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ABSTRACT2

Most collaborative tasks require interaction with everyday objects (e.g., utensils while cooking).3
Thus, robots must perceive everyday objects in an effective and efficient way. This highlights the4
necessity of understanding environmental factors and their impact on visual perception, such as5
illumination changes throughout the day on robotic systems in the real world. In object recognition,6
two of these factors are changes due to illumination of the scene and differences in the sensors7
capturing it.8

In this paper, we will present data augmentations for object recognition that enhance a deep9
learning architecture. We will show how simple linear and non-linear illumination models and10
feature concatenation can be used to improve deep learning-based approaches. The aim of11
this work is to allow for more realistic Human-Robot Interaction scenarios with a small amount12
of training data in combination with incremental interactive object learning. This will benefit the13
interaction with the robot to maximize object learning for long-term and location-independent14
learning in unshaped environments.15

With our model-based analysis, we showed that changes in illumination affect recognition16
approaches that use Deep Convolutional Neural Network to encode features for object recognition.17
Using data augmentation, we were able to show that such a system can be modified towards a18
more robust recognition without retraining the network. Additionally, we have shown that using19
simple brightness change models can help to improve the recognition across all training set sizes.20

Keywords: Object Learning, Visual Perception, Data Augmentation, Human-Robot Interaction, Long-Term Engagement21

1 INTRODUCTION

Using robotic companions in unconstrained, domestic environments poses new challenges to the task of22
object recognition and learning. In this work, we focus on such use-cases in which one cannot draw from23
a large set of images for training since the presentation of particular objects might occur infrequently24
and only over short periods. Moreover, consumer-oriented robotic hardware usually does not allow for25
computationally expensive training (e.g., state-of-the-art deep learning networks). The learning needs to be26
fast enough, in the range of seconds rather than hours, to be of value for the user. Additionally, the objects27
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that will have to be learned are not necessarily known upfront and might only get presented over time28
rather than all at once, which limits the possibility of pretraining networks.29

New developments in deep learning, computer vision and robotics research together with the availability30
of highly integrated, powerful mobile computer systems has made it possible to create robotic systems that31
can operate in private households. Interactive household robots have started to appear in consumer stores32
such as the Jibo1, the Buddy Robot2 or the robotic kitchen3. Also, research is increasingly focusing on33
providing assistance and companion robots, e.g., Meghdari et al. (2018) for socially supporting children in34
hospitals or the elderly. With an aim to focus on adapt to emotional features, e.g. Churamani et al. (2018).35
All of these examples will lead to the availability of personal robotic assistants in the near future, the36
research of long-term engagement with such systems is still in its infancy. A major obstacle for interaction37
is the real-world environment since it is less controllable than a laboratory and therefore presents new38
challenges to state-of-the-art approaches. The ability to cope with changes in the environment will be an39
important factor in the acceptance of interactive robotic systems.40

In Human-Robot Interaction (HRI), triadic interactions Imai et al. (2003) are one of the most commonly41
studied problems to create natural interaction between robots and humans. To jointly manipulate objects,42
Moldovan et al. (2012) first requires the robotic systems to recognize them reliably. Here, we focus43
on improving object recognition in noisy environments to learn to cope with real-world constraints. In44
particular, we research the influence of illumination changes and their impact on object recognition in the45
context of real-time capable recognition systems without prior knowledge.46

One state-of-the-art visual recognition systems for incremental interactive object learning is provided47
by the iCub community. The approach utilizes a combination of a Deep Convolutional Neural Network48
(DCNN) for feature generation with a Multiclass Support Vector Machine (SVM) for classification of49
objects that were shown to the iCub Pasquale et al. (2015a). An exhaustive evaluation of the performance50
of the combined networks can be found in Sharif Razavian et al. (2014). The system provides a method for51
long-term object learning due to its incremental training on images which are acquired by interaction with52
the robot. Classifiers can be trained near real-time and are usable in real-world scenarios in which novel53
objects can appear at any time.54

