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This paper provides the analysis of a fast iterative method for finding sparse solutions 
to underdetermined linear systems. It is based on a fixed-point iteration scheme which 
combines nonconvex Lipschitzian-type mappings with canonical orthogonal projectors. The 
former are aimed at uniformly enhancing the sparsity level by shrinkage effects, the latter 
are used to project back onto the space of feasible solutions. The iterative process is driven 
by an increasing sequence of a scalar parameter that mainly contributes to approach the 
sparsest solutions. It is shown that the minima are locally asymptotically stable for a 
specific smooth �0-norm. Furthermore, it is shown that the points yielded by this iterative 
strategy are related to the optimal solutions measured in terms of a suitable smooth 
�1-norm. Numerical simulations on phase transition show that the performances of the 
proposed technique overcome those yielded by well known methods for sparse recovery.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Finding sparse solutions, i.e. with a few non-zero entries, of underdetermined systems of linear equations is a topic 
extensively studied in signal processing [1–3]. Many problems across several disciplines can take advantages in finding 
sparse solutions as for instance data compression, reconstruction, separation, and transmission. In general, all these tasks 
amount to solving the problem

�α = s, (1)

where s = (s1, . . . , sn)T is a vector (for instance interpreted as discrete-time signal) and � is a n × m full-rank matrix with 
n < m. Depending on the various applicative contexts, � = [φ1, . . . , φm] is a collection of m basic waveforms or vectors in R

n , 
usually called atoms, and the full-rank matrix � is called dictionary or frame. With the above assumptions, the dictionary 
will result in an overcomplete frame leading to infinite solutions of system (1) and α ∈ R

m represents the coefficients of 
linear combination of the atoms in �.

Thus, the attitude of finding sparse decomposition of the signal s, that is solutions with very few non-zero terms, can be 
rephrased into the combinatorial optimization problem

min
α∈Rm

‖α ‖0 subject to �α = s, (P0)

where ‖α ‖0 = |{ j : α j �= 0}| denotes the �0-norm, or more properly said the �0-pseudonorm. This attitude is often referred 
to as �0-minimization.
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Problem (P0) is combinatorial in nature and hence NP-hard [4]. Due to its intractability, many researchers have developed 
sparse decomposition solvers alternative to the exhaustive search. One of the most important classes is represented by the 
family of greedy iterative algorithms as, for instance, Matching Pursuit (MP) [5], Orthogonal Matching Pursuit (OMP) and 
Compressive Sampling Matching Pursuit (CoSaMP) [6]. MP is a fast method for approximating the problem (P0) which 
optimizes one component of the sparse solution at a time. In the first step the closest atom to the input vector s is selected 
and its corresponding coefficient is determined, such that the representation error is minimum with only one non-zero 
element. At each subsequent step, a further coefficient corresponding to a new atom selected is optimized. The process 
goes on until the representation error is less than a threshold or the number of non-zero elements is more than a limit. 
To improve the accuracy of MP while maintaining its low complexity, some algorithms have been proposed. Among them, 
the most popular is the Orthogonal MP (OMP) [7] that at each step, after selecting the best atom, ignores the coefficients 
already computed and adopts the pseudo-inverse to determine the best representation (i.e., the least square error) of vector 
s on the selected atoms. CoSaMP is at heart a greedy pursuit method for reconstructing a signal embracing the compressed 
sensing theory1. Ultimately, it shares the OMP strategy, while offering rigorous bounds on computational cost and storage, 
and being extremely more efficient for practical problems.

A completely different (non-greedy) approach is the Smoothed-�0 algorithm (SL0) [8]. It tackles directly the problem 
(P0) by minimizing the �0-norm in a coarse to fine approach. To overcome the discrete nature of the �0-norm, the method 
introduces a parametric family of smoothed functionals which converge to �0-norm in the limit of the controlling parameter.

Another category of approaches is represented by convex relaxations of (P0), such as those relying to the �1-norm. This 
allows to recast (P0) as a convex optimization problem solvable by linear programming (also referred to as Basis Pursuit – 
BP [2,3])

min
α∈Rm

‖α ‖1 subject to �α = s, (P1)

where ‖α ‖1 = ∑
i |αi|. BP is based on the observation that for large systems of equations, the minimum �1-norm solution is 

also the minimum �0-norm solution under mild conditions [9]. By utilizing fast Linear Programming (LP) algorithms (specif-
ically, interior-point LP solvers), large-scale problems, such as those with mixture of thousands of sources, become tractable. 
Since its introduction, this method gained much popularity demonstrating that �1-optimization still represents a preferable 
way to attack �0-minimization problems arising from signal and imaging processing. Another well-known method based on 
this minimization goal is the so called LASSO [10], which utilizes the �1-penalty to automatically select significant variables 
via continuous shrinkage, thus retaining the good features of both the best subset selection and the ridge regression. Other 
than the two mentioned methods, the literature is scattered of papers presenting various computational methods under this 
viewpoint [11–15].

Many works have addressed the existent relationship between �0 and �1-minimizations, as for instance in [3,16–19]. 
Among the numerous results, the most fruitful are those based on the so called Restrict Isometry Property (RIP [3,20]) and 
Null Space Property (NSP [21]) which have been extensively investigated in both noisy and noiseless data cases.

Finally, in the range of minimization norms, it is worth to mention also a special case of interest that comes from the 
well-known �p -norms [9]. Indeed, for 0 < p < 1, they represent another way to drive the solutions to become sparse on the 
affine space despite the lack of convexity, thus solving the problem

min
α∈Rm

‖α ‖p
p subject to �α = s. (P p)

Unfortunately, each choice of 0 < p < 1 leads to a non-convex optimization problem. This raises some weakness due to 
the nonexistence of efficient algorithms to optimize it. Nevertheless, from the heuristic point of view, it represents a 
useful formulation for sparsity request. Analogously to �p -norms, sparsity can be promoted by other functionals of vari-
able α. In particular, it would be worth to mention any function J (α) being component-wise symmetric, monotonically 
non-decreasing, and with monotonic non-increasing partial derivatives. Classic examples of this family are for instance 
J (α) = 1 − exp(|α|), J (α) = tanh(|α|) and J (α) = |α|/(1 + |α|), and their parametrized variants [9].

In this paper, we propose a theoretical analysis of LiMapS (which stands for Lipschitzian Mappings for Sparsity), which 
is an iterative method based on Lipschitzian mappings that on the one hand promotes sparsity and on the other hand 
restores feasibility of iterated solutions. Specifically, LiMapS adopts a nonlinear parametric family F = { fλ : λ > 0} of shrink-
age mappings acting on coefficients in order to drive the search toward highly sparse solutions. Moreover, LiMapS uses an 
orthogonal projector to map the obtained near-feasible point onto the affine space of solutions. The combination of these 
two mappings induces the iterative system to find the solution in the subspace spanned by as smaller as possible number 
of dictionary atoms.

The role of the parameter λ in the proposed family F of Lipschitzian-type mappings is crucial in determining how strong 
the shrinkage effect is within each step of the iterative process. On the one hand, for small parameter values the iterative 
mappings involved promote sparse solutions forcing the magnitude of all coefficients to become closer and closer to zero. 
On the other hand, for high parameter values, the chance of reducing the magnitude of each coefficient diminishes, fixing 
their values over the iterations.

1 Compressed sensing theory asserts that one can recover certain signals and images from far fewer samples or measurements than traditional methods 
use, this relying on two principles: sparsity, which pertains to the signals of interest, and incoherence, which pertains to the sensing modality.
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The main results of this work can be summarized as follows.

