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I. Introduction

Almost 30 years have passed since Jameson1 discussed the success and challenges in CFD and listed
optimization and design as one the directions for future research. Unfortunately, computational methods
for aerodynamic analysis are even today far from being incorporated in automatic design procedures. Al-
though adjoint methods2,3, 4 have greatly decreased the computational effort and impressive results using
the continuous5 and discrete8 adjoint approaches where published during the last few years, there are still
open issues regarding the robustness, (discrete) consistency and generality for complex problems in turbulent
flows. Typically, one has to make a compromise between efficiency and the latter properties while choosing
an appropriate approach for a given problem. In general there exist different approaches to construct and
solve the discrete adjoint system of equations. Most of them require the exact linearization of the flow resid-
ual, which is in contrast to the flow solver itself, where some approximation is most of the time sufficient
to yield convergence. Depending on the complexity of the numerical methods the linearization by hand
is time-consuming and error-prone. Furthermore it lacks the capability of adapting to changes in the flow
solver. One way to circumvent this problems is the use of Algorithmic Differentiation (AD) applied to parts
of the flow solver6,7 to construct the Jacobian. Although it reduces the error-proneness, it still requires the
manual application of AD to all subroutines involved in the computation of the residual. Even if we have
the exact Jacobian, it is typically ill-conditioned so that applying a Krylov-method can be inefficient. This
is often visible when including turbulence models. Here, Duality-Preserving methods can be useful as they
guarantee to have the same convergence rate as the flow solver. These methods were originally suggested
by Korivi and Newman,9,10 albeit called Incremental Iterative Form. Until today they are only used by a
manageable amount of people.11,12,13

In this paper we want to show that by exploitation of the fixed-point structure of the flow solver it is
possible to derive a duality-preserving iteration to solve the adjoint system. All occurring gradients can
be constructed by applying AD to the top-level routine of the flow solver, thereby eliminating the manual
construction of the exact Jacobi matrix. Furthermore, we apply advanced AD techniques like expression
templates24,25 and local preaccumulation14 to automatically generate a representation of the computational
graph of each expression at compile-time. This results in competitive performance while still maintaining
flexibility. Due to the use of AD the extension to new turbulence models, transitions models, fluid models or
objective functions is straightforward. To contribute to the open-source idea, we therefore tightly integrated
the discrete adjoint solver along with the AD features into the open-source framework SU2,16,17 in order for
the community to explore new and interesting optimization problems. For this reason we also dedicate a
section to give a short overview on the implementation.
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II. Aerodynamic Design Chain

In the following we will give a short overview of the optimization problem and the discretization of the
flow equations in SU2. Figure 1 show a simplified representation of the aerodynamic design chain. The
components of the design vector α can for example be chosen as the amplitudes of Hicks-Henne functions26

in 2D or as the control points of the Free-Form deformation method27 for 3D problems. According to a
movement of the surface based on the current values of the design variables, a mesh deformation routine
using the Linear Elasticity method creates a new mesh X. The solver then evaluates the state variable
U and the objective function J . Using this setting, the optimization problem incorporating a steady state
constraint can be written as

min
α

J(U(α), X(α)) (1)

subject to R(U(α), X(α)) = 0 (2)

where R(U) is the discretized residual. Note that R(U) might not only include the flow residual but also
residuals of other coupled models. Consequently, U might also consist of the variables of this additional
equations, i.e in case of the RANS equations plus a turbulence model we have

U :=

(
Uf

Ut

)
, R(U) = R(Uf , Ut) :=

(
Rf (Uf , Ut)

Rt(Uf , Ut)

)
(3)

The discretization of the compressible RANS equations and the turbulence models is performed in SU2
using the Finite-Volume method on a vertex-based median-dual grid. Several numerical fluxes like JST, Roe,
AUSM etc. are implemented and flux and slope limiters enable second-order space integration. By using an
implicit Euler scheme for the time integration we end up with the following linear system to be solved in
each iteration n: (

Dn
(·) +

∂R(·)(U
n
f , U

n
t )

∂Un
(·)