Training each robot individually on the objects of its particular environment is inefficient and doesn’t scale.55
Therefore, pretrained robots that can expand their knowledge on-the-fly are required for the real world.56
Hence, we looked into the re-usability of existing datasets for training classification models following the57
off-the-shelf approach for feature generation of Sharif Razavian et al. (2014). Reusing feature generation58
models across different robotic platforms would dramatically reduce computational requirements and is59
preferred over training individual robots. Therefore, we focus on global illumination changes that might60
occur due to light changes throughout the day, different viewpoints or sensors used. As indicated by our61
previous work Keller and Lohan (2016), light changes have a negative impact on state-of-the-art object62
recognition.63

The contribution of this work is a systematic analysis of the impact of light changes on using two different64
light models over a wide range of parameters. The benefits of data augmentation are analyzed for the65
mentioned feature generation and classification methods. Both methods are treated as black-box systems66

1 https://www.jibo.com
2 http://www.bluefrogrobotics.com
3 http://www.moley.com
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to provide a baseline for further research of methods for illumination robustness in systems with low67
computational resources for extensive retraining such as the mentioned robot companion systems.68

In particular, we research recognition capabilities under the assumption of a low number of input images69
corresponding to short interaction durations. While the datasets used were created throughout multiple70
training sessions in the lab, in real-world scenarios, this amount of time to acquire the data might not71
be available. Therefore, we want to increase the recognition performance in circumstances that provide72
only a small set of training examples. As will be discussed in section 3, we used the ICUBWORLD2873
dataset to identify the impact of illumination changes on the object recognition pipeline. With the larger74
ICUBWORLD TRANSFORMATION dataset, we transferred and tested our method to a broader diversity of75
object manipulations, background changes, and brightness variance.76

2 BACKGROUND

2.1 Visual Features77

Two approaches for feature generation on 2D images can be distinguished in state-of-the-art object78
recognition. Methods, such as SIFT, SURF, and ORB, use local, keypoint-based feature sets that are79
generated from template images. These features are robust against a variety of transformations, including80
scaling and rotation. Recognition of 3D objects can then be achieved by creating object feature databases81
based on different viewpoints Yu et al. (2014) and using matching techniques such as RANSAC Fischler82
and Bolles (1981) to determine if a given object’s feature set can be considered a model for a set of83
features found in a test image. While these approaches result in robust recognition and are therefore widely84
used, they suffer from an increase in computational cost in the cases of a high number of objects or high85
resolution of images.86

Another type of object recognition method utilizes Deep Learning to generate features using pretrained87
networks Sharif Razavian et al. (2014), Fischer et al. (2016). Networks such as the AlexNet Krizhevsky88
et al. (2012) are trained on large image datasets and, once trained, can be treated as black-box filters that89
generate features from images. The benefit of this technique is that the resulting feature vectors are of90
fixed-length, which allows for the use of standard classification methods such as SVMs.91

We investigate the latter approach since it is used in a real object recognition pipeline for incremental92
learning on an existing humanoid robot platform (iCub) and due to the availability of datasets with many93
different objects which were captured during interactions with the robot. The next part of this section will94
give an overview of the background of illumination variations.95

2.2 Illumination Variations96

Dealing with illumination variations is a long-standing problem for visual recognition systems, especially97
for the perception of color. Ever since Land (1964) introduced the Mondrian experiment and proposed his98
Retinex model, it has become clear that the human visual system perceives the color of an object not only99
based on its photometric properties. The lighting condition of the surrounding environment is taken into100
account by our brains to tune our sense to perceive a certain color, even if it is not physically present in the101
scene. This problem is known as color constancy and has been addressed by computer vision research in102
many ways. A comprehensive overview can be found in Foster (2011). Furthermore, the perceived color103
of an object can vary between people, and it is thought to depend on people’s age, gender, and general104
light exposure habits (early birds vs. night owls) Lafer-Sousa et al. (2015). These findings indicate that the105
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Figure 1. Our adaptation of the iCub’s recognition workflow includes the illumination transformations.