• We find that sparse solutions of underdetermined linear systems are well recovered by shrinkage functions having small 
Lipschitz constant L. For this reason we use functions fλ having constant L independent from λ since it is scheduled to 
diverge (Section 2).

• We provide sufficient conditions for the sequence {λt} of the control parameter λ in order to guarantee the iterative 
scheme convergence to admissible solutions (Section 2).

• We introduce a smooth version of �0-minimization problem, and we prove that the minima are locally asymptotically 
stable fixed points of the iterative scheme for a fixed large λ > 0 (Section 3).

• Finally, we prove that both smooth �0 and �1 minimization problems, as λ goes to infinite, “tend” to the exact versions, 
i.e. (P0) and (P1) problems. (Section 3).

To show the performances of the proposed method, we conducted many numerical experiments choosing signals and 
frames of various sizes n × m, independently drawn from stochastic models frequently employed in this analysis, as for 
instance the Gaussian–Bernoulli model. These tests provide a useful comparison between LiMapS algorithm and classical 
well-known methods used in the sparse representation area. In fact, we empirically compute the phase transition threshold 
as relationship between the normalized sparsity and the problem indeterminacy n/m, thus distinguishing the regions with 
reconstruction-error probability approaching 1 from those in which such a probability vanishes.

The LiMapS algorithm was empirically proven effective in a preliminary work [22], and in recent works we showed that it 
is successful also when adopted in some applications such as image processing and information-theoretic tasks. Specifically, 
we applied the sparse representation technique to the face recognition problem with both noisy instances and poor galleries, 
that is with only few samples per subject [23], and we tackled the electrocardiogram (ECG) signal compression task using 
the natural basis extracted from the ECG signal, without any training or burdensome feature construction activity [24]. 
Good results in these applications are possible thank to the iterative nature of the method, that encompasses both low time 
complexity and significant performances (in terms of SNR). This behavior is achieved even in case of sparsity level near the 
rank of the coefficient matrix, a challenging condition that makes other methods perform poorly.

The paper is organized as follows. In Section 1.1 some preliminary notions are given. In Section 2 we introduce the 
shrinkage mapping adopted in LiMapS, we show the convergence properties of the iterative system used for finding sparse 
solutions and we present the overall pseudo-code. In Section 3 we give some minimality conditions and analyze the sta-
bility for solutions of the smooth �0 and �1-minimization problems. In Section 4 we discuss computational issues of the
LiMapS algorithm and we report the numerical results about the transition phase phenomenon that characterizes this kind 
of sparsity solvers. In Section 5 some conclusions are drawn and possible future works are sketched.

1.1. Notations and preliminary notions

In this section we recall some standard geometry notions and fix the notation. Let A ∈ R
n×m be a full rank matrix; 

when n ≤ m the (Moore–Penrose) pseudo-inverse of A is A† = AT (A AT )−1, while if n ≥ m the pseudo-inverse of A is 
A† = (AT A)−1 AT . If A has not full rank, its pseudo-inverse is A† = limε↓0(AT A + ε I)−1 AT = limε↓0 AT (A AT + ε I)−1. Given 
a linear map represented by A : x 	→ Ax, we denote the orthogonal projections onto ker A and (ker A)⊥ with P = Projker A
and Q = Proj(ker A)⊥ = I − P respectively. The two projectors can be effectively computed as P = I − A† A and Q = A† A. Let 
us recall the direct sum Rm = ker A ⊕ (ker A)⊥ yielding x = P x + Q x for any x ∈ R

m , and rank(P ) = dim(ker A) ≤ m − n and 
rank(Q ) = dim(imA) ≤ n.

Given a linear system �x = s the set of solutions x forms the affine set A�,s = ker� + x̄ with x̄ being any particular 
solution of the system. When the system is solvable, the solution with minimum norm is ν = argminx∈A�,s

‖x‖ = �†s ∈
(ker�)⊥ .

The real vector space Rm endowed with the inner product 〈x, y〉 = ∑m
1 xi yi is a Hilbert space, and hence a Banach space 

with the induced norm ‖x‖ = √〈x, x〉. This means that convergence in the space is guaranteed for any Cauchy sequence, 
i.e. any {xi} ⊂ R

m s.t. ∀ε > 0 there exists N = N(ε) satisfying ‖xi − x j‖ < ε for all i, j > N . Consider the functional ‖x‖p =
(
∑m

i=1 |xi |p)1/p ; it is known that this functional is a norm for p ≥ 1, called �p -norm, and is a quasi-norm [25] for 0 < p < 1. 
Moreover, the functional limp↓0 ‖x‖p

p = ‖x‖0 satisfies the axioms of the norm except the

absolute homogeneity: ∀λ ∈R, x ∈R
m ‖λx‖ = |λ|‖x‖

and hence is called a pseudo-norm. This pseudo-norm, also improperly called the �0-norm, is the main measure of sparsity.
We denote the Hadamard (or element-wise) product between two vectors x, y ∈ R

m by x � y = (x1 y1, x2 y2, ..., xm ym)T ∈
R

m . Such a product operator has precedence over matrix multiplication (in particular over the projections P , Q ). Moreover, 
the absolute value of a vector is understood element-wise, i.e. |x| = (|x1|, |x2|, ..., |xm|)T ∈ R

m for any x ∈R
m .

Let T : A → A be a self-mapping on a set A; T can be considered a simple discrete-time dynamical system or iterative 
system [26]. Indeed, given an element a0 ∈ A, the sequence {an} generated from a0 by

an = T (an−1) = T ◦ T ◦ ... ◦ T︸ ︷︷ ︸(a0) for n = 1,2, ...
n times
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Fig. 1. The graphs of shrinking functions fλ(x) for λ = 1 and soft threshold function s(x) for τ = 5.

is the orbit of a0 under T . Let T : A → A and S : B → B be two continuous iterative systems; a (topological) conjugacy is a 
homeomorphism h : B → A such that T ◦ h = h ◦ S . Equivalently, T = h ◦ S ◦ h−1 and S = h−1 ◦ T ◦ h, which are hence said 
to be (topologically) conjugate. Conjugacy is useful for instance to study T by analyzing its conjugate S , that may be less 
complex. Moreover, an element p ∈ A s.t. T (p) = p is called a fixed point of T ; the set of fixed points of T is denoted Fix 
T ⊆ A.

In context of sparsity, given a vector α ∈R
m we denote by supp(α) = { j : α j �= 0} the index set of non-zero entries in α, 

also called support of α and we say that α is k-sparse if ‖α ‖0 = | supp(α)| ≤ k. Given a matrix A, the minimum number of 
linearly dependent columns in A is denoted spark(A) > rank(A).

2. Sparsity promotion mappings

The aim of this section is to build a convergent iterative scheme for variable selection based on shrinkage mappings. 
This is done relying on a family of uniformly Lipschitzian nonlinear mappings F = { fλ | λ ∈ R+}, where the choice of the 
parameter λ is important in controlling the shrinkage effects, i.e. to drive the search towards the sparsest solutions. After a 
pure magnitude reduction, in order to restore the feasibility we apply the classical linear orthogonal projectors built on the 
Moore–Penrose pseudo-inverse. Notice that, in literature shrinkage functions are used to optimize the regularization term 
of the objective function [27,28]. Conversely, in our approach the shrinkage mapping aims at penalizing nonlinearly the 
coefficients close to zero.