)
∆Un

(·) = −R(·)(U
n
f , U

n
t ). (4)

where (·) indicates that it can be either the discretization of the flow or the turbulent equation. Here,
R(·)(U

n
f , U

n
t ) is the residual resulting from the space integration, ∆Un

(·) := Un+1
(·) − Un

(·) and

(Dn)ij :=
|Ωi|
∆tni

δij ,

(
∂R(·)(U

n
f , U

n
t )

∂Un
(·)

)
ij

:=
∂R(·),i(U

n
f , U

n
t )

∂Un
(·),j

. (5)

Ωi represents the volume of the cell i and ∆tni is the (pseudo) time-step that may be different in each cell
due to the local time-stepping technique. If non-linear multi-grid acceleration28 is used, then equation (4) is
additionally discretized and solved on consecutively coarser meshes in each iteration to find a correction to
be applied to Un+1.

Mesh

Deformation
Flow Solver

α X J,U

Figure 1: Simplified representation of the aerodynamic design chain.

III. Discrete Adjoint Solver

Using the implicit Euler discretization we naturally end up with a damped Newton method for solving
R(U) = 0. Hence, if convergence is achieved, the resulting solution U∗ only depends on the right-hand
side of (4), that is, the residual R(U). The left-hand side can therefore be any reasonable approximation
to the Jacobian ∂R

∂U . This can be made clear by transforming the solution process of the coupled equations
R(U) = 0 into a fixed point equation, such that feasible flow and turbulent solutions can be computed from
the iteration

Un+1 = Un − P−1(Un)R(Un) =: G(Un). (6)
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Due to the loose coupling of the flow and turbulent equations the preconditioner P can simply be written as

P (U) :=

(
D +

∂R̃f (Uf ,Ut)
∂Uf

0

0 D +
∂R̃t(Uf ,Ut)

∂Ut

)
≈ ∂R(U)

∂U
. (7)

For simplicity the multi-grid method is neglected in this representation of P and G. The tilde indicates

that this might be an approximation to the exact partial Jacobian
∂R(·)
∂U(·)

. It is natural to assume that G is

stationary only at feasible points, i.e.

R(U∗) = 0⇔ U∗ = G(U∗). (8)

By the Banach fixed-point theorem, recurrence (6) converges, if G is contractive, i.e. if ‖∂G∂U ‖ < 1 in a
suitable matrix norm. In advanced CFD codes, like SU2, there are several approximations often seen in the
preconditioner P to reduce the complexity:

• Use of first order approximations of the implicit terms, even though a higher order spatial discretization
is applied on the right-hand side.

• Consistent linearized treatment of the boundary conditions is typically neglected.

• Only approximate solutions of the linear system (4) are obtained.

• The coupling of the flow and turbulent equations is neglected (represented by the zero off-diagonal
elements in (7)).

If traditional discrete adjoint methods are used,4 these approximations are not valid anymore, since they
result in a linear system involving the exact Jacobian ∂R

∂U to be solved for the adjoint variables. The explicit

construction of ∂R
∂U , however, is in general a formidable task. To circumvent this problem, Korivi et al.10

proposed a method for solving the adjoint system that resembles the iterative flow solver and permits the
use of the same approximative Jacobian. For the derivation of the proposed discrete adjoint solver, we adopt
this approach and combine it with the efficient evaluation of the occurring gradients using AD.

Since the computational mesh is subject to change, we consider now all functions additionally depended
on X. To formally handle the surface and mesh deformation, we add it as a constraint to the original
optimization problem (1) - (2) by using the equation M(α) = X. A similar way of dealing with the mesh
sensitivities was originally proposed by Nielsen and Park.30 However, in the present case we do not make
any assumptions on the structure of M , except that is differentiable. Then the optimization problem finally
takes the form

min
α

J(U(α), X(α)) (9)

subject to U(α) = G(U(α), X(α)) (10)

X(α) = M(α). (11)

We can define the Lagrangian associated to this problem as

L(α,U,X, Ū , X̄) = J(U,X) + [G(U,X)− U ]
T
Ū + [M(α)−X]

T
X̄ (12)

= N(U, Ū ,X)− UT Ū + [M(α)−X]
T
X̄ (13)

where N is the shifted Lagrangian

N(U, Ū ,X) := J(U,X) +GT (U,X)Ū . (14)

