
Noname manuscript No.
(will be inserted by the editor)

A Framework to Estimate Cognitive Load Using Physiological
Data

Muneeb Imtiaz Ahmad · Ingo Keller · David A. Robb · Katrin Lohan

Received: date / Accepted: date

Abstract Cognitive load has been widely studied to

help understand human performance. It is desirable

to monitor user cognitive load in applications such as

automation, robotics, and aerospace to achieve opera-

tional safety and to improve user experience. This can

allow efficient workload management and can help to

avoid or to reduce human error. However, tracking cog-

nitive load in real-time with high accuracy remains a

challenge. Hence, we propose a framework to detect

cognitive load by non-intrusively measuring physiolog-

ical data from the eyes and heart. We exemplify and

evaluate the framework where participants engage in a

task that induces different levels of cognitive load. The

framework uses a set of classifiers to accurately predict

low, medium and high levels of cognitive load. The clas-

sifiers achieve high predictive accuracy. In particular,
Random Forest and Naive Bayes performed best with

accuracies of 91.66% and 85.83% respectively. Further-

more, we found that, while mean pupil diameter change

for both right and left eye were the most prominent fea-

tures, blinking-rate also made a moderately important
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contribution to this highly accurate prediction of low,

medium and high cognitive load. The existing results

on accuracy considerably outperform prior approaches

and demonstrate the applicability of our framework to

detect cognitive load.

Keywords Cognitive Load · framework · Physiological
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1 Introduction

In the past few decades, Cognitive Load (CL) has been

shown to negatively impact human performance in vari-

ous tasks demanding a high amount of mental effort [4].

In general, CL refers to the load placed on the user’s

working memory, also viewed as short-term memory,
during a task [53]. The significance of measuring CL

has been well described in the past due to its appli-

cation under various contexts such as problem-solving,

instructional design, multimedia, aircraft, and automa-

tion [42]. CL can be monitored in real-time as a method

to capture the automation experience [57,15]. Accurate

measurement of CL can be used to apply mitigation

strategies, such as the adaptation of the user interface

in response to changes in CL [36]. One approach is to

present information differently for a naive user vs. an

expert user. This is needed because an expert user may

view the task as trivial, and this can cause boredom

which may induce cognitive under-load [57]. The pur-

pose of such strategies is to improve performance, oper-

ational efficiency, and operational safety, while reducing

failures. [50]. For example, a driver in an autonomous

vehicle needs to monitor and supervise automation to

achieve operational safety. However, drivers may expe-

rience cognitive under-load over time. This raises con-

cern about their ability to consistently monitor automa-
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Fig. 1 A framework to estimate Cognitive Load using physiological data.

tion, possibly resulting in an accident. Other applica-

tion areas include the deployment of robots in extreme

environments and in automated environments such as

smart factories, where supervisors observe autonomous

operations [20,2]. As a result, intelligent user interfaces

are needed to provide situation awareness to the su-

pervisors. This will help them to observe, analyse, and

supervise autonomous operations safely and efficiently

by managing their CL [35].

CL has been classified into three different types: 1)

Intrinsic Load, 2) Extraneous Load, and 3) Germane

Load [52]. While intrinsic load stems from the com-

plexity of the task and its association with the user,

extraneous load is caused by the presentation style of

the material. Lastly, germane load refers to the ability

of the user to fully understand the material. We believe

that both extraneous load and germane load are rel-

evant factors affecting the operators’ interaction. For

example, an interface presenting data in a particular

manner can result in an increase in both extraneous

and germane load, which could induce high CL. Con-

sequently, we need to reduce CL through creation of

intelligent user interfaces that measure CL in real-time

and adjust the presentation accordingly. However, to

the best of our knowledge, it remains a challenge to

measure CL in a robust and non-intrusive manner.

To address this challenge of classifying CL, we de-

signed a framework (Figure 1) that applies machine

learning to the physiological data gathered from avail-

able state-of-the-art sensing technologies. The rationale

for calling the framework generic lies in the concept of

avoiding task- or stimuli-dependent physiological be-

haviour. In principle, the framework can be applied

across different settings. For example, it could be used

to monitor a driver’s CL in an autonomous vehicle or a

supervisor’s CL in a control room to either ensure op-

erational safety or to reduce mistakes. The framework

incorporates machine learning to understand the rele-

vant features in a range of physiological behaviour data

while automatically taking the task into account. Our

contributions are three-fold:

– We demonstrate a generic framework to

classify low, medium and high levels of CL.

– We present the results of an evaluation

through the creation of a novel task to test

our framework using eye- and heart-based

data. To promote reuse, we make our task

and sensor application code in addition to

the scripts for generation of stimuli and data

analysis available.

– We make the dataset publicly available for

community to use in order to classify CL.

We further show that the evaluation of the

framework using the dataset achieves high

predictive accuracy on the exemplar task.

While we have used eye- and heart-based data in

this current work, we understand that data collected

from multiple sources synchronously can further im-

prove the robustness and general applicability of our

framework for different kinds of stimuli.

2 Related Work

Historically, CL was introduced in the context of problem-

solving and instructional design to understand its ef-

fects on learning [51]. However, CL was later studied as
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a construct of operators’ (e.g. pilots’) mental workload.

It was found that increased CL has an adverse effect

on operator performance [39]. The term CL, has been

referred to under various application contexts, with ter-

minology such as work load and mental load. However,

these all refer to the same general concept [14]. In the

rest of this section, we set out methods used in previ-

ous research to measure CL in humans in experimental

settings.

2.1 Subjective Questionnaire-Based Methods

Subjective rating questionnaires have been the most

popular mechanism to measure CL, perhaps due to

their ease of use [42]. The NASA Task Load Index is

one of the most commonly used questionnaires to mea-

sure subjective CL [19]. The questionnaire consists of

rating six constructs: 1) mental demand, 2) physical de-

mand, 3) temporal demand, 4) effort, 5) performance

and 6) frustration, each being rated from low to high

[19]. Other known questionnaires include the Cognitive

Load Component survey that separates the three clas-

sifications of load: intrinsic, extraneous, and germane

load. This self-report based measure is particularly rel-

evant to instructional settings [31]. It is, however, in-

teresting to note that rating scales are not generally

regarded as reliable measures of CL. Researchers are

critical of using CL subjectively at the end of the task

because changes in CL are momentary. Therefore, they

should be estimated in real time [37].