2.1. Lipschitzian shrinkage mappings

The key feature of all shrinkage functions [29] is to attenuate coefficients adaptively with respect to scale and time, 
taking properly into account the general constraint strength of the signal. In the present work this task is committed to a 
function we first introduce in the univariate form and then extend to the multivariate case.

Let fλ : R →R be a function depending on a real parameter λ > 0, defined as

fλ(x) = x (1 − e−λ|x|). (2)

The function fλ is odd and continuously differentiable in R, while its derivative f ′
λ(x) = (λ|x| − 1)e−λ|x| + 1 is even and 

non-negative. Since it holds that supx∈R | f ′
λ(x)| = 1 + e−2, as a direct consequence of the intermediate value theorem 

from calculus | fλ(x) − fλ(y)| ≤ (1 + e−2)|x − y|, for every λ > 0 and x, y ∈ R. Thus, mapping (2) is uniformly Lips-
chitzian with respect to λ with Lipschitz constant L = 1 + e−2. Moreover, in any compact subinterval of (−1/λ, 1/λ), 
the mapping fλ is a contraction with unique fixed point at the origin [30]. Naturally, it obeys to the shrinkage rule 
| fλ(x)| ≤ |x| for all x ∈ R and it is clearly non-decreasing (see for instance its graph in Fig. 1). For sake of comparison, 
it is interesting also to show the well-known [31] soft threshold function s(x) = max(|x| − τ , 0) sgn(x) which arises fre-
quently in sparse signal processing and compressed sensing. Conversely, the latter function is discontinuous and maps 
small values (at most τ in absolute value) to zero while it shrinks large values (greater than τ in absolute value) toward 
zero.

To understand the meaning of fλ , it should be observed the role played by the mapping fλ(x)/x: it behaves like a 
symmetric sigmoid function, where larger values of λ give sharper sigmoids, becoming in the limit a Heaviside step func-
tion. Roughly speaking, this asymptotic behavior has nonlinear shrinking effects for values near zero because the function 
fλ(x) ∼ x2, while far from the origin it is asymptotic to the identity function, being limλ→+∞ | fλ(x)| = x for all x ∈ R.

To deal with high dimensional data, we extend the mapping fλ to many dimensions by applying it separately to all 
variables. Precisely, given λ > 0 we define the vector-valued mapping Fλ :Rm →R

m by

Fλ(x) = ( fλ(x1), fλ(x2), ..., fλ(xm))T = x �
(

1 − e−λ|x|) (3)
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Analogously to the scalar case, the function ( fλ(x1)/x1, . . . , fλ(xm)/xm) represents a origin symmetric sigmoid in m dimen-
sions, where larger values of λ give sharper sigmoids. The mapping Fλ has the effect of shrinking toward 0, but posing in 
this way a feasibility issue for the shrinked point, i.e. generally y = Fλ(x) /∈A�,s .

In order to address the feasibility issue, we use a suitable projection. Given a point y = Fλ(x) ∈ R
m , we choose the 

unique point α in A�,s minimizing the distance from y:

α = ProjA�,s
(y) = argmin

α∈A�,s

d(α, y) = P y + ν ∈ A�,s,

where P = I − �†� is the usual orthogonal projector onto ker �, and ν = �†s ∈ (ker�)⊥ .
These initial considerations suggest the definition of a new mapping by composing the shrinkage mapping Fλ and the 

feasibility mapping y 	→ α, i.e. we construct the self-mapping Gλ :A�,s →A�,s as

Gλ(x) = P Fλ(x) + ν = x − P x � e−λ|x|. (4)

We can provide the Lipschitz constant also for mapping Gλ . Indeed, by recalling that P is non-expansive and each compo-
nent of Fλ is fλ (whose Lipschitz constant is L = 1 + e−2), it is easy to see that for any α, β ∈A�,s

‖ Gλ(α) − Gλ(β)‖ = ‖ P [Fλ(α) − Fλ(β)] ‖
≤ ‖ Fλ(α) − Fλ(β)‖
≤

(
1 + e−2

)
‖α − β ‖ (5)

and the constant is tight. Hence Gλ has also Lipschitz constant L = 1 + e−2. Lipschitz continuity quantifies the boundedness 
of derivatives for a function by the value L. Note that L is independent of λ. This is a useful property since the distance 
between the images of Gλ does not increase as λ → ∞, which is required in the following to prove the convergence of our 
proposed scheme.

Remark 1. Notice that by definition of Gλ ,

α ∈ Fix Gλ ⇐⇒ Pα � e−λ|α| = 0.

2.2. An iterative system

Consider an increasing sequence of real numbers {λt}t≥0 ⊆ R+ and the corresponding family of self-mappings {Gλt }t≥0
as defined by eq. (4). We construct the sequence of iterates {αt}t≥0 generated by the family {Gλt }t≥0 from α0 ∈A�,s as

αt = Gλt−1(αt−1), for t ≥ 1. (6)

Notice that αt ∈A�,s for all t ≥ 0. We now study the convergence of the sequence αt . First, we provide a lemma expressing 
the general term αt in inductive form.

Lemma 1. Let {αt} be the sequence generated by (6), then it holds:

αt = α0 − P

(
t−1∑
k=0

αk � e−λk|αk|
)

for t ≥ 1. (7)

Proof. To prove the lemma we proceed by induction on t . The case t = 1 is trivial. For t > 1, by definition we have

αt = Gλt−1(αt−1) = αt−1 − P
(
αt−1 � e−λt−1|αt−1|) .

By induction hypothesis the equality (7) is true for t − 1, implying that

αt = α0 − P

(
t−2∑
k=0

αk � e−λk|αk|
)

− P
(
αt−1 � e−λt−1|αt−1|) =

= α0 − P

(
t−1∑
k=0

αk � e−λk|αk|
)

.

Hence the equality (7) holds for all t ≥ 1. �
The following result gives a sufficient condition on the sequence of parameters {λt }, for the sequence {αt} to be conver-

gent in A�,s .
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Proposition 1. Let {λt} be a real positive sequence. Then, if 
∑∞

t=0 1/λt < +∞, the sequence {αt} generated by the recurrence (6) from 
any α0 ∈A�,s converges in A�,s .

Proof. First of all observe that the scalar-valued mapping

x 	→ |x|e−λ|x| ≤ 1

eλ

is bounded, which implies∥∥∥αk � e−λk|αk|
∥∥∥ ≤

√
m

e

1

λk
. (8)

Take two iterates αt , αt′ , with t < t′; by Lemma 1 their usual distance can be written as

‖αt − αt′ ‖ =
∥∥∥∥P

t′−1∑
k=t

αk � e−λk|αk|
∥∥∥∥.

Since P is an orthogonal projection, ‖P v‖ ≤ ‖v‖ for any v ∈ R
m , and it holds

‖αt − αt′ ‖ ≤
∥∥∥∥ t′−1∑

k=t

αk � e−λk|αk|
∥∥∥∥

≤
t′−1∑
k=t

‖αk � e−λk|αk|‖

≤
√

m

e

t′−1∑
k=t

1

λk
,

using in the last two steps the triangle inequality and the bound (8). Since by hypothesis the series of terms 1/λk converges, 
its remainder can be made arbitrarily small, hence for any ε > 0 there always exists an index N > 0 such that, for all 
t, t′ > N , it holds that

t′∑
k=t

1

λk
<

e√
m

ε.