If we differentiate L with respect to α using the chain rule, we can choose the adjoint variables X̄ and Ū in
such a way, that the terms ∂U

∂α and ∂X
∂α can be eliminated. This leads to the following equations for Ū and

X̄:

Ū =
∂

∂U
N(U, Ū ,X) =

∂

∂U
JT (U,X) +

∂

∂U
GT (U,X)Ū (15)

X̄ =
∂

∂X
N(U, Ū ,X) =

∂

∂X
JT (U,X) +

∂

∂X
GT (U,X)Ū (16)
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Finally, the derivative of the Lagrangian, that is, the total derivative of J , reduces to

dL

dα

T

=
dJ

dα

T

=
d

dα
MT (α)X̄. (17)

Equation (15) is a fixed-point equation in Ū and can be solved in the style of the flow solver using the
iteration

Ūn+1 =
∂

∂U
N(U∗, Ūn, X) (18)

once we have found a numerical solution U = U∗ of equation (6). Since G is a contractive function if the
flow solver has reached a certain level of convergence (i.e. ‖∂G∂U ‖ < 1 in some suitable matrix norm), also ∂N

∂U
will be contractive since ∥∥∥∥∥ ∂

∂Ū

[
∂N

∂U

]T∥∥∥∥∥ =

∥∥∥∥∥
[
∂G

∂U

]T∥∥∥∥∥ =

∥∥∥∥∂G∂U
∥∥∥∥ < 1. (19)

Thus, it directly inherits the convergence properties of the flow solver. Up to now the derivation of the
discrete adjoint solver was rather abstract as we did not specify yet how to compute the necessary gradients.
But as shown in Albring et al.18 it turns out that the sensitivity equation (16) and equation (18) can easily be
evaluated using Algorithmic Differentiation applied to the underlying routines in the program that compute
G.

III.A. Simplified Iteration

The simplicity of the above mentioned approach relies upon the fact that we have made no assumptions
regarding the structure of G. While applying AD in a black-box fashion certainly is appealing, it is also
rather inefficient. Especially the application of the preconditioner P (U,X) on the residual R(U,X) in
equation (6), which requires the (approximate) solution of the linear system (4) in each iteration of the flow
solver, would need a lot of resources. Since the efficiency of this adjoint approach directly depends on the
number of active variables, that is, variables that are involved in the computation of L and with dependency
of X or U , considering some parts of the code as passive can greatly reduce the memory requirements and
the runtime of the adjoint solver.

For the derivative of G with respect to U holds

∂G

∂U
= I − P−1 ∂R

∂U
−
[
∂P

∂U

]−1

R, (20)

where we have omitted the arguments to ease the notation. If
[
∂P
∂U

]−1
is uniformly bounded, which is the

case if P is continuously differentiable, the last term will disappear as R(U,X) converges to zero. Hence, we
may drop the last term and instead use the simplified version

Ūn+1 =
∂J

∂U∗ +

(
I −

[
∂R

∂U∗

]T
P−T

)
Ūn (21)

instead of iteration (18). The same holds for the derivative with respect to X and the evaluation of X̄. This
explicit separation of the preconditioner P from G is only possible if no multi-grid method is used. Still, it
can easily be shown that this approach is also possible if G is more complex. See for example the book of
Griewank.14

III.B. Relation to other Discrete Adjoint approaches

A form more often seen of iteration (21) can be derived by multiplying it with P−T and introducing Λn :=
P−T Ūn:

Λn+1 = P−T ∂J

∂U∗ +

(
I − P−T

[
∂R

∂U∗

]T)
Λn (22)
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In the literature this iteration is often referred to as Duality-Preserving Iteration11,12,13 because it can be
constructed by requiring that the duality condition4

∂J

∂U∗
∂U∗

∂X
= −Λ

[
∂R

∂X

]T
(23)

is preserved for each iterate Λn of the adjoint solver. Note, however, that condition (23) is derived using
R(U,X) = 0 instead of G(U,X) = U in the problem formulation (9)-(11). In that sense, neither iteration
(21) nor iteration (22) are duality-preserving when considering the original problem formulation. However,
what this means in practice is still part of ongoing research. Another interesting fact is that if we would

have used Newton’s method (i.e. P =
[

∂R
∂U∗

]−1
), iteration (22) reduces to the solution of the linear system[

∂R

∂U∗

]T
Λ =

∂J

∂U∗ . (24)

IV. Implementation

In this chapter we give a short summary of the AD features currently available in SU2. In general these
methods can be used to compute arbitrary derivatives throughout the code, we will however focus on their
use in the implementation of the discrete adjoint solver derived in Section III.