2.2 Performance-Based Methods

Prior findings suggest a relationship between CL and

a user’s task performance; therefore, CL can be mea-

sured by measuring performance [14]. Pass et al. divided

performance into sub-classes: one refers to the task per-

formance and the other refers to the performance mea-

sures derived from task performance (i.e. response time,

error-rate, or accuracy). Pass et al. believe that these

factors can contribute to estimating CL and are highly

sensitive and reliable [42]. However, while we under-

stand that such factors can be used in real-time, these

are task-dependent measures which cannot be used gen-

erally in the case of adapting technology.

2.3 Speech-Based Methods

Human speech behaviours are observable as measures

of CL [58]. These include language-based and emotion-

based behaviours. The language-based behaviours in-

clude hesitations, increased use of pauses, decreased ar-

ticulation rate, decreased speech rate, self-corrections

and several others [34,3,26,29]. The emotion-based be-

haviours include increased use of negative emotions,

decreased use of positive emotions, and several other

indicators [27,28]. We understand that identifying CL

based on these behaviours is, perhaps, relevant but is

also task dependent. Linguistic behaviours, while non-

intrusive, are only relevant in settings where speech in-

put is used. We believe that these behaviours can be

used in our framework because speech input can be col-

lected unobtrusively. However, we do not use them in

the current demonstration of the framework due to the

nature of the task.

2.4 Physiological Behaviour Based Methods

The most commonly used method to measure CL is

to observe and to report on the changes in humans’

physiological behaviours [42]. These physiological be-

haviours are mostly based on changes in the measure-

ments taken from four different human organs: 1) brain

, through measuring neurological activity via an elec-

troencephalogram (EEG), 2) heart, through measuring

Heart-Rate (HR), or Heart-Rate Variability (HRV), 3)

skin, through measuring Galvanic Skin Conductance

(GSR), and 4) eyes, through measuring eye movements,

Mean Pupil Diameter Change (MPDC), or Blinking-

Rate (BR).

Prior findings on the variation of HRV during a

range of computerized tasks has shown that reduction

in HRV is attributed to higher CL [40]. Cranford et al.

[10] reported that there was an increase in HR with an

increase in task difficulty. This suggests that as task

difficulty increases, in other words, as CL grows, it re-

sults in an increase in HR and reduction in HRV. We

also found several experiments in the literature that

report an increase in MPDC in a situation demand-

ing higher mental workload [46,47]. Past findings also

indicate that BR decreases in the case of higher men-

tal load [23]. For GSR, it has been found that GSR

readings increase with an increase in CL [48]. Similarly,

the EEG theta wave activity increases in the frontal

region with an increase in the CL [16]. In summary,

there is empirical evidence from past research implying

that the changes in the measurements of physiological

behaviours can be attributed both to CL, and to var-

ious levels of mental processing. It is also important

to note that the existing sensing technologies work well

and provide an accurate representation of the particular

behaviours [24,54]. Furthermore, with the advancement

of design and technology, solutions are now available to

collect such data in less invasive ways.
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In relation to our work, the existing literature shows

that changes in one physiological behaviour may be re-

lated to another observable physiological behaviour. For

instance, Siegle et al. [49] showed that there is a rela-

tionship between MPDC and BR in a digit-sorting task.

Therefore, in this paper, we collected data on a variety

of physiological behaviours and used the data to clas-

sify low, medium and high levels of CL. The rationale

for classifying three levels of CL is grounded in one of

the most recent works on predicting CL in the wild [14].

Machine Learning to Estimate CL - In the

past, researchers have used machine learning based ap-

proaches to estimate CL [56,41,18,59]. Zhang et al., [59]

proposed an adaptive support vector machine (SVM)

based method to classify operator mental workload by

using electroencephalogram (EEG), electrocardiogram

and electrooculography signals in a simulated human-

machine system. However, three of the aforementioned

papers on these techniques used data from brain-specific

EEG sensors [56,41,59].

Recently, in 2018, Heard et al. [21] published a sur-

vey on workload assessment algorithms. These algo-

rithms use a range of machine learning methods to pre-

dict different levels of workload. In particular, the sur-

vey enlisted 24 workload assessment algorithms that

achieved an accuracy between 60%-90%. The assess-

ment algorithms established a baseline, or ground truth,

for the measurement of CL by enabling participants to

stare at the screen or to involve them in a task induc-

ing low CL such as adding two numbers. However, it

is important to note that the term ”workload” is vast

in its scope and has seven different decompositions, CL

or cognitive workload is one of them. Our work differs
from prior work due to the following reasons. Firstly,

the accuracy results are based on small user groups (on

average, 8-10 with lows of 3, & 4), which are known to

have low statistical power when developing techniques

for wider use. Secondly, only three studies were car-

ried out on CL-based tasks to estimate CL. Thirdly,

within those 24 algorithms, the algorithms achieving

an accuracy over 90% cannot be applied in real-time

because they use the NASA TLX questionnaire data.

Others were based on predicting only two-levels of CL

(low vs high). Lastly, prior work uses SVM and suf-

fers from overfitting. These highlighted aspects of the

previous work indicate that we should create datasets

based on a high number of participants to create ro-

bust measurements of CL. In addition, there is a need

to train a model to predict three levels of CL in real-

time. Moreover, more research is needed with features

based on the combination of heart and eye data as this

is a niche area that has not been researched strongly

[21]. Furthermore, we need to use a range of physiolog-

ical behaviours to collect data in a non-intrusive way

to extend their use in real-settings. In the real world,

which is the focus of our work (e.g. applications to su-

pervise and plan missions for robots in extreme envi-

ronments or to manage autonomous systems operations

in smart factories), the use of EEG sensors are imprac-

tical, therefore we do not use them. Most of the prior

work described above has focused on them (21/24 &

3/3 for CL tasks), which also sets us apart [21].