Then ‖αt − αt′ ‖ < ε for t, t′ > N , that is {αt} is a Cauchy sequence.
Since the finite-dimensional space Rm endowed with ‖ · ‖ is complete, the Cauchy sequence {αt} converges to an 

α∞ ∈R
m . The affine set A�,s is closed in Rm and hence α∞ = limαt is also in A�,s . �

A direct consequence of these two results is the following:

Corollary 1. If 
∑∞

t=0 1/λt < +∞ the sequence {αt} generated by (6) satisfies

Pαt � e−λt |αt | −→ 0 as t → ∞

Proof. Since {αt} converges, by using Lemma 1 there exists the limit

lim
t→∞ P

(
t−1∑
k=0

αk � e−λk|αk|
)

=
∞∑

k=0

Pαk � e−λk|αk|

and hence the general term of the series goes to 0. �
Notice that by eq. (4) this corollary corresponds to the fact that the distance between a t-th term of the sequence {αt}

and its iterate through Gλt can be made arbitrary small, i.e. for some large integer N = N(ε)

‖αt − αt+1‖ = ‖αt − Gλt (αt)‖ = ‖Pαt � e−λt |αt |‖ < ε for t > N

which can be viewed as a relaxation of fixed point condition of Remark 1 for αt .
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Fig. 2. Convergence process of LiMapS algorithm.

2.3. The LiMapS algorithm

The “mechanics” of the overall iterative process described in previous section may be summed up as follows. Picked an 
initial point α0 ∈ A�,s ⊂ R

m , the convergence process so established may be explained as interplay between two alternate 
actions: shrinkage (by eq. (3)) and projection (by P ). Fig. 2 shows graphically the case A�,s ⊂ R

2. Fixed a sequence of 
positive reals {λt}t≥0, given the point αt = zt +ν with ν = �†s, a new point αt+1 is generated by eq. (6) using the parameter 
value λt . Actually, the projected new point zt+1 is computed as the difference between zt and wt = Pωt ∈ ker�, with 
ωt = αt � e−λt |αt | ∈ R

m , and then adding the vector ν ∈ (ker�)⊥ , i.e., αt+1 = zt+1 + ν , where zt+1 = zt − wt . Due to 
shrinkage effects and successive re-projection, the point sequence tends to be closer and closer to the sparse solution 
α∗ = z∗ + ν .

Motivated by previous observations and based on the iterative system suggested in the above sections, we can design 
an algorithm, called LiMapS, for approximately solving the problem (P0). In many cases, when the linear system admits a 
sparse solution of problem (P0), LiMapS is able to recover it in very few iterations adopting as parameter scheduling the 
geometric sequence λt = γ t , with a base γ slightly greater than 1. Still, on the empirical side it should be useful to start 
the process just from solution ν (marked in Fig. 2) which is in general far from being sparse without favoring any a priori 
choice of the support. The overall pseudo-code of LiMapS is reported in Algorithm 1.

Algorithm 1 LiMapS.
Input: Matrix P , initial solution ν , sequence {λt}t≥0

1: α ← ν

2: t ← 0

3: while [ loop condition ] do

4: λ ← λt <parameter update>

5: α ← α − Pα � e−λ|α| <iteration step>

6: t ← t + 1 <step update>

7: end while

Output: an sparse approximate solution α : �α ≈ s

Remark 2. It is interesting to briefly discuss the sensitivity of the scheme against noise. Suppose to take the model �α̃ =
s + η where η is an additive noise in the measurement. In this case the iterative scheme would be initialized from α̃0 =
ν̃ = �†s + �†η. The sequence α̃t generated by scheme (6) from ν̃ has a distance from noiseless sequence αt

‖αt − α̃t‖ ≤ 2

√
m

e

t∑
1

1

λk
+ ‖�†η‖

Since � is a frame, it has suitable frame bounds 0 < a ≤ b < ∞:

a‖x‖2 ≤ ‖�x‖2 ≤ b‖x‖2 for all x ∈ R
m

which are in fact the least and the greatest singular value: a = σn(�), b = σ1(�). The transpose pseudoinverse (�†)T is the 
so-called canonical dual frame, which is still a frame for Rn with frame bounds 0 < 1 ≤ 1 < ∞ [32, Theor. 5.5]. Therefore 
b a
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Fig. 3. Graph of parametric functions gλ(x), for λ = 1,4,10.

the sequence distortion introduced by an additive noise η in measurement is 1√
a
‖η‖ with a term K constant w.r.t. the noise 

magnitude:

‖αt − α̃t‖ ≤ 1√
a
‖η‖ + K .

3. Sparsity minimization

In the context of sparsity promotion techniques, many functionals have been used to measure the sparsity level of a 
solution, such as those mentioned in the paper [33], where a large class of admissible sparsity measures is introduced and 
characterized. Following these ideas, in this section we study the sparsity minimization property of the limit points carried 
out by the iterative scheme (6), and measured by suitable smooth �0 and �1-norms.

3.1. Smooth �0-minimization

For sake of simplicity, in this section we use the notation α(t) to mean the t-th iterate point of an iterative system, αk(t)
to denote its k-th component, and αk to denote the k-th component of a vector α.

Let us consider the family of functions

gλ(x) = 1 − e−λ|x|(1 + λ|x|)
with parameter λ > 0. It may be useful to look at its graphical representation (Fig. 3) which puts in evidence that gλ(x)
is even, increasing for x ≥ 0 and with image [0, 1). Its behavior strongly depends on the parameter λ since gλ(x) ≈ λ2x2

when |x| � 1
λ

, while left and right asymptotes are y = 1 approached from below. The limit function of the family is the 
pseudo-norm ‖ · ‖0 in one dimension:

lim
λ→∞ gλ(x) =

{
0 if x = 0

1 if x �= 0

Moreover, the first two derivatives

g′
λ(x) = λ2xe−λ|x| and g′′

λ(x) = λ2(1 − λ|x|)e−λ|x| (9)

are continuous functions, i.e. gλ ∈ C2(R). In order to construct our sparsity functional, we need the triangle inequality for 
gλ stated by the following:

Lemma 2 (Triangle inequality). For every x, y ∈R and λ > 0 it holds:

gλ(x + y) ≤ gλ(x) + gλ(y).

Proof. Since gλ(x) = g1(λx), it is sufficient to study the case of λ = 1. Let us consider the function

δ(a,b) = e−a−b(1 + a + b) − e−a(1 + a) − e−b(1 + b) + 1

defined for a, b ≥ 0. In (0, 0) it attains its minimum, i.e. it holds: 0 = δ(0, 0) ≤ δ(a, b), that can be rewritten as

1 − e−a−b(1 + a + b) ≤ 1 − e−a(1 + a) + 1 − e−b(1 + b). (10)

This allows us to conclude that

g1(x + y) = 1 − e−|x+y|(1 + |x + y|)
≤ 1 − e−|x|−|y|(1 + |x| + |y|)
≤ 1 − e−|x|(1 + |x|) + 1 − e−|y|(1 + |y|) (by eq. (10))

= g1(x) + g1(y). �
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Based on gλ , let us now introduce the functional Jλ : Rm →R+ defined as

Jλ(α) =
m∑

i=1

gλ(αi).

This C2(Rm) functional has “separable” variables and has the tendency as ‖ · ‖0 to promote sparse points. Moreover, analo-
gously to ‖ · ‖0 it is a pseudo-norm as stated in the following:

Lemma 3. For any λ > 0, Jλ is a pseudonorm.