IV.A. Advanced AD Techniques in SU2

Algorithmic Differentiation or also called Automatic Differentiation is a frequently used method to calculate
the derivative of a function by means of the transformation of the underlying program which calculates the
numerical values of this function. As distinguished from symbolic differentiation an explicit expression for the
derivative is never formed. An advantage over FD is that no truncation errors are present, thus the numerical
value can be determined up to machine accuracy. Typically AD is introduced based on the observation that
every code is merely a sequence of elementary functions that depend on one or two variables. Although this
assumption leads to an intuitive approach for the implementation it is rather inefficient,18 as we have to
store information for each single operation. Another approach is to apply AD on the statement-level. Here
we only need to store information for each statement, independent of the number of operations involved.
Expression Templates are then used to efficiently compute the partial derivatives of the statements.

Statement-Level Reverse

Let us suppose we have a function f ∈ C1 : U ⊂ Rn → Rm and the mathematical expression

y = f(x), (25)

that is, x ∈ U, y ∈ Rm. We assume that the numerical evaluation of f can be represented as a sequence of l
single-assignment statements with a scalar vi ∈ R on the left-hand side. Each of this statements represents
a local evaluation procedure with an arbitrary complex right-hand side ϕi ∈ R, for example

v4 = ϕ4(v1, v2, v3) = −10 ∗ v2 ∗ exp(v3) + ln(v1)− 3 ∗ 107 ∗ v3 ∗ (v2 − 1) ∗
√
v1 (26)

It is then possible to write any numerical evaluation in an arbitrary computer program using the general
procedure shown in Table 1. The precedence relation j ≺ i means that i depends directly on j. Furthermore
we have ui = (vj)j≺i ∈ Rni , i.e. the vector ui is the concatenation of the vj on which ϕi depends.

vi−n = xi, i = 1 . . . n

vi = ϕi(vj)j≺i, i = 1 . . . l

ym−i = vl−i, i = m− 1 . . . 0

Table 1: Statement-Level evaluation procedure for a function f .
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Based on the representation of f as a sequence of single-assignment statements, we can also write it as
the composition

y = QmΦl(Φl−1(. . . (Φ1(P
T
n x)))) (27)

where the state transformation Φi sets vi to ϕi(vj)j≺i and keeps all other components vj for i 6= j unchanged.
Pn ∈ Rn×(n+l) and Qm ∈ Rm×(n+l) are the matrices that project an (n + l)-vector onto its first n and last
m components, respectively. By using Ai := ∇Φi and application of the chain rule for differentiation we get

ẏ = QmAlAl−1 . . . A2A1P
T
n ẋ. (28)

Thus, the Jacobian of f can be written as

df(x)

dx
= QmAlAl−1 . . . A2A1P

T
n (29)

By transposing the product we obtain the adjoint relation

x̄ = PnA
T
1 A

T
2 . . . AT

l−1A
T
l Q

T
mȳ =

(
df

dx

)T

ȳ (30)

and the identity
ȳẏ = x̄ẋ. (31)

If one looks into detail at some intermediate matrix multiplication in (30), it can be seen, that it is possible
to write the adjoint relation as an evaluation procedure. All matrix-vector products are calculated for
i = l, l − 1, . . . , 1 thus we have to go backward, or reverse, through the sequence of elementary functions in
Table 1. Since the intermediate values vi are needed they have to be computed first. Again, we can then
get the matrix-vector product involving the transposed of the Jacobian and an arbitrary seed vector ȳ, i.e.
equation (30), by evaluating Table 2.

v̄l−i = ȳm−i i = 0 . . .m− 1

v̄j = v̄j + v̄i
∂

∂vj
ϕi(ui), j ≺ i, i = l . . . 1

x̄i = v̄i−n, i = n . . . 1

Table 2: Statement-Level Adjoint Interpretation.