We also see studies that have been conducted to

collect data from one of the physiological behaviours

such as eye-based measures, GSR-measures, or speech-

measures to classify CL [7]. Although the results from

these studies are encouraging, the accuracy is relatively

low. The most recent work on CL estimation in a driv-

ing task was based on using deep learning to extract

the pupil size from a video. It then used a classification

algorithm to classify CL as low, medium and high [14].

This work is closest to our approach in terms of predict-

ing three levels of CL, however, the method only takes

pupil size as input. We understand that this method is

suitable for driving but may not be suitable for other

tasks, because the existing literature on the CL mea-

surement indicates that measurements of some physio-

logical behaviours may not be suitable for some tasks

[42].

Our approach encourages the use of a range of

features (physiological behaviours collected non-

intrusively) and later applies feature elimination

methods to determine the indicative ones in the

given context. We show that this approach can

yield better accuracy on a dataset that is based

on a large cohort of participants.

3 Setting And Method

3.1 Cognitive Load Framework

The framework (Figure 1) has three modules: 1) Stim-

uli, 2) Sensing & Data Collection and Processing, and

3) Applying Machine Learning for detecting CL.

3.1.1 Stimuli

The first module consists of an external stimulus or a

task to induce CL. As previously highlighted, physiolog-

ical behaviours tend to be task- or stimuli-dependent.

Hence, the framework does not propose a specific stimu-

lus. Instead, it removes the context-dependency to clas-

sify CL. This suggests that the framework can, in prin-

ciple, be applied regardless of the task.
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3.1.2 Sensing & Data Processing

In the sensing module, we used state of the art sensing

technology to collect eye- and heart-based data. It is

important to note that our sensing module is not lim-

ited to only two measurements and can accommodate

other physiological behaviours.

We capture the data from various sensing devices

consisting of raw signals. Data from these sources need

to be synchronised and cleaned. In this module, we

first handle data synchronicity through applying time-

frames to our raw signals and later apply various widely

used techniques to clean and filter our data.

3.1.3 Machine Learning for detecting Cognitive Load

This module consists of two sub-modules: 1) feature

refinement, and 2) supervised learning classification.

The feature refinement module selects the best or worst

performing features. Various algorithms such as Selec-

tKBest, recursive feature elimination, correlation -based

feature selection, and others can be used for this. It is

important to use feature refinement methods as physi-

ological behaviours tend to be task-dependent. For in-

stance, HR and HRV are insensitive to the instanta-

neous load caused by the fluctuations every time some-

one works on a task, hence they can be task-dependent

[42]. Similarly, Pupil Diameter (PD) is sensitive to changes

in light and also varies with age [33]. Additionally, PD

may also be unsuitable for some tasks. Consequently,

the feature refinement sub-module is needed and can

help improve the robustness of CL detection. Following

the feature refinement step, the framework uses a range

of supervised learning methods such Naive Bayes, Lo-
gistical Regression, Support Vector Machine, and oth-

ers to classify low, medium and high levels of CL.

3.2 Applying the CL Detection Framework

Our stimuli had three phases: 1) the rest phase, 2) the

trial phase, and 3) the task phase. These were used to

generate three levels of CL, Low, Medium and High re-

spectively. The data collected from these three phases

were used later to train and test the machine learn-

ing classifiers. It is important to note that the duration

of each phase was different, therefore, we normalised

all the physiological behaviour data to avoid any bias.

One of the initial steps was to perform calibration with

the eye-tracking device. In the rest phase, once the ba-

sic calibration was performed, the participants viewed

a changing full-screen display of white, black, and grey

colors while their data on eye and heart activity was

recorded. In the trial phase, participants first read an

Item
Type

Content Example

1 a correct English word reluctance
2 as 1 but with the middle letters

switched
relutcance

3 as 1 but with scrambled letters anctucerel
4 an arbitrary mnemonic word lcwvcdkxob
5 a correct English sentence from

a movie review dataset [44]
the only prob-
lems come dur-
ing the first and
third acts

6 as 5 but with rearranged words
rendering them incorrect

the only prob-
lems come first
and third acts
the during

Table 1 Task Item Overview.

introduction. Then they were asked to undertake sim-

pler versions of stimuli items than those which they

would meet in the main task phase. This was done to

familiarise them with the nature of the task. Lastly,

the task phase was a simple game-based task to rec-

ognize correct and made-up words, and correct and in-

correct sentences. Our task had six different item types

as shown in Table 1. Each item type had 20 words or

sentences. The task was designed to induce two compo-

nents from cognitive load theory, 1) the complexity of

the task was inherently difficult, inducing intrinsic load,

and 2) the presentation of the words and sentences in

an arbitrary order induced extraneous load.

We used the list of words from the British National

Corpus [8] to create the word-based task items. We de-

veloped a simple script in python to select 20 words

(nouns) of length 10 with frequency ranging from 1013

to 1026 in the corpus. We also looked into the movie

review dataset [44] to prepare the sentence-based task

items. We developed another script to select sentences

containing 10 words each. We removed sentences from

the dataset containing words having apostrophes, quotes,

numbers, etc. Also, we removed sentences having very

short words such as ”a” or ”I”. Finally, we selected the

first 20 out of the remaining 54 sentences. It is impor-

tant to add that the rationale for our choice of words

was based on our understanding of a recent study that

indicated that more surprising words take longer to read

and result in increasing pupil sizes [13]. Therefore, as

one of our features to estimate CL is pupil sizes, this

justifies our choice of the task. Furthermore, the ratio-

nale for the character length of the word was based on

maintaining the difficulty of the words at a certain level.
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We emphasise that our task is novel in terms of

its use in inducing CL and this new task helps

to demonstrate the framework by the creation

of a dataset to classify three levels of CL.