Proof. It is easy to see that Jλ(α) = 0 if and only if α = 0. For all α, β ∈R
m , the triangle inequality is proved as follows:

Jλ(α + β) =
m∑

k=1

gλ(αk + βk)

≤
m∑

k=1

[gλ(αk) + gλ(βk)] (by Lemma 2)

= Jλ(α) + Jλ(β). �
The limit functional of Jλ is the �0-pseudonorm, i.e.

lim
λ→∞ Jλ(α) =

m∑
k=1

lim
λ→∞ gλ(αk) = ‖α‖0.

Because of its smoothness, we study Jλ (for large λ > 0) as a reasonable approximation of �0-pseudonorm.

3.1.1. Relative minima
On the basis of the stated properties for Jλ , it would seem natural to relax the original problem (P0) into a problem of 

the form

min
α∈Rm

Jλ(α) s.t. �α = s (P J 0)

with a large value of λ. We want now to study the minima of this problem. In particular we obtain a necessary condition 
for the minima in terms of the self-mapping Gλ used in the iterative scheme.

To this end, consider an orthonormal basis {a1, . . . , ar} ⊂ R
m of the null-space ker �, where ak = (ak,1, . . . , ak,m)T , 1 ≤

k ≤ r = dim ker� ≤ m − n. Let ν = �†s; since A�,s = ker� + ν , each α ∈A�,s can be represented in unique manner as the 
linear combination of the basis {a1, ..., ar} plus ν , i.e. there exists a bijection φ = (φ1, ..., φm)T :Rr →A�,s:

x
φ	−→ α =

r∑
k=1

xkak + ν

α
φ−1

	−→ x = (〈α,a1〉, ..., 〈α,ar〉)T .

It is straight-forward to check that the mapping φ is a conjugacy with the m × r Jacobian matrix Dφ(x) = [∂φ j(x)/∂xk] j,k =
[ak, j] j,k . Using this mapping the problem (P J0) can be reformulated as

min
α∈A�,s

Jλ(α) = min
x∈Rr

�λ(x) := Jλ(φ(x)). (P�)

Theorem 1. Let α∗ be a local minimum solution of problem (P J 0) with a fixed λ > 0, then

Pα∗ � e−λ|α∗| = 0.

It follows that the point α∗ ∈A�,s is a fixed point of Gλ .

Proof. To prove the theorem it is thus sufficient to show that given any local minimum solution x of the problem (P�), its 
corresponding α = φ(x) satisfies Pα � e−λ|α| = 0. Indeed, if x = φ−1(α) is a minimum point of �λ , then we have necessarily 
the first-order condition ∇�λ(x) = ∇ Jλ ◦ Dφ(x) = 0, i.e. for all k = 1, ..., r

0 = ∂

∂xk

m∑
gλ(α j) =

m∑
g′
λ(α j)

∂φ j

∂xk
(x) =

m∑
g′
λ(α j)ak, j = 〈∇ Jλ(α),ak〉
j=1 j=1 j=1
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where ∇ Jλ(α) = (g′
λ(α1), . . . , g′

λ(αm))T . This first-order condition corresponds to zero coordinates w.r.t. the basis {a1, ..., ar}
of ker�, i.e. null projection P∇ Jλ(α) = 0.

Extending the scalar case (9), it is easy to calculate the gradient ∇ Jλ(α) = λ2α � e−λ|α| , and hence the necessary condi-
tion of the local minimum solution turns out to be

P∇ Jλ(α) = 0 ⇔ Pα � e−λ|α| = 0

since λ > 0. Moreover, by Remark 1 the last equality is equivalent to α ∈ Fix Gλ . �
This theorem gives necessary conditions, saying that the minimizers are among the fixed points of the scheme with any 

fixed λ. The converse condition and the relationship to Proposition 1 for time-varying λ are not trivial, as we can notice in 
the following remarks.

Remark 3. Let α ∈ A�,s be any point satisfying the necessary condition Pα � e−λ|α| = 0 of previous theorem and let 
φ be the conjugacy introduced above. In fact, the point α can be either minimum, maximum or saddle point, since 
Jλ ∈ C2(Rm). A sufficient condition for α = φ(x) to be a local minimum is that the r × r Hessian matrix ∇2�λ(x) =
(Dφ(x))T ∇2 Jλ(φ(x))Dφ(x) + ∑r

k=1 ∇2φk(x) ∂ Jλ
∂αk

(φ(x)) be positive definite. By noticing that ∇2φk , k = 1, ..., r, are zero matri-

ces, with a direct calculation we have the general entry of ∇2�λ(x):

[∇2�λ(x)]h,k = ∂2

∂xh∂xk

m∑
i=1

gλ(αi) =
m∑

i=1

g′′
λ(αi)ah,iak,i = (11)

=
m∑

i=1

λ2(1 − λ|αi|)e−λ|αi |ah,iak,i

which forms a symmetric matrix for every x. Indeed, showing the positive definiteness of Hessian matrix (11) seems not to 
be straight-forward.

Remark 4. Proposition 1 provides a sufficient condition for time-varying λ. Moreover, for large λ, its corollary gives a relax-
ation of the fixed point condition Pα∗ � e−λ|α∗| = 0 stated in Theorem 1, i.e. ‖Pαt � e−λ|αt |‖ < ε. Despite this relaxation 
gets tighter and tighter, it does not guarantee closeness between αt and a fixed point α∗ . However, Proposition 1 does 
not exclude the convergence for fixed λ, and in fact we empirically observed that the iterative system with fixed λ always 
converges to a limit point.

Since local minima α∗ of the optimization problem (P J 0) are fixed points of Gλ , we are interested in studying the 
behavior of the iterative system Gλ in a neighborhood of α∗ . This is the aim of the stability analysis in the next section.

3.1.2. Fixed point stability of minima
In this section we study Lyapunov stability [26] of relative minimum α∗ of Theorem 1 which is a fixed point of the 

iterative system

α(t + 1) = Gλ(α(t)) (12)

for a fixed λ > 0. To this end, it is convenient to introduce the conjugate map Lλ : Rr → R
r such that Lλ = φ−1 ◦ Gλ ◦ φ, 

where the conjugacy φ is the same as defined in previous section.

Lemma 4. Let ∇2�λ be the Hessian matrix of mapping �λ and α∗ = φ(x∗) a relative minimum of optimization problem (P J 0). If every 
eigenvalue σi , i = 1, ..., r, of I − 1

λ2 ∇2�λ(x∗) satisfies |σi| < 1, then α∗ is a locally asymptotically stable fixed point of the system Gλ.

Proof. Instead of (12) we can equivalently study the conjugate iterative system x(t + 1) = Lλ(x(t)). In terms of components 
k = 1, ..., r:

xk(t + 1) = xk(t) − 1

λ2

m∑
j=1

g′
λ(α j)ak, j

with α j = φ j(x) = ∑r
i=1 xiai, j + ν j .