Expression Templates

Table 2 illustrates what information is necessary in order to correctly accumulate the adjoint vector x̄. Aside
from some reference to the input variables of each statement we need to compute the partial derivatives
∂

∂vj
ϕi(ui). An efficient way is the use of Expression Templates24,25 , a C++ meta-programming technique.

Here the overloaded operators no longer return the (computationally expensive) result of an expression,
but a small temporary object that acts as a placeholder for this particular expression. Using this objects
we can build an internal representation of each expression to directly compute and store ∂

∂vj
ϕi(ui) during

the evaluation of f . Figure 2(a) shows the computational graph of the expression ϕ(v1, v2) = cos(v1)v2
and Figure 2(b) the corresponding compile-time representation as object with su2double being the new
datatype used throughout the SU2 code. This object can then be traversed to compute and store the partial
derivatives ∂ϕ

∂v1
= − sin(v1)v2 and ∂ϕ

∂v2
= cos(v1) as shown in figure 2(c) based on the derivatives of each

involved unary or binary operation. If recording is enabled the traversal of the computational graph of each
expression is started as soon as it occurs on the right-hand side in a statement during the evaluation of Table
1. Note that the partial derivatives ∂

∂vj
ϕi(ui) are only stored if vj depends on x. This kind of dependency or

activity tracking is relatively easy to accomplish since every variable stores an index along with its value. A
zero index represents passive variables while a non-zero index identifies active variables. This index will be
non-zero only if the corresponding variable has been assigned an expression with at least one active variable
as an argument.
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operator*

cosv 2

v 1

cos(v1)v2

cos(v1)v2

v1

(a) Representation of the expression

operator*

cosv 2

v 1

Multiply<su2double,Cos<su2double> >

Cos<su2double>su2double

su2double

(b) Compile-time representation of the expression

operator*

cosx 2

x 1

To stack

To stack

v2cos(v1)

− sin(v1)v2

(c) Propagation of gradients in reverse mode

Figure 2: Computational graphs for the statement ϕ = cos(v1)v2.

Local Preaccumulation

To alleviate the high memory requirements we apply the so called local preaccumulation14 method. Here we
compute and store the local Jacobi matrices of certain enclosed code parts instead of storing each individual
statement contribution. To illustrate the method consider the code shown in listing 1 which computes the
volume of 2D elements of the mesh. Without using preaccumulation and if we assume that nDim equals 2 we
have to store 12 partial derivative values for the 3 statements (2 ∗ 2 in line 8, 2 ∗ 2 in line 9 and 4 in line 12).

1 AD: : S tartPreacc ( ) ;
2 AD: : SetPreaccIn ( val coord Edge CG , nDim ) ;
3 AD: : SetPreaccIn ( val coord Elem CG , nDim ) ;
4 AD: : SetPreaccIn ( va l coord Po int , nDim ) ;
5
6
7 for ( iDim = 0 ; iDim < nDim ; iDim++) {
8 vec a [ iDim ] = val coord Elem CG [ iDim]− va l coo rd Po in t [ iDim ] ;
9 vec b [ iDim ] = val coord Edge CG [ iDim]− va l coo rd Po in t [ iDim ] ;

10 }
11
12 Local Volume = 0.5∗ f abs ( vec a [ 0 ] ∗ vec b [1]− vec a [ 1 ] ∗ vec b [ 0 ] ) ;
13
14 AD: : SetPreaccOut ( Local Volume ) ;
15 AD: : EndPreacc ( ) ;

Listing 1: Example for Local Preaccumulation

With preaccumulation we only store the derivatives of the variables flagged using AD::SetPreaccIn with
respect to the variables flagged with AD::SetPreaccOut. For our example this results in 6 values, which
means total saving of memory of 50%. Note that this exemplary code snippet is executed for every element
in the mesh. Throughout the code this method is applied at several spots where a clear identification of
inputs and outputs was possible.
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Handling of the Linear Solver

It is a well known fact that the differentiation of linear solvers is unfeasible due to the high amount of
statements. A more efficient way is the use of the analytic derivative of the solution process. Consider the
application of an inverse matrix A−1 on some vector b, i.e.

w = A−1b (32)