The sensing module used the state of the art eye

tracker - Tobii Pro Glasses 2 Eye Tracker (Eye Tracker)

to collect on PD and BR. In addition, we used the

EliteHRV CorSense device [25] to collect data on HR

and HRV. The sensing devices can be seen in Figure 3.

Measuring Pupil Diameter - We used the fol-

lowing steps to clean the data collected from the Eye

Tracker as described in prior literature [30]. In the first

step, we prepared the raw data on pupil size for the

left and right eyes in a standard format. The instances

where the sizes contained negative values were removed.

In the second step, we filtered the raw data by remov-

ing three types of the most frequently occurring invalid

pupil size samples 1) dilation speed outliers and edge

artifacts, 2) trend-line deviation outliers, and 3) tem-

porally isolated samples. Dilation Speed outliers refer

to data that consists of large pupil sizes relative to their

adjacent samples. We used median absolute deviation

(MAD), a commonly used technique [32] as represented

in equations 1 and 2, to detect outliers and later re-

move them from our sample. Once removed, we iden-

tified trend-line deviation outliers, mostly due to the

gaps in the data that may have been caused by blinks.

We later removed these gaps using the same MAD tech-

nique. Finally, we removed the temporally isolated sam-

ples containing noise due to a momentary eye-tracker

glitch. We used a sparsity filter that splits any pupil

size signal that has a gap greater than 40ms and then
rejects any resulting section that is less than 50ms. We

also removed pupil size values that were not inside the

range of 1.5 to 9 mm. In the third step, once our raw

data samples were filtered, we performed data section-

ing and conducted our analysis. The code for the filter-

ing can be found on Github using a link provided at the

end of this section.

MAD = median(|Xi − X̃|) (1)

X̃ = median(X) (2)

To apply the process described above, we recorded

the whole session, including the basic calibration with

the Eye Tracker followed by an additional step that

presents a changing full-screen display of white, black

and grey to establish a first estimation for minimum

and maximum values of PDs for both left and right

eyes. We tracked PD during this calibration, during

the explanation of the task, and during the task it-

self. Afterwards, we manually annotated the start and

end of the task by finding the corresponding frames

from the front-view camera stream. Segmentation of

the pupil data was done by converting the frame IDs

to time stamps. We used these to determine the start

and the end of the task segment in the PD readings as

provided by the glasses. To account for different pupil

sizes, we extracted the raw data for both eyes. We ap-

plied the previously described cleaning, and three step

filtering method, to clean and filter the raw data. We

later computed the MPDC, for each task phase, as the

ratio between the overall mean PD (over all three task

phases), and the mean PD while performing each of the

individual phases of the task. Our method to compute

the MPDC is grounded in literature as it follows the

approach applied by Palinko et al. [43].

Measuring Blink-rate - To calculate BR, we

used the Eye Tracker to record the eye-stream of the

full session. We reused the aforementioned manual an-

notation to get the task segment by finding the correct

frames in the front-view stream and calculating the cor-

responding frame IDs for the eye stream. To detect the

total number of blinks, we applied the following mech-

anism: Firstly, we converted each frame into grey-scale

and applied a Gaussian blur to it. Secondly, we applied

a binary threshold to the frame and used the blurred

frame to find contours in it. The convex hull was cal-

culated for all contours. Lastly, we computed the ra-

tio between the squared circumference and the area of

the convex hull to remove all non-spherical hulls. We

used a threshold of 150 to 1200 as a limit for the area

and values from 10 to 17 for the ratio to exclude non-

pupil hulls. Mathematically, the ratio value should be

4π ≈ 12.57, but due to noise in the data, we had to

widen the ratio range. The code for detecting blinks

can be found via a link at the end of this section. We

also normalised the data by computing the number of

blinks per minute for each phase. We did this because

the duration for each phase varied between individuals.

Measuring Heart-Rate & Heart-Rate Vari-

ability - For the computation of HRV, we collected

data from the CorSense device. HRV refers to the mil-

lisecond changes in duration between successive heart-

beats. These are termed, the R-R intervals. We used

the interquartile range method, a function that removes

outliers, to clean and filter the data [55]. Afterwards, we

applied a Root Mean Square of Successive Differences

(RMSSD) calculation to the R-R intervals. Finally, a

natural log(ln) is applied to the RMSSD [24]. To com-

pute HR, we divide 60 ∗ 1000 by the mean of the R-R

intervals [1].

To make sure that the data is collected synchronously,

we compared time stamps and used them to compute

the values of PD, BR, HR, and HRV while the partic-

ipant is performing a specific task. Once the data was

https://github.com/BrutusTT/tobii_api/blob/master/tobii_api/analysis/pupil_data_model.py
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cleaned and corrected, we created three levels in our

dataset based on the previously indicated three phases

in our stimuli. These levels were indicative of the low,

medium and high CL.

In the machine learning module, we applied a

feature elimination method. In this step, we conducted

statistical tests to select those features that have the

strongest relationship with the classifications (Low, Med-

ium and High). This suggested that the features that

were not statistically significant to our classification

could be dropped from the feature set. To achieve this,

we manually conducted a one-way analysis of variance

(ANOVA) with the feature set (MPDC, BR, HR, HRV)

as the list of dependent variables and the classification

of CL as the independent variable. We then performed

feature selection using SelectKBest and removed all but

the k best performing features. We used the chi-squared

test to choose the top performing features. In essence,

this identifies the features that have the strongest rela-

tionship with the output variable. Once our feature set

was finalized, we used the following classification algo-

rithms (or classifiers): AdaBoost (AB), Decision Tree

(DT), Naive Bayes (NB), Logistical Regression (LR),

Random Forest (RF), Support Vector Machine (SVM)

and k - Nearest Neighbour (kNN). The goal of the clas-

sification algorithm was to predict the trait class, i.e. to

predict the low, medium and high levels of CL. To apply

the classifiers, we first used Stratified KFold to create

five different splits in our dataset. Later, we applied all

of the classifiers, one after the other, to compute their

accuracy in predicting the level of CL. Lastly, we used

a classification report to generate F1-scores.