Let α∗ be a relative minimum point and x∗ = φ−1(α∗) be its conjugate point. Then by Theor. 1 the point α∗ (resp. x∗) 
is a fixed point of Gλ (resp. Lλ). The classic way to study the stability of Lλ in the neighborhood of a fixed point x∗ is 
by linearization [26]. By using the substitution x(t) = x∗ + �(t) and approximating Lλ with the 1st-order Taylor expansion 
at x∗ , we obtain
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�k(t + 1) = �k(t) −
r∑

h=1

⎡
⎣ 1

λ2

∂

∂xh

m∑
j=1

g′
λ(α

∗
j )ak, j

⎤
⎦

α=α∗
�h(t). (13)

Since

∂

∂xh

m∑
j=1

g′
λ(α

∗
j )ak, j =

m∑
j=1

g′′
λ(α∗

j )ak, jah, j = (∇2�λ(x∗))k,h

the iterative system (13) turns out to be

�k(t + 1) = �k(t) − 1

λ2

r∑
h=1

(∇2�λ(x∗))k,h�h(t)

or in vector form

�(t + 1) =
(

I − 1

λ2
∇2�λ(x∗)

)
�(t). (14)

From the theory of linear systems it is well-known that if the matrix I − 1
λ2 ∇2�λ(x∗) has all eigenvalues < 1 in absolute 

value, then the fixed point x∗ is asymptotically stable for the iterative system Lλ in a neighborhood of x∗ . In such a case, 
since Gλ and Lλ are conjugate, the fixed point α∗ = φ(x∗) is also locally asymptotically stable for Gλ . �

Since the eigenvalues σ of the state-transition matrix I − 1
λ2 ∇2�λ(x∗) are related to the eigenvalues η of ∇2�λ(x∗) by 

σ = 1 − η
λ2 , then we can study the eigenvalues of ∇2�λ(x∗).

Lemma 5. For every α = φ(x) ∈A�,s , the maximum eigenvalue of 1
λ2 ∇2�λ(x) is ηmax ≤ 1.

Proof. Recall from eq. (11) that 1
λ2 (∇2�λ(x))k,h = ∑m

j=1 γ jak, jah, j , with γ j := 1
λ2 g′′

λ(α j). With a simple study of the function 
g′′
λ in eq. (9), it is easy to see that γ j ≤ 1. It is known that ηmax is the maximum value of Rayleigh quotient:

ηmax = max
v∈Rr :||v||=1

v T 1

λ2
∇2�λ(x)v.

It results that

v T 1

λ2
∇2�λ(x)v =

∑
k,h

vk

⎛
⎝ m∑

j=1

γ jak, jah, j

⎞
⎠ vh

=
∑

j

γ j

(∑
i

viai, j

)2

≤
m∑

j=1

(
r∑

i=1

viai, j

)2

.

Let us complete the basis of ker � to form the orthonormal basis {a1, . . . , ar, ar+1, . . . , am} of Rm; the matrix A := (ai, j) =
[a1| · · · |am]T is orthogonal and then

m∑
j=1

(
r∑

i=1

viai, j

)2

= ‖(v1, . . . , vr,0, . . . ,0)A‖2

= ‖(v1, . . . , vr,0, . . . ,0)‖2 (by orthogonality of A)

= ‖v‖2 = 1 (by constraint in Rayleigh quotient)

We conclude that

ηmax = max‖v‖=1
v T 1

λ2
∇2�λ(x)v ≤ 1 �

We are now able to state the main result of this section.



A. Adamo et al. / Theoretical Computer Science 664 (2017) 12–28 23
Fig. 4. Graphs of a component of both Jλ-norm (15) and �1-norm respectively.

Theorem 2. Let α∗ = φ(x∗) be a relative minimum of (P J0), with positive definite Hessian matrix ∇2�λ(x∗), then α∗ is an asymptot-
ically stable fixed point of the iterative system Gλ.

Proof. Each eigenvalue of I − 1
λ2 ∇2�λ(x∗) is σ = 1 − η, where η is an eigenvalue of 1

λ2 ∇2�λ(x∗). By Lemma 5, we know 
that η ≤ 1; furthermore, since ∇2�λ(x∗) is positive definite, it also holds that η > 0. Therefore σ is

0 ≤ σ = 1 − η < 1.

Since each eigenvalue σ of I − 1
λ2 H(α∗) satisfies |σ | < 1, by Lemma 4 we can conclude that α∗ is an asymptotically stable 

fixed point of Gλ . �
3.2. Smooth �1-minimization

Among convex functions a particular interest is deserved to �1-norm, that became very popular since earlier works [2,3], 
both focusing on the problem (P1).

In this spirit, within this section we study a minimization problem based on a functional Jλ : Rm → R+ , that we call 
“ Jλ-norm”, strictly connected to our shrinkage function (3), given by

Jλ(α) = ‖Fλ(α)‖1 =
m∑

i=1

|αi |
(

1 − e−λ|αi |
)

, (15)

where the sharpness parameter λ is assumed to be positive. It can be checked that Jλ ∈ C2(Rm). Its importance comes from 
the fact that Jλ-norm converges to the �1-norm as λ approaches +∞, i.e. limλ→+∞ Jλ(α) = ‖α ‖1 for any α (see related 
graphs in Fig. 4). Thanks to this convergence we study by means of Lagrangian multipliers the minimization problem for 
this Jλ-norm, i.e.

min
α∈Rm

Jλ(α) subject to α ∈ A�,s (P J 1)

Tλ(α) := Pα � e−λ|α| = 0

that can be accomplished by seeking necessary and sufficient condition on the minimizers of its Lagrangian Lλ : R3m → R. 
Notice that the second constraint is the fixed point condition α ∈ Fix Gλ as in Remark 1, while first constraint can be turned 
into Q α − ν = 0, where Q = I − P = �†� and ν = �†s. Hence, the Lagrangian takes the form:

L(α, θ,ρ) = Jλ(α) + θ T Tλ(α) + ρT (Q α − ν). (16)

Let α∗ be a local optimum solution of (P J1), and suppose that the Jacobian matrix of equality constraints has full rank. This 
guarantees the first order necessary conditions, that is there exist some multipliers θ, ρ ∈R

m such that ∇θLλ(α
∗, θ, ρ) = 0, 

∇ρLλ(α
∗, θ, ρ) = 0 and for α = α∗

∇αLλ(α, θ,ρ) = ∇ Jλ(α) + DTλ(α)T θ + Q ρ

= μλ,α + Dλ,α Pθ + Q ρ = 0 (17)

where μλ,α := ∇ Jλ(α) and Dλ,α := DTλ(α)T is the transposed Jacobian matrix of Tλ at α. Note that both μλ,α ∈ R
m and 

Dλ,α ∈ R
m×m have separable variables and moreover Dλ,α is diagonal. Their entries are

[μλ,α]i = sgn(αi)(1 + (λ|αi | − 1)e−λ|αi |) and [Dλ,α]ii = (1 − λ|αi|)e−λ|αi |,

and therefore L ∈ C1. Let us denote μλ,α∗ = μλ,α |α=α∗ and Dλ,α∗ = Dλ,α |α=α∗ . If α∗
i �= ±1/λ for all i = 1, ..., m, the matrix 

Dλ,α∗ has full rank m. Sylvester’s Rank Inequality implies that rank(Dλ,α∗ P ) ≥ rank(Dλ,α∗ ) +rank(P ) −m = m +(m −n) −m =
m − n. The first order condition (17) evaluated at the local optimum α = α∗ consists in the underdetermined linear system 
of m equations in 2m unknowns (θ, ρ)
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Dλ,α∗ Pθ + Q ρ = −μλ,α∗ . (18)

The coefficients matrix of this linear system is [Dλ,α∗ P | Q ], which is the Jacobian matrix of the constraints. Since 
rank(Q ) = n, we expect that in non-degenerate case this Jacobian matrix has full rank (m − n) + n = m, which hence is a 
reasonable assumption. In this case the system (18) admits ∞m many solutions (θ∗, ρ∗).

