finally, the modeling of
concrete systems with more realistic bath and coupling models,
can be a worthwhile task.
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