human visual system is capable of adapting over time and learning certain illumination scenarios, which it106
uses as priors to adjust the perception of color.107

To capture this ability of the human brain, a wide range of methods have been proposed to tackle108
robustness against illumination changes. However, methods that aim to take light variations into account109
either suffer from a high computational cost, which renders them infeasible to use in real-time systems with110
limited computational resources, or make assumptions that are not met by generic, natural images. The111
first case is presented by state-of-the-art methods for object recognition, such as the currently fastest object112
detector, YOLOv3 Redmon and Farhadi (2018). Deep Learning methods can achieve a high performance113
but require the support of powerful GPUs which are usually not available on the type of robot systems we114
are targeting (see Reyes et al. (2018)). The second class of methods can be found in more specific areas.115
A prominent example is face recognition, in which most illumination models make assumptions that do116
not hold for general objects such as Lambertian surface reflectance , underlying facial models, or more117
generally the importance of facial landmarks over general object features (e.g., Le and Kakadiaris (2019)).118

While state-of-the-art methods have advanced the standard for illumination robustness, they are also119
usually computationally expensive. Using pretrained deep learning networks has become feasible using120
onboard computing units but retraining them, especially in an incremental and interactive way, is not121
yet possible. In the next section, we are introducing a visual pipeline that is capable of handling such122
constraints (real-time capability, incremental/interactive object learning, and low amount of training data)123
and describe our approach to improve it afterwards.124

2.3 Visual Recognition System125

The Interactive Object Learning (IOL) system4 is part of the open source software stack for the iCub126
robot5. Here, we focused on the Feature Extractor and Classifier6 (Figure 1).127

The Feature Extractor is based on the BLVC Reference CaffeNet, which is provided by the Caffe library Jia128
et al. (2014). This network was trained on the ImageNet dataset Krizhevsky et al. (2012), which contained129
more than 1 Million high-resolution images from 1,000 object categories. The Feature Extractor generates a130
feature vector that is characteristic for the input image under a given DCNN. The vector corresponds to the131
vector representation of the highest convolution layer of the DCNN Pasquale et al. (2015b). A Multiclass132

4 https://github.com/robotology/iol
5 https://github.com/robotology
6 https://github.com/robotology/himrep
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Linear SVM was used for classification of feature vectors. The SVM is trained with a one-vs-all strategy133
for 1,000 epochs and thus provides a classifier for each object.134

To use the given implementation without the robot involved, we had to separate the recognition workflow135
from the rest of the system to use the pipeline in a standalone manner. The separation was necessary to136
provide an analysis environment that resembles the original system as closely as possible (see Pasquale137
et al. (2015b)). Since the provided solution is a highly integrated system, we had to rearrange the workflow138
to fit our needs. This way, we also decreased the processing time for the analysis. Due to performance139
issues, we replaced the linearClassifier module from the pipeline with the LinearSVC implementation140
from the sci-kit package Pedregosa et al. (2011) after ensuring that we achieve comparable results. All141
feature vectors were generated upfront as we did not require human interaction for our experiments.142

2.4 Data Augmentation143

Data augmentation or preprocessing is a way for recognition methods to enhance input signals and to144
make the recognition more robust against known transformations. It is a standard tool for image recognition.145

A wide variety of data augmentations have been used to capture different types of invariance, such as146
translation, rotation, mirroring, distortions, color, and light changes. Bhattacharyya (2011) provided a147
brief overview of additional color image preprocessing techniques. Ahmad et al. (2017) use detexturized,148
decolorized, edge enhanced, salient edge map based, and flip/rotate images to improve DCNN-based149
recognition in visual searches. More specialized versions of preprocessing are available if targeted tasks150
(e.g., in face recognition) can be narrowed down and underlying information can be modeled more precisely151
(see Han et al. (2013); Zou et al. (2007)).152