Remark 5. We can in fact explicitly express the regularity condition: let α∗ be a local optimum solution of the problem 
(P J1), then

α∗ is regular point ⇔ [Dλ,α∗ P | Q ] has full rank.

In such a case α∗
i �= ±1/λ, for all i = 1, ..., m.

Sufficient conditions for an extremal point can be studied by a close glance at the Hessian matrix ∇2Lλ(α, θ, ρ) evalu-
ated at the stationary point (α∗, θ∗, ρ∗).

Lemma 6. Let α∗ be a regular stationary point of the Lagrangian L associated to problem (P J 1), with the respective multipliers 
(θ∗, ρ∗), and denote S := supp(α∗). Then the Hessian matrix of L w.r.t. variables α at (α∗, θ∗, ρ∗) is diagonal and has the diagonal 
asymptotic expressions:

[∇2
ααLλ(α

∗, θ∗,ρ∗)]ii ∼
{

2λ, if i /∈ S

λ(1 + γ ∗
i ), if i ∈ S,

for λ → ∞.

Proof. It is straight-forward to see that the Hessian matrix takes the form

∇2
ααLλ(α

∗, θ∗,ρ∗) = Mλ,α∗α∗ + diag(Dλ,α∗α∗ Pθ∗),
where diag(v) denotes the diagonal matrix having vector v as diagonal, Mλ,α∗α∗ and Dλ,α∗α∗ are diagonal matrices with 
entries

[Mλ,α∗α∗ ]ii = λ(2 − λ|α∗
i |)e−λ|α∗

i | and [Dλ,α∗α∗ ]ii = λ(λα∗
i − 2 sgn(α∗

i ))e−λ|α∗
i |

and therefore ∇2
ααLλ(α

∗, θ∗, ρ∗) is a diagonal matrix.
Since α∗ is regular, α∗

i �= ±1/λ by Remark 5 and hence Dλ,α∗ is non-singular; therefore we can rewrite eq. (18) for (Pθ∗)
and plug it into the expression of the Hessian matrix ∇2

ααLλ(α
∗, θ∗, ρ∗). The diagonal element is

[∇2
ααLλ(α

∗, θ∗,ρ∗)]ii = [Mλ,α∗α∗ − diag(Dλ,α∗α∗ D−1
λ,α∗

(
μλ,α∗ + Q ρ∗))]ii

= λ(2 − λ|α∗
i |)e−λ|α∗

i | +

+ λ(λα∗
i − 2 sgn(α∗

i ))
sgn(α∗

i )(1 + (λ|α∗
i | − 1)e−λ|α∗

i | + γ ∗
i )

λ|α∗
i | − 1

,

where γ ∗
i is the i-th entry of vector γ ∗ := Q ρ∗ . Now, it is easy to check the asymptotic expressions

[∇2
ααLλ(α

∗, θ∗,ρ∗)]ii ∼
{

2λ, if α∗
i = 0

λ(1 + γ ∗
i ), if α∗

i �= 0,
(19)

as λ → ∞. �
We hence can easily derive sufficient conditions for positive definiteness of the Hessian matrix ∇2

ααLλ(α
∗, θ∗, ρ∗) that 

we summarize in the following

Proposition 2. Let α∗ , θ∗ , ρ∗ and S be defined as in Lemma 6. If γ ∗
i = [Q ρ∗]i > −1 for i ∈ S, for every sufficiently large λ > 0 the 

matrix ∇2
ααLλ(α

∗, θ∗, ρ∗) is positive definite.

Note that in general spark(Q ) = spark(�†�) > k is a sufficient condition for having an x ∈ R
m s.t. [Q x]i > −1, i ∈

{i1, i2, ..., ik}. We can now state the sufficient conditions for minimal point of problem (P J 1).

Theorem 3. Let α∗ , θ∗ , ρ∗ and S be defined as in Lemma 6. If γ ∗
i = [Q ρ∗]i > −1 for i ∈ S, then α∗ is a strict local minimum point of 

problem (P J1) for sufficiently large λ > 0.
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Proof. It can be checked that the Hessian matrix of the Lagrangian function takes the block form

∇2Lλ(α
∗, θ∗,ρ∗) =

⎛
⎜⎝

∇2
ααLλ(α

∗, θ∗,ρ∗) P Dλ,α∗ Q

Dλ,α∗ P 0 0

Q 0 0

⎞
⎟⎠

Let us study the asymptotic behavior of the Rayleigh quotient zT ∇2Lλ(α
∗, θ∗, ρ∗)z with ‖z‖ = 1:

zT ∇2Lλ(α
∗, θ∗,ρ∗)z = uT ∇2

ααLλ(α
∗, θ∗,ρ∗)u + 2uT P Dλ,α∗ v + 2uT Q w (20)

where (u, v, w) = z. Since [Dλ,α∗ ]ii goes to either 0 or 1 as λ → ∞, the second and third terms are bounded. Since λ is 
sufficiently large, by Proposition 2 the first term is positive definite, and in particular is asymptotic to

λ
∑
i∈S

(1 + γ ∗
i )u2

i + 2λ
∑
i /∈S

u2
i ≥ λ

(
ε

∑
i∈S

u2
i + 2

∑
i /∈S

u2
i

)

as λ → ∞, where ε := mini∈S γ ∗
i + 1. Hence eq. (20) is null iff u = 0, and in such a case the Rayleigh quotient is also null. 

Otherwise, since the two remaining terms are bounded, the Rayleigh quotient is asymptotically proportional to λ.
Therefore, since the quadratic form is null if and only if the increasing direction from α∗ is u = 0, the point α∗ is local 

minimum satisfying the constraints, i.e. a local solution of (P J 1) for sufficiently large λ > 0. �
Given previous results, we can draw some conclusions about the minima so characterized.

• The Jλ-norm in (P J1) is a non-convex functional but it uniformly converges to the convex �1-norm of (P1), as λ → ∞. 
Indeed, we have

lim
λ→∞

(
sup
α

| Jλ(α) − ‖α‖1|
)

= lim
λ→∞

( m

eλ

)
= 0.

Moreover, if αt → α∞ ∈A�,s and λt → ∞ as t → ∞, then

lim
t→∞ Jλt (αt) = lim

t→∞‖Fλt (αt)‖1 = ‖α∞‖1.

• The operator Tλ in (P J1) also converges uniformly to the zero operator:

lim
λ→∞

(
sup
α

‖Pα � e−λ|α| − 0‖
)

= lim
λ→∞

(√
m

eλ

)
= 0

Hence, the second constraint of problem (P J1) in a certain sense vanishes as λ → ∞.

Summarizing, these two convergence properties of the objective function and the constraint suggest some evidence that 
problem (P J1) is a reasonable relaxation of problem (P1).

4. Performances of LIMAPS

In this section we present the main aspects about the computational complexity of the LiMapS algorithm and some 
numerical simulations which compare this method with other sparse recovery methods, highlighting the phenomenon of 
phase transition.