3.3 Data Collection & Evaluation Setting

3.3.1 Research Aims

Our research attempted to answer the following ques-

tions (Q):

– Q1 - Did our experiment’s main task induce

CL as evidenced by participants’ subjective

ratings and task performance?

– Q2 - Did we observe differences for the three

task phases for physiological behaviours

(MPDC for left and right eyes, BR, HR, &

HRV)?

– Q3 - Which classification method should be

used to detect CL?

– Q4 - Which features are predictive of each

level (low, medium and high).

3.3.2 Participants and Procedure

We conducted our study with 41 participants (demo-

graphics as shown in Table 2). We asked participants

about any reading difficulties and if they were native

English language speakers as the task was based on

reading. It is important to note that all the partici-

pants were attending university in an English speaking

country, hence, they were highly proficient in English

language. As our participants were required to wear eye-

tracking glasses, we asked if they usually wear glasses.

We were not able to capture eye-tracking data for one

of the participants, therefore, we are reporting analysis

of 40 participants.

Participants 41
Gender 20 Female / 21 Male
Age 18-37 (Mean: 23.3,

two unreported)
SD: 4.53

Native English Speakers Yes: 23, No: 18
Reading Difficulties Yes: 2, No: 39
Wear Glasses Yes: 15, No: 26

Table 2 Participant demographics

The study was conducted in the following steps:

1. Participant reads an information sheet and com-

pletes a consent form.

2. Participant completes a) a questionnaire to report

information on age, number of languages, and whether

they have reading difficulties and b) a physical ac-

tivity questionnaire [12] to control for any bias in

HR and HRV measurements.

3. Participant puts the CorSense Heart-Rate device on

their finger (ring finger of left hand) and wears the

Eye Tracker.

4. Participant performs the task consisting of three

phases.

(a) In the one-minute first phase, participant views

the black, grey and white color changing screen.

(b) In the two-minute second phase, participant spots

the correct and incorrect trial words such as “which”,

“lagrat”, “should”, “aryst” and others.

(c) In the five-minute third phase, participant per-

forms the main task of playing the spot the cor-

rect or incorrect (made-up) words and sentences

game task (see Table 1 for the task examples and

description).

5. The physiological data was recorded using Eye Tracker

(BR, PD), Heart Rate Monitor (HR, HRV), and We-

bcam facing the participant throughout the com-

plete task.
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Fig. 2 Setup - A participant ready to perform the task.

6. Participant completes the NASA TLX Question-

naire to record their subjective ratings of CL. It is

important to note that the participants were asked

to give their subjective rating specifically and only

about the third phase (4(c) above).

Participants were entered in a prize draw for shop-

ping vouchers as a reward for participation. Ethical ap-

proval was obtained from our institution.

3.3.3 Setup and Materials

The setup (shown in Figure 2) involved a participant

performing the word game task on a computer screen

while wearing Tobii eye-tracking glasses along with CorS-

ense Heart-Rate device.

We used PsychoPy1, an open-source application, to

program our experiment. To collect data on changes in

eye and heart behaviour, we used Eye Tracker pro2 and

a CorSense HRV device3 respectively. We also used an

external webcam to collect additional data on the BR as

shown in Figure 3. However, in the end, we did not use

the recorded videos to calculate BR due to low quality

of the recorded data and unsatisfactory rate of robustly

detecting blinks. Instead, as previously described, we

used the Eye Tracker’s eye-stream for both BR and PD

analysis. During the task, we also collected data on the

task performance of the participants (a score based on

the number of correctly or incorrectly categorised words

and sentences) to investigate the relationship between

their task performance and their subjective rating of

CL.

1 PsychoPy - https://www.psychopy.org
2 Tobii eye-tracking glasses pro -

https://www.tobiipro.com /product-listing/tobii-pro-
glasses-2/
3 CorSense Elite HRV Device -

https://elitehrv.com/corsense

Fig. 3 Tobii Eye Tracking Glasses (left), Webcam (middle),
and CorSense Heart-rate Monitor (right).

The NASA Task Load Index questionnaire 4 [19]

was used to collect subjective ratings of the amount of

CL generated by the task [42]. In addition, we used the

International Physical Activity Questionnaire (IPAQ)5

[9] to get relevant data on health-related physical activ-

ity. We collected this data on physical activity because

the literature suggests that participants’ physical activ-

ity index can create an experimental bias [17], bringing

heart rate results into question if it is not taken into

account. This IPAQ data provided us with reassurance

that none of the participants were involved in highly

physical activity or training before performing the task.

To analyse the data collected from the Eye Tracker,

we created application program interface software that

eases the access to the data and allows running the same

analysis over all participants.

The software can be found on GitHub at

https://github.com/BrutusTT/tobii_api.

The scripts for the generation of the stimuli

and analysis of the data in this paper can

be found at https://github.com/BrutusTT/

ml_study/tree/master/ml_study/stimuli.

Additionally, the dataset with three lev-

els of CL can also be found on GitHub at

https://github.com/BrutusTT/ml_study/

tree/master/ml_study/modal. More details

can be found in the included Readme files.

3.4 Summary of Measurements

In summary, we collected the following measures dur-

ing the experiment. Physiological measures: These were

BR, PD, HR, and HRV. These are used in the frame-

work. Validation measures: These were Physical Ac-

tivity index (IPAQ pre-task), task performance score,

and subjective task-load (NASA TLX post-task). These

were used as controls and for validating that the task

induced CL.