For general object recognition, computationally inexpensive augmentations that handle light changes are153
limited and usually involve at least gamma and brightness corrections. For example, Fischer et al. (2016)154
augment training samples with a gamma adjustment (-0.5, 0.1) and a brightness adjustment (-0.2, 0.2).155
Dosovitskiy et al. (2015) chose a gamma value between 0.7 and 1.5, incorporated an additive brightness156
with Gaussian augmentation and a contrast modification. Kim et al. (2019) use brightness and contrast in157
low-illumination scenarios for video surveillance systems. Howard (2013) uses randomly changed contrast,158
brightness, color, and random lighting noise to capture light change variance. They base their modifications159
on Krizhevsky et al. (2012), which also provides the DCNN used in our work and should therefore already160
capture some variance. However, as we will demonstrate, there is still room for improvement.161

So far, we discussed augmentations in data space, which are well-established techniques. To a lesser162
degree, augmentation methods in the feature space are explored. To understand data augmentation for163
classification, Wong et al. (2016) used warping in the feature space to improve recognition on the MNIST164
dataset. For our approach, we take the idea of image concatenation (e.g., Saitoh et al. (2017)), apply it as165
feature concatenation and combine it with gamma and brightness modification.166

While widely used, to the best of our knowledge, no systematic analysis of the impact of gamma and167
brightness changes for object recognition have been conducted. The parameters of these modifications used168
in the literature vary and their separate effects on the recognition are not determinable as they are usually169
mixed with other types of augmentations and are not reported separately. In our work, we want to provide170
a starting point for a more systematic analysis. Also, we did not incorporate light modification models,171
which come with a too high computational cost for online learning such as Gabor filters as suggested by172
Welke et al. (2006). Additionally, we will demonstrate that even though a DCNN was trained taking light173
change augmentations into account, it still can benefit if used as a black-box feature generator. Important to174
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Figure 2. The unaltered sample (middle) and its transformations towards the extreme values: (top) linear
model - example value changes in HSV color space with back-transformation into RGB color space,
(bottom) non-linear model - example gamma value changes in RGB color space.

note is that we are not trying to enhance the feature generator itself as this would involve computationally175
expensive training. Instead, we are aiming to generate enhanced feature vectors to help the classification176
step under the assumption that creating multiple features from the images can be done in parallel and177
therefore do not add much to the computation time for the feature generation.178

3 DATASETS AND METHODS

In this section, we describe the datasets, the models and the experiments parameters. As mentioned, we179
are focusing on global illumination changes as we consider them to be of greater importance than local180
ones. While local illumination changes such as reflection or shadow can have a high negative impact on181
the recognition as well, in the HRI scenario that we are addressing they are not necessarily persistent182
across multiple images during an interaction due to the changing orientation of the objects. Thus, local183
illumination changes are not considered in this paper.184

The experiments are an extension of our earlier work which can be found in Keller and Lohan (2016).185
In our previous work, we used a small image dataset in combination with two illumination models to186
simulate linear and non-linear brightness changes to understand the impact of changes in light to the187
DCNN/SVM-based learning approach. In this paper, we compare the effect on a larger dataset with higher188
variability in object presentations as well as present a method to make use of the findings to improve the189
recognition process itself.190

While a practical experiment could have been conducted to show the method’s behavior under different191
illumination conditions, we chose to start with modified sample images of datasets for repeatability. This192
way, we are also able to look separately at linear and non-linear changes while this is much more difficult193
to achieve in an experimental setup. Both types of changes might occur at the same time in an experimental194
setup in a way that is not trivial to control. For example, a robot might use consumer camera sensors195
with a Automatic Gain Control (AGC) that influence the resulting image in a non-linear manner when196
the surrounding illumination is changed Fowler (2004). Due to the integration of current image sensors197

This is a provisional file, not the final typeset article 6



Keller and Lohan Illumination Influence for Object Learning

themselves, it can be impossible to deactivate these assistance systems. Linear changes might occur when198
blinds are used in different positions, limiting the amount of light from the outside.199

3.1 DS1 - ICUBWORLD28200

The first dataset is the ICUBWORLD28 dataset from Pasquale et al. (2015a) referred to as DS1. It201
represents the visual perception of the iCub. It was created during a four-day interactive session. It consists202
of nearly 40,000 images of 28 objects distributed over 7 object classes with more than 1,300 images per203
object.204