It can be shown35 that the application of reverse mode AD of this basic operation yields

b̄ = A−T w̄ (33)

Ā = −b̄w̄T (34)

where the adjoint values ·̄ can be interpreted in the same way as in Table 2, in the sense that we can
consider equation (32) as a single statement that occurs somewhere in the code. Consequently, when we
evaluate equations (33) and (34) during the adjoint interpretation, w̄ should already hold non-trivial values.
An advantage of using this analytic derivative is that we can reduce the runtime of the adjoint solver by
reducing the number of iterations for solving the linear system (33). Similar to the flow solver, typically a
couple of preconditioned FGMRES or BCGSTAB iterations (usually in the range of 2-5) are sufficient in
order to achieve stable convergence.

Adjoint MPI

SU2 is parallelized using MPI for the application in HPC environments. A key factor for the efficiency
of the adjoint solver the correct differentiation of the parallel communication. For that reason we use the
AdjointMPI31 library that provides for every MPI routine a version to be called in the forward section and
its matching implementation call during the adjoint interpretation. A small subset of corresponding calls
is shown in Table 3. We simplified the listed MPI calls by omitting parameters that are not relevant for
this discussion. In order to keep the changes to the original code as small as possible and to improve the
readability SU2 provides a wrapper class SU2 MPI, that chooses the correct MPI calls (either the original
calls or the overloaded calls provided by AMPI) depending on the datatype used during the compilation of
the software suite.

MPI Call Adjoint MPI Call Wrapper Function Call

MPI Send(V) MPI Recv(V) SU2 MPI::Send(V)

MPI Recv(V) MPI Send(V) SU2 MPI::Recv(V)

MPI Bcast(V) root: MPI Recv(V), not root: MPI Send(V) SU2 MPI::Bcast(V)

MPI Reduce(V) MPI Bcast(V) SU2 MPI::Reduce(V)

Table 3: Exemplary MPI routines and their corresponding routines during the adjoint interpretation.

AD Tool Wrapper

The above introduced Expression Template approach is implemented in the open-source C++ library Code-
Differentiation Package (CoDiPack) TODO REF. This library provides a special datatype and is automat-
ically included during the compilation if AD support is requested by the user. For developers of SU2 there
is no need to deal with this library explicitly which is why there are simple wrapper routines for the most
important features available. These are for example the following:

• AD::RegisterInput(su2double &var) - Registers the variable as input, i.e. sets the index to a
non-zero value. The exact value is determined by the AD tool.

• AD::StartRecording() - Starts the recording by enabling the traversal of the computational graphs
of each subsequent expression to store the partial derivatives.
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• AD::StopRecording() - Stops the recording of information.

• AD::ComputeAdjoint() - Interprets the stored information to compute the adjoints according to Table
2.

• AD::Reset() - Deletes all stored information, i.e. the adjoint values and the partial derivatives to
enable a new recording.

• AD::ClearAdjoints() - Sets the adjoint values to zero but keeps the derivative information, thereby
enabling a new interpretation with a different seed vector ȳ.

Since the actual interpretation of the adjoints is done by the AD tool, we need some functions to set and
extract the derivative information. To account for other datatypes (like for example types that implement
the forward mode of AD or types for the complex step method) these functions are enclosed in the namespace
SU2 TYPE:

• SU2 TYPE::SetDerivative(su2double &var, double &val) - Sets the adjoint value of a variable
before calling AD::ComputeAdjoint().

• SU2 TYPE::GetDerivative(su2double &var) - Returns the interpreted adjoint value of a variable
after a call to AD::ComputeAdjoint().

IV.B. Top-Level Approach

Using the methods described in the previous subsection we can easily construct the adjoint solver derived
in Section III. This is based on the fact, that by correctly initializing the adjoint values of the objective
function and the flow solution (i.e. setting ȳ), the adjoint interpretation in Table 2 yields the gradient of
the shifted Lagrangian needed for iteration (18) (see Albring et al.18). Figure 3 illustrates this top-level
approach. We start with registering the numerically converged flow solution U∗ as input. A subsequent call
to the flow iteration routine and the evaluation of the objective function will record the information that is
necessary to compute the gradient of any linear combination of G and J with respect to U∗. Starting with
some initial adjoint vector Ūn we can perform iteration (18) by simply setting Ū+ and W̄ to the correct
values and running the adjoint interpretation until we have achieved convergence. To compute X̄ we use a
single evaluation with X instead of U∗ registered as input once we have converged the adjoint solver. Since
this iteration is done on an abstract level, it is not necessary to know the exact structure of G. Additionally
any changes to G or J are automatically incorporated for the adjoint iteration.