4 NASA Task Load Index Question-
naire - https://ntrs.nasa.gov/archive/nasa/
casi.ntrs.nasa.gov/20000021488.pdf
5 International Physical Activity Ques-

tionnaire - https://www.sdp.univ.fvg.it/sites/
default/files/IPAQEnglishself − adminlong.pdf

https://www.psychopy.org
https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
https://elitehrv.com/corsense
https://elitehrv.com/corsense
https://github.com/BrutusTT/tobii_api
https://github.com/BrutusTT/ml_study/tree/master/ml_study/stimuli
https://github.com/BrutusTT/ml_study/tree/master/ml_study/stimuli
https://github.com/BrutusTT/ml_study/tree/master/ml_study/modal
https://github.com/BrutusTT/ml_study/tree/master/ml_study/modal
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000021488.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000021488.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000021488.pdf
https://www.sdp.univ.fvg.it/sites/default/files/IPAQ_English_self-admin_long.pdf
https://www.sdp.univ.fvg.it/sites/default/files/IPAQ_English_self-admin_long.pdf
https://www.sdp.univ.fvg.it/sites/default/files/IPAQ_English_self-admin_long.pdf
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Levels of CL

Features Range Mean
(M)

SD Low
(Range, M,
SD)

Medium
(Range, M,
SD)

High
(Range, M,
SD)

MPDC left eye [0.39,1.71] 1.01 0.26 [0.39,1.08],
M:0.75, SD:0.16

[0.79,1.19],
M:0.97, SD:0.07

[0.97,1.72],
M:1.28, SD:0.17

MPDC right eye [0.42,1.67] 1.01 0.27 [0.42,1.13],
M:0.75, SD:0.26

[0.69,1.12],
M:0.96, SD:0.07

[1.04,1.67],
M:1.29, SD:0.16

BR [0.0,53.0] 14.76 11.60 [0.0,42.0],
M:18.63, SD:13.82

[1.5,39.0],
M:12.81, SD:8.83

[0.0,53.0],
M:12.85, SD:11.15

HR [52.16,125.82] 80.07 13.06 [53.48,125.81],
M:79.86, SD:13.43

[52.84,125.38],
M:79.53, SD:13.31

[52.16,119.67],
M:80.78, SD:13.19

HRV [2.44,4.74] 3.74 0.46 [2.64,4.48],
M:3.78, SD:0.44

[2.43,4.5], M:3.77,
SD:0.45

[2.73,4.74],
M:3.63, SD:0.45

Table 3 Descriptive statistics for overall measures and the ranges of the three classifications corresponding to the three
stimulus phases (the rest phase (Low), the trial phase (Medium), and the task phase (High)).

4 Results

4.1 Did the Main Task Induce CL?

To answer Q1 we made use of the performance scores,

which were collected from the third phase of the task,

and the NASA TLX ratings which we asked partici-

pants to provide specifically about their subjective task

load during that same third phase. Thus, we have a

set of Subjective CL ratings and an associated set of

Performance scores. Based on the empirical evidence

in literature, as CL increases, we would expect perfor-

mance to reduce (see ”Performance-Based Methods in

”Related Work”). Therefore, we would expect there to

be a negative correlation between third phase Perfor-

mance, which should vary with CL, and third phase

Subjective CL, from the TLX ratings.

We ran a Pearson correlation between Subjective

CL and Performance. We found that there was a neg-

ative correlation between Subjective CL and Perfor-

mance, r(41) = -.456, p < .00. This is between a medium

and a large effect, but closer to a large effect [11]6. The

M and SD values for NASA TLX and performance are

M:50.96, SD:16.96 and M:111.62, SD:5.77, respectively.

This correlation result motivated us to conduct a sim-

ple linear regression of Subjective CL with Performance.

A significant regression model was found, (F(1,39)=

10.162, p < .00), with an R2 = .207, adjusted R2 = .186,

β = -.456. Thus, for our task a higher participants’ Sub-

jective CL rating does predict lower Performance. We

understand that it has also been shown in numerous

studies that a high CL adversely impacts user’s task

performance [4,39,14].

6 Field [11] suggests 0.3 is a medium effect while 0.5 is a
large effect.

Hence, we conclude that this negative

correlation between Subjective CL and

Performance in our experiment, demon-

strates and validates that our task does

in fact induce CL. This positively answers

Q1.

4.2 Descriptive Statistics for the features to Classify

CL

We present descriptive statistics based on the three

phases of our stimuli for all the 40 participants in ta-

ble 3. The table shows overall minimum and maximum

values (Range) along with mean (M) and standard de-

viation (SD) in the complete dataset based on all the

phases of the stimulus. From the data gathered in the

three individual stimulus phases, we were able to de-

fine the three classifications (low, medium and high).

This was based on the significant difference, presented

in the next subsection for the physiological behaviours

observed in the three phases. We also show the ranges

for all the features, for these three classes, along with

their M and SD in the data. It can be seen that MPDC

for both left and right eye increase according to each

classification. On the contrary, BR declines from high

to low level. HR did not show differences for all the

levels from the three stimulus phases. However, HRV

slightly declined across all the levels. (This is discussed

further in subsection “Feature Importance per level of

CL”). It is also notable that the range for BR (between

0- 52) in our data is in line with previous work which

suggests that the mean BR is generally between 2 and

50 [38].
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Classifier AB NB DT SVM LR RF KNN
Accuracy 69.16 85.83 85.00 82.50 77.50 91.66 45.83

Table 4 The mean accuracy (%) for the seven classifiers to
predict CL.

4.3 Did we Observe changes in Physiological

Behaviours across the three levels?

To answer Q2, we conducted a one-way, between-subjects,

ANOVA to compare the effect of the three phases on

all the physiological behaviours (MPDC for left and

right eye, BR, HR, and HRV) in low, medium and

high conditions. There was a significant effect of the

phases on MPDC for left (F(2,119)=139.75, p < .00)

and right eyes (F(2,119)=149.50, p < .00), and BR

(F(2,119)=3.475, p < .04). We did not observe a sig-

nificant effect of HR (F(2,119)=.09, p < .91) and HRV

(F(2,119)=1.364, p < .26).

We also conducted a posthoc test to observe the sig-

nificant difference among the three phases. We found

that the MPDC for both left and right eyes were sta-

tistically significant (p < .00) for all three levels of CL.

This suggests that MPDC for both left and right eyes

increased significantly from low to medium, and from

medium to high levels of CL as indicated in Table 3. On

the other hand, BR was marginally significant (p < .07)

between low and medium, and between low and high

levels of CL. This suggests that as the CL increased,

there was a decrease in the rate of blinking. The par-

ticipants blinked the least while under high CL.