The dataset comes separated by day and is split into a training and test set per day. Since we were205
interested in the overall performance of the approach, we merged all images per object into one set as this206
gives the wide range of original illumination changes and allows for analyzing the sample size dependency207
(see subsection 4.1). From the merged sets a number of training and test sets were randomly selected. First,208
the 400 images for four test sets were chosen. Afterward, images for the different sized training sets were209
selected. Thus, the results of the corresponding training and test sets are comparable to each other and are210
based on balanced sets for all objects.211

3.2 DS2 - ICUBWORLD TRANSFORMATION212

The second dataset is the ICUBWORLD TRANSFORMATION Pasquale et al. (2016) referred to as DS2.213
The dataset consists of more than 600,000 images with at least 3,000 images per object. It provides 5214
different types of visual transformations; 2D, in-plane and 3D free rotations to provide the robot with215
different viewpoints of the object, scaling transformation in which the human moves the object either216
closer or further from the robot’s position and a transformation in which the human is moving in a circle217
around the robot to change the background while keeping approximately the same distance from the robot.218
Additionally, a mixed transformation was included in which the object was presented in a free moving219
manner. All objects are captured during two different days each. The dataset contains image sequences220
from 15 object categories with 10 objects in each category giving a total of 150 objects (IROS 2016 subset221
from Pasquale et al. (2016)).222

We chose this dataset as it contains more variability in the presentation of the objects (e.g., a wider range223
of illumination changes) and also contains more objects (150 vs. 28). This way we can test our method on224
a more challenging task but can compare the results as the acquisition of the second dataset was similar to225
the first. The preparation of the second dataset follows the method of the first one.226

3.3 Illumination Change Models227

To account for linear and non-linear light changes, we generated new images from the dataset. We chose228
the value modification from the HSV color space as an example of a linear model. HSV stands for hue,229
saturation, and value, where value accounts for brightness. The second model is given by the gamma230
transformation which serves us as a non-linear modification. The transformation was done using OpenCV231
Bradski (2000). Figure 2 shows examples for both modifications. While these changes seem to be easy for232
the human eye they have an impact on recognition systems that operate on pixel values.233

3.3.1 Linear Model234

The images were transformed into the HSV color space for modification. This allows for changes to the235
luminance without interfering with the colors and is one of the common color spaces for classical visual236
recognition. The model is defined as Vout = Vin ± (Vmax ∗ Vc). After the color space transformation Vc237
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Table 1. Naming convention for the modified sets

Names Sets

Linear condition

0 V = 0

-25:1:25 V ∈ {−25%, 0, 25%}
Non-linear condition

1 γ = 1

0.4:1:2.5 γ ∈ {0.4, 1, 2.5}
Combined condition

mix γ ∈ {0.4, 2.5} and
V ∈ {−25%, 25%} and
1 set of unmodified images

was changed to 5%, 10%, 15% and 25% for both lighter and darker appearance. For the recognition task,238
the images are transformed back into RGB color space before being fed to the DCNN.239

3.3.2 Non-Linear Model240

The gamma correction is a non-linear transformation that is often used to enhance the visual appearance241

of images that are under- or overexposed. It is defined as Vout = V
1/γ
in . For the γ we chose 0.4, 0.5, 0.7 for242

darker and 1.5, 2.0, 2.5 for brighter images.243

3.3.3 Parameter Selection244

The choice of the parameter values is based on selected representatives for non-trivial changes. If the245
transformation effect gets much stronger differences in color can degrade towards black or white areas246
destroying the included color information and leading to unrecognizable images. While this is an effect247
that image recognition approaches have to deal with, it is not the focus of the paper in which we want to248
improve recognition under different lighting conditions while being in a reasonably well-lit environment.249
Table 1 gives an overview of the parameter sets we chose and how they are named in our paper.250