4.1. Computational complexity

As far as the computational complexity is concerned, we report here a brief analysis related to the number of arithmetic 
operations needed to carry out the approximate solution, once a stop criterion is fixed. In particular, if we use as usual 
measure of convergence for a sequence {αt}t≥0 the distance between two consecutive iterates, i.e. d(t) = ‖αt+1 − αt‖, it is 
easy to exhibit an upper bound to this discrepancy at each step t . In fact, by eqns. (4) and (6) we have

d(t) = ‖αt+1 − αt‖ = ‖Pαt � e−λt |αt |‖ ≤ ‖αt � e−λt |αt |‖ ≤
√

m

eλt

where last inequality is given by eq. (8).
We study the case of parameter scheduling λt = γ t , with fixed γ > 1. In order to guarantee d(t) ≤ ε , for an arbitrary error 

ε > 0, it is sufficient to iterate t ≥ ( 1
2 log m + logε−1 + log e−1)/ logγ steps of the while loop in the Algorithm 1. Assuming 

floating-point arithmetic, numerical exponentiation exp(·) through the classical AGM technique [34, sec. 4.8] with guaran-
teed B-bit precision requires O (log B) time. Therefore, O (m2 +m log B) is the time for one iteration of line 5, that dominates 
algorithm’s computational time. Hence, the overall time complexity of Algorithm 1 is O ((log m + logε−1)(m2 + m log B)). In 
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case of floating-point arithmetic with fixed B = 64 bits, it reduces to O (m2(log m + logε−1)). The space complexity of the 
algorithm is simply dominated by that needed for storing the given projector matrix P , values with precisions ε or δ, and 
hence is asymptotically the same as time complexity.

To gain a little speed-up, since P = I − �†�, we could pre-compute once the matrix �† ∈R
m×n using a thin SVD (up to 

rank(�) = n) with a cost of O (mn2) time. Indeed, line 5 can be replaced with

5′ : α ← α − α � e−λ|α| + �†(�α � e−λ|α|)
where the vector α � e−λ|α| can be computed once each iteration. In line 5′ the most expensive operations are two 
matrix–vector multiplications requiring O (nm) time. Therefore, forming the full matrix P is unnecessary and, assuming 
pre-computation of �†, the overall time complexity of the algorithm reduces to O ((log m + logε−1)(nm + m log B)), or 
O (nm(log m + logε−1)) if B = 64 bits are fixed for the arithmetic.

4.2. Phase transition in numerical simulations

In order to quantitatively evaluate LiMapS, and to compare it with well-known sparse recovery methods in literature, 
we adopt the experimental analysis proposed in [35]. Specifically, Donoho and Tunner stated that, assuming the solution to 
(P0) is k-sparse, and the dimensions (k, n, m) of the linear problem are large, many sparse recovery algorithms exhibit the 
phenomenon of phase transition.

According to this analysis, using randomly generated instances of the matrix � and k-sparse vector α∗ , we build in-
stances (�, s) of (P0) such that �α∗ = s. We experimentally show that both LiMapS algorithm and the other methods 
considered exhibit a phase transition by measuring the Signal-to-Noise-Ratio between α∗ and the recoverd solution α, 
i.e., SNR = 20 log10 ‖α‖/‖α − α∗‖. In particular, the elements of atoms collected in matrix � are i.i.d. random variables 
drawn from standard Gaussian distribution, while sparse coefficients α∗ are randomly generated by the so-called Bernoulli-
Gaussian model. Let ω = (ω1, . . . , ωm) be a vector of i.i.d. standard Gaussian variables and θ = (θ1, . . . , θm) be a vector 
of i.i.d. Bernoulli variables with parameter 0 < ρ ≤ 0.5. The Bernoulli-Gaussian vector α∗ = (α∗

1 , . . . , α∗
m) is then given by 

α∗
i = θi · ωi , for all i = 1, . . . , m. Regarding the instance size, we fix n = 100, and we let the sparsity level k and the num-

ber of unknowns m range in the intervals [1, 50] and [101, 1000] respectively. The SNR is achieved by averaging on 100
randomly generated trials for every δ = n

m and ρ = k
n , that are the normalized measure of problem indeterminacy and the 

normalized measure of the sparsity, respectively.
In Fig. 5 we report the 3D phase transitions of LiMapS and other sparsity solvers. Specifically, we refer to both �0-norm 

methods such as OMP [7], CoSaMP [6], and SL0 [8], and to �1-norm methods LASSO [10] and BP [2,3]. The figure clearly 
shows the existence of a sharp phase transition that partitions the phase space into a unrecoverable region, with vanishing 
exact-recovery probability, from an recoverable region in which the probability to recover the sparse vector α∗ will eventually 
approach to one. This former case corresponds to high normalized sparsity and high problem indeterminacy. Qualitatively, it 
is evident that LiMapS algorithm reaches the best results, having the largest area of high recoverability. A quantitative evalu-
ation is given by the volume V under the surface by summing up the SNRs of each method in correspondence of the discrete 
mesh in the δ–ρ plane. These measures, normalized to that of LiMapS, are reported in Fig. 5, next to the method name.

Our simulations were performed on AMD Athlon II X4 630 64-bit 2.8 GHz processor with 4 GB of memory, us-
ing publicly available MATLAB implementation of the algorithms2. The algorithm LiMapS is available online at the 
URL http://phuselab.di.unimi.it/limaps.html.

5. Conclusions

This article provides the theoretical justification of a recently proposed sparsity recovery method, namely LiMapS [22], 
that attempts to find the sparse decomposition of a given signal iteratively by applying two suitable Lipschitzian maps 
aiming at achieving sparsity and feasibility. In particular, it is shown that LiMapS works well adopting shrinkage functions 
having small Lipschitz constant not bound to the sequence of the control parameter λ driving the search. Furthermore, it is 
proved that, for fixed λ, minima of smooth versions of �0 and �1-minimization problems are among the fixed points of the 
derived iterative scheme.

From the empirical viewpoint, we showed by numerical simulations on synthetic data the effectiveness of the proposed 
method with respect to other well-known ones in literature in terms of phase transition.

Further theoretical studies should be addressed to apply classical tools for analyzing the performance of recovery al-
gorithms, such as the restricted isometry properties (RIP), the null space properties (NSP) or the mutual coherence that 
measures the maximum correlation between any two distinct columns of the dictionary. Future works should also be de-
voted to the definition of general conditions to impose on the scheduling of the fundamental parameter λ which drives 
the search toward optimal solutions. Moreover in this regard, since we established necessary conditions for the minimal 
solutions of problem (P J0), one of the goals in future works consists in extending these intermediate results, i.e. finding 
sufficient conditions for the minimality of fixed points yielded by the scheme.

2 SparseLab from Stanford University at http :/ /web .stanford .edu /group /sparselab, SL0 from http :/ /ee .sharif .edu /~SLzero, and CoSaMP from http :/ /
mathworks .com /matlabcentral.

http://phuselab.di.unimi.it/limaps.html
http://web.stanford.edu/group/sparselab
http://ee.sharif.edu/~SLzero
http://mathworks.com/matlabcentral
http://mathworks.com/matlabcentral
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Fig. 5. SNR of phase transitions of both �0-minimizers (first two rows) and �1-minimizers (third row) methods. The domain is defined by (δ, ρ) ∈ [0, 1] ×
[0, 0.5]. Next to the method name, V represents the volume under the surface normalized to that of LiMapS.

Two key open issues remain to study. On the one hand, proving the convergence in case of fixed λ, which is a very 
difficult task but would be of great help in finding relationships between LiMapSand the minimizers of standard problems 
relying on �0 and �1 norms. On the other hand, a step ahead would be given by a clear characterization of the local minima 
of both smooth �0 and �1 minimization problems here defined, and by specifying the way they relate to the exact versions, 
namely for (P0) and (P1) problems. In particular, for theoretically estimating the distance between minimizers of the smooth 
and exact problems, it might be useful to restrict the analysis to k-sparse points. In general, difficulties are also due to the 
strong non-linearity in the mapping used here for shrinkage effect.
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