The above analysis shows that our results here are

in line with the findings reported in prior literature.

That is, there is an increase in PD with an increase in

the level of CL [46,47] and BR declines with an increase

in the level of CL [23]. We conjecture that, although we

did not find a significant difference for HR and HRV,

nonetheless, HRV marginally declined as CL increased

[40] and HR marginally increased as CL increased [10].

Revisiting Q2, we observed significant dif-

ferences for the three phases for MPDC

for left and right eyes. We observed

marginally significant differences for low

to medium and low to high for BR for

left and right eyes.

4.4 Classifier Performance

Addressing Q3, to investigate the most suitable clas-

sification method, we used the seven different classi-

fiers to compare their performance to predict the low,

medium and high levels of CL in our dataset. We used

Stratified KFold, created five different splits and, finally,

computed the mean accuracy of all seven classifiers.

These are shown in Table 4. In general, we obtained

a high predictive accuracy for most of the classifiers.

However, RF outperformed the others with a mean ac-

curacy of 91.66% followed by NB, DT, and SVM. We

also found that LR and AB performed moderately, with

a mean accuracy of 77.5% and 69.16% respectively. On

the contrary, we obtained substantially lower perfor-

mance from the KNN with a mean accuracy of 45.83%.

Table 5 shows the classification report for the seven

classifiers and also illustrates the F1-scores for each

class (low, medium, high) of CL. It can be seen that

the RF classifier resulted in the highest F1-score for

each class followed by NB. We also observed a relatively

lower F1-score for the medium class of CL compared to

the other two classes. Nonetheless, in general, a high

F1-score was achieved.

The results show that RF and NB performed well,

with the feature selection based on SelectKBest. This

selects the features that have a strong relationship with

the CL level. The basic idea behind RF is that it oper-

ates as an ensemble. The algorithm creates trees (mod-

els) that output a class prediction. The model is pre-

dicted based on the class with the most votes. The key

to better performance lies in the low correlation be-

tween the trees. We understand that the high predictive

accuracy of DT reflected on the RF performance, as the

trees created by the RF, as an ensemble, may have en-

hanced the predictive performance of the classifier. On

the other hand, one reason for relatively low accuracy

of AB could have been the presence of outliers in one

of the features, as it can be seen that for BR, we had a

wide range of data in our dataset.

It is recognized that NB performs best if the in-

put features are independent of each other, i.e. are less

correlated with each other. It is also known that NB

performs relatively better than LR and similar mod-

els when that is true. Consequently, we speculate that

these are the reasons for the better performance of NB

here. On the other hand, KNN demonstrated the lowest

performance. We understand that KNN is a clustering-

based method, and the results suggest that the dataset

did not find proper clusters. In other words, the data

was relatively hard to separate in the case of the KNN

classifier.

In general, these classifier results suggest that our

approach yielded promising findings.
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Cognitive Load Classifier F1-score
Low AB 0.62

NB 0.87
DT 0.84

SVM 0.83
LR 0.80
RF 0.91

KNN 0.48
Medium AB 0.71

NB 0.81
DT 0.80

SVM 0.77
LR 0.64
RF 0.85

KNN 0.51
High AB 0.75

NB 0.90
DT 0.84

SVM 0.88
LR 0.85
RF 0.95

KNN 0.37

Table 5 F1-scores for the seven classifier to predict low,
medium and high levels of CL.

To answer Q3, we conclude Random For-
est as the most appropriate of the classi-

fiers to classify the three levels of CL.

4.5 Feature Importance per Level of CL

To investigate which features are predictive of each class

of CL in our dataset, we used one feature at a time

and later computed the F1-score for each level of CL.

The rationale was to investigate the effectiveness of all

the features individually towards accurately classifying

a certain level of CL in our dataset. Below, we only

report the feature importance per level of CL for the RF

classifier, because it was the best performing classifier

to predict the levels of CL.

Figure 4 illustrates the feature importance for the

RF classifiers based on the F1-scores of each level of CL.

In general, it highlights that MPDC for left and right

eyes, were the best performing features for all levels of

CL for the RF classifier. In the case of RF, we observed

that, for the low CL class, BR was relatively important

as it generated a relatively good F1-score. Lastly, HRV

and HR were found to be the least important features

for the RF classifier to predict the low class of CL.

Looking at the predictions of the medium level of

CL, we observe that BR was deemed a fairly significant

feature for the RF classifier. We also recognize that HR

and HRV were comparatively less important features

Fig. 4 Feature importance for the RF classifier based on
the F1-scores for each level of CL. The x-axis shows all the
physiological behaviours while the y-axis shows the accuracies
achieved by each physiological behaviour as one feature to
predict low, medium and high levels of CL.

to predict medium CL than to predict low CL. Overall,

they both were found to be less critical as compared to

other features (MPDC, BR). Lastly, to predict high CL,

BR was found to be less important. In general, however,

HR and HRV features were relatively more influential

in low and medium levels of CL.

We understand that perhaps due to the nature of

our task, HR and HRV were not among the critically

important features in our dataset. The time pressures

from the presentation of tasks or stimuli or the display

of data at a faster rate may have induced differences

in the heart data [22]. We compared the F1-scores of

individual features, with the case where the F1-scores

were computed through using all the features, as shown

in table 5. We observe that the F1-scores (91%, 85%,

& 95%) to predict the low, medium and high levels of

CL using all the features were higher than the F1-score

of the individual features for each of the low, medium

and high levels of CL (as shown in Figure 4). It is also

important to note that for high CL, the F1-score, after

using only MPDC for the right eye, was 94% and 87%

respectively. This shows that for the high level of CL,

MPDC was the most important feature in our dataset.

In other words, it shows that other features were not

important for the high level of CL; however, we want

to emphasise that all features in different ways played

a role to achieve a high F1-score for a low and medium

level of CL. None the less, this all shows the potential

of the idea of using various physiological behaviours as

features in our framework because it can make the de-

tection of CL less dependent on the task. Also, it high-

lights the need to conduct more studies in the future

and shows that it can indeed improve the accuracy of

predicting the three levels of CL.
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Answering Q4, we conclude that MPDC

for both right and left eye were the most

notable features, and BR was also viewed

as moderately important for predicting

low, medium and high CL.