3.3.4 Measurement251

For our experiments, we report the average accuracy. All reported accuracies are an average over a252
four-fold experiment run. Minimal and maximal errors can be found in the diagrams but are not reported253
for a clearer presentation of the findings. Due to their small variability, they did not have an impact on the254
conclusions. All experiments were supported by test sets with 400 samples per object.255

4 EXPERIMENTS AND RESULTS

4.1 Sample Size Dependency256

First, we established a baseline for the recognition task without any modifications to analyze the257
performance depending on the number of training samples used (Figure 3).258
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Figure 3. Baseline: Accuracy based on training samples per object.
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Figure 4. Influence of the linear model (Vc) on the accuracy showing the loss towards stronger
transformation values.

With 10 training samples, the method achieves an avg. accuracy of 61.74% going up to 92.77% for 600259
images on the DS1 (28 classes) and avg. accuracy ranging from 53.50% for 10 images up to 89.88% for260
600 images on the DS2 (150 classes). The avg. accuracy is highly stable over all runs with a variation of261
±1.3% maximum in the worst case (10 training samples / DS1). The baseline results show that the gain in262
recognition performance using more than 100 training images becomes comparably smaller (Figure 3). As263
expected, the recognition pipeline performs similarly on both datasets and benefits from larger training set264
sizes in the beginning. The absolute difference between the datasets can be explained due to the second one265
containing more challenging presentations as well as more object classes.266

Next, we tested how the recognition rate changed if the visual pipeline has to recognize images with267
model-based altered brightness images. The baseline training was used and presented with altered test268
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Figure 5. Influence of the non-linear model (γ) on the accuracy showing the loss towards stronger
transformation values.

images based on the respective models (Figure 4 and Figure 5). The modified test image sets always contain269
only one modification to test the behavior on the modification limits. The results show that with an increase270
or decrease in brightness the recognition performs worse. The effect is consistent with Keller and Lohan271
(2016) although we used a random training and test sample selection this time.272

Using a larger number of training samples seems preferable due to better recognition and thus compensat-273
ing the effects of the illumination influence. However, it defeats the purpose of our approach which is meant274
to improve the recognition using small training samples sets. Under real-world constraints, interactions275
with the objects might only happen over a very brief period. Additionally, we had to consider that the276
training time of a 1-vs-all Multiclass-SVM increases quadratically with the number of classes. The training277
with 600 samples per object results in training on 16,800 feature vectors for DS1 and 90,000 for DS2 for278
each object classifier (28 for DS1 and 150 for DS2). We chose to perform the following experiments on279
100 training samples per object since our focus is on small training sets. However, in subsection 4.3, we280
will show that the results are generalizable and independent of training set sizes.281

4.2 Brightness Dependency282

After identifying the influences of brightness on the recognition process, we modified the training set to283
include altered images and tested the trained system against modified test sets (see Figure 6 and Figure 7).284
In Keller and Lohan (2016), we showed that it is sufficient to include only the modified images with the285
most extreme changes. Adding the modified images, the size of the sets increase from 10 to 30 and from286
100 to 300 images respectively. In our previous work, we have shown that this is a sufficient approach for a287
comparison (see Keller and Lohan (2016)).288

For both models, we can show that adding these images increases the avg. accuracy drastically; in the best289
case we could achieve an increase from 58.26% up to 81.08% on DS1 and from 40.43% up to 69.01% on290
DS2 under the non-linear model (see Table 2). Recognition against the baseline training decreases slightly,291
suggesting that there is a trade-off between generalization and specificity.292
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Figure 6. Influence of the brightness change: Using linear modified training samples shows an increase in
recognition accuracy towards the extreme values while having a decrease for non-modified images.