An important fact is that it is also possible to easily realize the simplified iteration (21) using this
approach. First note that dropping the last term in (20) is equivalent to assuming that the preconditioner
P is constant, i.e. that it is independent of U . Thus it is equivalent to setting Ā = 0 instead of evaluating
equation (34) in the analytic differentiation of the linear solver during the adjoint interpretation.

V. Applications

In this section we will give an overview of some aerodynamic applications of the discrete adjoint solver.

V.A. Optimization of the LM1021 in Inviscid Flow

The conceptual supersonic transport design, known as Lockheed Martin (LM) 1021, was developed for the
NASA N+2 Supersonic Validations program and was design to produce very low sonic boom. It was chosen
as a test case for the 2014 AIAA Sonic Boom Prediction Workshop, where it was found that viscosity was
not important at full-scale37 due to the very thin boundary layer. Here we use this case as an optimization
test case to show the feasiblity of the adjoint solver for realistic configurations. The gradients for the inviscid
case were validated in Albring et al.18 showing a good agreement with the finite difference gradient.

As free-stream values we consider the cruise-conditions at a Mach number of 1.6 and an angle of attack
of 2.1◦. The computational mesh consists of 5,730,841 interior elements and the aircraft is discretized using
214,586 boundary elements. For the spatial integration we use a central scheme with artifical dissipation in
combination with an implicit Euler method for the pseudo-time stepping. For the adjoint solver we use the
simplified iteration (21).
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Register U∗ as Input

One Flow Iteration:
U+ ← G(U∗, X)
W ← J(U∗, X)

Initialize Adjoint of Output:
Ū+ ← Ūn

W̄ ← 1.0

Interpret Adjoint

Extract Adjoint of Input:
Ūn+1 ← Ū∗

‖Ūn − Ūn+1‖ < Tol ?

n = 0 Ū0 ← 0.0

No

n← n+ 1

Ū∗ holds ∂
∂UN(U∗, Ūn, X)

Start Recording

Stop Recording

Yes

Figure 3: Top-Level Approach of the Discrete Adjoint Solver in SU2

To measure the parallel performance of the adjoint solver we have run the case using 32, 64, 128 and
256 processors, which is equivalent of using 2, 4, 8 and 16 nodes. Each node is equipped with 16 Intel
E5-2640v3 processors and 64GB of memory. Figure 4 shows the resulting speedup (left) and the parallel
efficiency (right). It is clearly visible that the adjoint solver offers a better scalability and efficiency than the
flow solver, which is probably due the slightly increased workload. Note that at 256 cores each processor
has roughly 9000 points to process, so that 70% efficiency still means reasonable scaling. The runtime ratio
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Figure 4: Speedup (left) and parallel efficiency (right) for the LM1021 test case.
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between one iteration of the adjoint solver and one iteration of the flow solver on 64 processors is given by

tadjoint
tflow

= 1.17. (35)

For the optimization we want to reduce the drag while applying realistic constraints in terms of lift,
moment and thickness. More specific we constraint the lift to be larger than CL = 0.132, which equals to
95% of the initial lift while the pitching moment should stay below the initial value of CMy

= 0.18. The
maximum thickness at five different sections should not be reduced by 90% of initial value. We use the
already present optimization framework of SU2 which uses an SQP method with BFGS approximation to
reduce the objective function. The wing shape is parameterized using the Free-Form deformation approach
with a total of 264 design variables where a movement was only allowed in the z-direction. The region
affected by shape modifications is highlighted by the box in Figure 7.