5 Discussion

Our work presents a framework to detect three levels of

CL by analyzing physiological data based on eyes and

heart when exposed to a task. Our findings show that

the RF classification algorithm, in combination with

univariate feature selection, considerably outperformed

other classification algorithms. Overall, by using the RF

classification, low and high levels of CL were predicted

with F1-scores higher than 90% and the medium level

of CL was predicted with F1-score of 85%. Other clas-

sifiers such as NB & DT also predicted the three lev-

els of CL with a high F1-score of over 80%. As stated

earlier, prior work has classified two and four levels of

CL and they have used one kind of physiological be-

haviour based on either eyes, or skin conductance, or

brain. Nonetheless, it is important to compare our re-

sults with the past classifications of CL [7,14]. For in-

stance, Chen et al. [7] have reported several studies to

classify CL using eye- and GSR-based measurements in-

dividually. Their classification accuracy, based on two

and four levels of task difficulty, on a dataset based on

the pupillary response, was able to achieve an accuracy

of 79.3% and 45% respectively [5]. Additionally, the ac-

curacy achieved on the dataset based on GSR data for

classifying two and four levels of CL, was equal to 71.2%

and 40.4% respectively [6]. Other recent work [14] on

classifying low, medium and high levels of CL during a

driving task, achieved a considerably high accuracy of

86.1% on a dataset based on pupil sizes. However, to the

best of our knowledge, our CL classification framework,

which gathers data from various physiological measures

synchronously, and achieves an accuracy of nearly 92%,

has notably outperformed previous classification accu-

racies. Furthermore, our dataset had a larger number

of subjects than the previous works [21]. Beside the no-

table performance, we emphasise that there is a need to

conduct more demonstrations of the framework with a

variety of tasks, and under different settings, to further

establish the robustness and value of the framework.

We plan to demonstrate the framework in different se-

tups in which drivers monitor autonomous vehicle op-

erations and in which supervisors or operators monitor

and observe the autonomous operations of robots de-

ployed in offshore environments [20] and smart factories

[57]. We conjecture that the framework can estimate

CL robustly and accurately under different settings in

principle. Hence, it can potentially be applied in a num-

ber of domains such as the aerospace domain. In the

aerospace domain, it can help to create a system that

dynamically adapts the workflow and facilitates the au-

tomatic assignment of tasks to supervisors that operate

in the control rooms of space stations based on their CL.

We believe such a system can enhance the productivity

of the supervisors and consequently reduce errors that

could, potentially, have vastly expensive consequences

[21]. Furthermore, such a system has a wider implica-

tion in maintaining the supervisor’s mental health and

well-being, as a result of managing their CL. In sum-

mary, the described framework can, potentially, be ap-

plied in different settings in a non-intrusive manner,

while collecting the physiological data from high defi-

nition cameras to record the heart-based [45] and eye-

based data [54].

In summary, the framework to detect CL works

in principle. We further show that the syn-

chronous collection of data based on various

physiological behaviours, is the key to its per-

formance in terms of classification accuracy for

low and high levels of CL.

6 Conclusion

In this paper, we present our work on the detection

of Cognitive Load (CL) using physiological responses

based on eye- and heart-related data. In particular,

we introduced a framework that consists of the follow-

ing steps to detect CL. First, we collect physiological

measurements with state-of-the-art, off-the-shelf, sens-

ing technologies, during a task. Second, we apply super-

vised machine learning algorithms, along with feature

elimination. We applied our framework during an ex-

perimental setting, in which participants played a game

to spot correct and incorrect words and sentences while

we collected their eye and heart measurements. Our

work confirms that CL was detected with high accu-

racy. This suggests its potential use in various practical

applications, particularly for the purpose of the adap-

tation of interfaces, to improve user experience, user

performance, and to help reduce human errors.

Considering our research questions, we conclude that:

1) our task was able to induce CL in the participants,

2) we found that mean pupil diameter change for both

left and right eyes increases with each level of CL, 3)

the blinking rate decreases from low to high levels of
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CL , 4) Random Forest was the most accurate classifi-

cation method, 5) mean pupil diameter change for left

and right eyes and blinking rate were among the most

important features to classify low, medium and high

levels of CL. Our findings achieved better accuracy to

classify CL in comparison to previous work.

7 Limitations and Future Work

Our work has the following limitations. In general, our

method to detect blinks is effective, however, we intend

to improve blink detection when there is more noise

in the data. Also, we understand that we had a shorter

data gathering time for the rest phase in this study and

we believe that recording data for a longer duration in

that phase would yield better accuracy.

We demonstrated the framework in the lab under a

controlled environment. Therefore, more testing under

various tasks is needed to further establish the confor-

mity of the framework. Furthermore, the pool of partic-

ipants had both native and non-native English language

speakers. Although they were all university students,

who had passed an English language test and achieved

an appropriate standard to gain university admission,

we might get different results with all native, or all non-

native participant groups for this task. Nonetheless, the

paper investigated the framework to classify CL and we

recognise that more testing is needed to further estab-

lish its robustness.

Our future work is focused on the following aspects.

Firstly, we plan to gather data during more diverse

tasks. These tasks could consist of playing games. Ad-

ditionally, it could be an interface showing data in dif-

ferent visualizations and asking individuals to perform

various tasks on them. The idea is to make the dataset

rich enough to classify CL robustly in various settings.

Secondly, we intend to measure physiological behaviours

based on skin and brain, to further improve the robust-

ness of the framework to detect CL. We also intend

to use speech-based features in the framework. Thirdly,

we also intend to address the limitations noted above in

our future work. Lastly, our long-term goal is to adapt

systems based on the measurement of CL in real-time.

Therefore, we plan to employ our measurement of CL

to create adaptive interfaces, which manages user CL

and help improve user performance in various environ-

ments.
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