Table 2. Selected avg. Accuracy values - modified training sets, 100 samples

DS1

Linear condition -25% not modified +25%

0 72.84% 85.77% 74.07%
-25:0:25 81.72% 84.18% 82.03%

Non-linear condition 0.4 not modified 2.5

1 60.27% 85.77% 58.26%
0.4:1:2.5 78.64% 82.93% 81.08%
DS2

Linear condition -25% not modified +25%

0 52.65% 79.54% 63.53%
-25:0:25 71.18% 76.37% 75.05%

Non-linear condition 0.4 not modified 2.5

1 40.43% 79.54% 58.53%
0.4:1:2.5 69.01% 75.70% 74.21%

With our first set of experiments, we showed that the investigated visual recognition pipeline is indeed293
susceptible to variations in illumination. We also show that by using modified training samples, the adverse294
effect of light changes can be circumvented to some degree. While this improvement comes at the cost of a295
small drop in recognition in the non-modified condition the overall positive effect justifies this modification296
as the recognition shows a much better generalization behavior across model-based changes and hence can297
be considered more robust.298
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Figure 7. Influence of the gamma change: Using non-linear modified training samples shows an increase
in recognition accuracy towards the extreme values while having a decrease for non-modified images.

4.3 Feature Fusion299

In the last set of experiments, we want to make use of these findings to increase the overall performance300
of the recognition. So far, our experiments used the approach of training n sample images and testing301
individually against independent m test samples and relied on data augmentation in the input space.302
However, since we know which modified images belong to each other, we can make use of that additional303
knowledge to further improve the recognition. Therefore, we employ data augmentation in the feature304
space to bind the original images with their modifications. All feature vectors corresponding to one original305
image and its augmented versions are concatenated and fed into the SVM; both for training and testing.306
Thus, the dimensionality of the search space for the SVM increases and captures different light changes307
within one data sample. For example, the mix condition contains two feature vectors for the linear model,308
two for the non-linear and the non-modified feature vector hence the resulting feature vector is five times309
bigger than the ones from our other previous experiments.310

Table 3 shows the results of the experiment for 10 and 100 training samples. For both training set sizes,311
the recognition improved taking the model-based modifications into account. For 10 training samples per312
object an increase of the avg. accuracy from 61.74% (baseline vs. baseline) up to 65.28% (mix vs. mix) and313
for 100 samples an increase from 85.77% to 90.00% are found for DS1. DS2 shows an improvement from314
53.50% up to 57.53% for 10 training samples and from 79.54% up to 85.41% for 100 training samples.315

In the last step, we compared the baseline results with our most optimal condition (mix vs. mix) (see316
Figure 8 and Figure 9). Here we show that the improvement is present in all training set sizes and that its317
effect is not dependent on the number of samples per object.318

The results suggest that the additional information of the altered images are beneficial for the recognition319
process increasing the specificity of the method. While the individual models already achieve an improve-320
ment, the biggest gain can be seen while combining both models. However, the improvements come at the321
cost of a larger feature vector for training which increases the SVM’s training time.322
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Table 3. Fused Feature Recognition avg. accuracy

Training \ Test Set not linear non-linear
modified -25:0:25 0.4:1:2.5 mix

DS1- 10 samples

not modified 61.74% 60.68% 58.72% 59.40%
linear 60.72% 63.79% - -
non-linear 59.56% - 65.09% -
mix 60.19% - - 65.28%
DS1- 100 samples

not modified 85.77% 84.88% 83.35% 84.10%
linear 83.14% 88.46% - -
non-linear 80.67% - 89.68% -
mix 81.54% - - 90.00%
DS2- 10 samples

not modified 53.50% 51.28% 50.86% 50.48%
linear 50.59% 56.16% - -
non-linear 50.07% - 57.35% -
mix 49.69% - - 57.53%
DS2- 100 samples

not modified 79.54% 77.37% 76.59% 76.27%
linear 73.80% 83.77% - -
non-linear 71.46% - 84.74% -
mix 71.31% - - 85.41%

5 DISCUSSION

As indicated by our previous work Keller and Lohan (2016), we have shown that illumination changes323
have an impact on state-of-the-art object recognition pipelines using DCNNs for feature generation and324
Multiclass-SVMs for classification. As expected, our results show that using more samples did improve the325
performance. However, our focus was on training with a small number of training samples to allow for326
very short interaction periods for data acquisition.327