The convergence history of the flow and adjoint solver during the first design iteration is shown in Figure
5. As expected, the simplified version of iteration (18) offers the same convergence rate as the flow solver.
Since the sensitivity X̄ is only computed after we have converged the adjoint solver, we plot the derivative
dCD

dMa in order to have an additional coefficient to check the convergence. Note that this value can be computed
at no cost, by just registering it as an additional input at the beginning of the iteration shown in Figure
3. We see that this derivative needs slightly more iterations until it settles compared to CD. In Figure
6 the optimization history is plotted. Each iteration represents a evaluation of a design, which might not
allows induce a subsequent gradient evaluation due to the step size computation of the line search algorithm.
However, the objective function is reduced in each step, indicating that the line search method is able to
easily find a suitable direction. Furthermore the constraints are all maintained well. In total the optimization
achieved a reduction of 9 ∆CD compared to the initial design. A comparison of the baseline and optimized
pressure distribution is shown in Figure 7. It can be clearly seen that the optimized design offers a smoother
distribution of the pressure coefficient. However, to maintain the lift and pitching moment a low pressure
region is concentrated near the leading edge. The resulting drag surface sensitivity X̄ on the wing is plotted
in Figure 8. In this case there is barely a difference visible, however, in general this sensitivity can be a
valuable contribution to the design process, as it immediately visualizes areas that have the largest influence
on the objective function.
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Figure 5: Residual history of the flow and adjoint solver for
the LM1021 case in the first design iteration.
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Figure 6: Optimization history for the LM1021 case.

V.B. Sensitivity Analysis of the OneraM6 Wing in Turbulent Flow

As another application we consider the OneraM6 wing in turbulent flow conditions. The Onera M6 wing is
a classic CFD validation case for external flows because of its simple geometry combined with complexities
of transonic flow, i.e. local supersonic flow, shocks, and turbulent boundary layers separation. The setup of
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Figure 7: Cp distribution on the upper wing surface
of the LM1021.

Figure 8: Surface sensitivity X̄ on the upper wing
surface of the LM1021.

this case closely follows the wind tunnel tests documented by Schmitt and Charpin38 which are summarized
in Table 4. For the spatial discretization we again use a central scheme with artifical dissipation coupled
with an implicit Euler method for the pseudo-time integration. The turbulence model is the SST k − ω
model. To validate the gradient we have chosen a rather coarse mesh with 43008 elements. The wing shape

Ma Reynolds Number Angle of Attack (◦)

0.8395 11.72× 106 3.06

Table 4: Flow conditions for the OneraM6 case.

is parameterized using 74 FFD control points. A comparison with the complex step method is shown in
Figure 9 and Figure 10 for the drag gradient and the lift gradient, respectively. We have a perfect agreement
between both methods, except for some control points. However, these points are located near the trailing
edge of the wing where the flow and turbulence quantities are not converged reasonable well.

Due to the increasing demand for large-scale flow computations one of the requirements of this approach
is the capability of performing the sensitivity analysis or even design optimization also for these cases. As a
first step we used a mesh with 27286490 elements. To validate the resulting flow solution we compare the
pressure distribution at sections y/b = 0.65 and y/b = 0.9 against experimental data taken from Schmitt
and Charpin38 shown in Figure 11 and Figure 12, respectively. At both sections we have a good agreement
with the data. The pressure distribution over the wing is shown in Figure 13 where the lambda shock
configuration is clearly visible. Figure 14 depicts the corresponding drag surface sensitivity X̄ computed
using the discrete adjoint solver.

VI. Outlook

In this paper we presented the derivation of a discrete adjoint solver that efficiently makes use of Al-
gorithmic Differentiation, thereby avoiding the error-prone and time-consuming construction of the Jacobi
matrix. We shortly discussed the implementation inside the open-source framework SU2 that is freely avail-
able online (https://www.github.com/su2code/SU2) and showed the top-level approach that enables an
automatic adaption to changes or modifications in the flow solver. Furthermore we applied the adjoint solver
to an optimization of a realistic configuration and validated the gradients also for turbulent flows. Future
developments will include improvements to the performance and usability and applications to multi-physics
problems like CAA and FSI.
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Figure 9: Drag sensitivity validation.
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Figure 11: Pressure distribution at y/b = 0.65 of the
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Figure 13: Cp distribution on the OneraM6 wing.
Figure 14: Surface sensitivity X̄ on the OneraM6
wing.
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