By expanding our work to a second dataset, we have shown that the impact of illumination changes from328
our first paper is generalizable. Especially, since the ICUBWORLD TRANSFORMATION dataset includes329
many more objects and different types of object manipulations in front of the robot together with higher330
variability in the background during object presentation.331

Training with the artificial illumination models results in a slight drop of performance on the unmodified332
test sets but results in a major improvement under model-based illumination changes. While these findings333
are based on models and thus are not directly translatable to natural light changes, it proves that by using334
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Figure 8. DS1 Baseline vs. Fused Features: Accuracy based on training samples per object.
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Figure 9. DS2 Baseline vs. Fused Features: Accuracy based on training samples per object.

data augmentations in the input space the recognition process can become more robust against light changes,335
resulting in a better generalization of the recognition pipeline.336

By adding knowledge about the data generation for data augmentation in the feature space, namely337
concatenating corresponding feature vectors, we have shown how to make use of our findings to improve338
the recognition on both datasets which results in a more specialized recognition.339

The data augmentations increased the accuracy between 3.54% (DS1) and 4.03% (DS2) for 10 training340
samples and between 4.23% (DS1) and 5.86% (DS2) for 100 training samples. Also, a similar increase341
is present in all training sample sizes and datasets. The effect might appear as a small improvement only.342
However, the results show in a systematic way which benefit can be expected from the used models and343
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can serve as a baseline to find better ones. It also shows that the impact increases with more diverse light344
conditions (DS1 vs. DS2).345

Usually, improvements come at a cost. In our case, it is the additional computation with themix condition346
of the fused feature approach adding the highest amount. It involves generating four more images for the347
transformations and the feature generation for them. The added computation for the transformations is348
small compared to the feature generation. Since the images are independent and thus the feature generation349
can run in parallel the added time cost for this step is small and easily fits into the online learning pipeline.350
The limiting process is the second step as the SVM has to process a five-times-larger feature vector. While351
this might render the data augmentation unattractive for large training sample sizes per object, it is still352
viable for our focus area of small sample sizes. For example, in the case of 28 classes and 100 samples the353
computation went up from 0.1s to 0.6s on average still being viable for near real-time purposes.354

We believe that improving the recognition of objects with our methods during short interactions (< 1min)355
will enhance the reliability of the overall system and therefore enhance the Human-Robot Interaction and356
hence, the acceptance of the system.357

6 CONCLUSION AND FUTURE WORK

With our model-based analysis, we showed that changes in illumination affect recognition approaches that358
use DCNNs to encode features for object recognition. Using data augmentation, we were able to show that359
a system using DCNNs and SVMs can be modified towards a more robust recognition even though the360
used DCNN already included an augmentation step towards intensity and color robustness. Additionally,361
we have demonstrated that using simple brightness change models can help to improve the recognition362
across all training set sizes.363

With our approach, it is easy to adapt existing visual recognition pipelines since only computationally364
inexpensive data augmentations were used and no modification of either the feature encoder or the365
classification is needed. Treating the feature encoder as a black-box system allows to compare different366
networks to the original setup which will be the subject of our future research.367

As the next step to improve this approach, we are looking into combining the models and integrating368
more natural conditions into them. While the artificial models already enhanced the recognition, we believe369
that with a more realistic representation of natural light changes our approach could be improved. However,370
the choice of the simple models was due to their low computational cost. This trade-off needs to be taken371
into account for real-time capable systems like the one we investigation in our paper.372

To further improve the acquisition of training data for the objects, the lighting conditions could be373
artificially altered to generate more diversity that could help the recognition process. When inspecting an374
object for the first time, a flashlight with known spectral properties or RGB LEDs with defined colors could375
be used. This might overcome the problem to find a model for real-world light changes as the additional376
knowledge can be used to inform the data augmentation process.377

Additionally, this approach could be used in conjunction with cloud robotics in which multiple robots378
with different sensors and in different environments could combine their acquired images to cover more379
diverse illumination settings.380
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