

MOHID parallelization upgrade following a
domain decomposition approach

MOHID parallelization following a domain decomposition approach P a g e 2 / 33

Document

Classification: Distribution Observations
Public NVIST n/a

Title

Title
MOHID parallelization following a domain decomposition approach

Keywords

Keywords
MOHID, parallelization, domain decomposition, MPI

Entity that produced the document Certificação de Qualidade ISO 9001:2008

Hidromod, Modelação em Engenharia, Lda

Rua Rui Teles Palhinha, 4, 1º, Leião, 2740-278 Porto Salvo

Tel: 214211373 – Fax: 214211272

Email: hidromod@hidromod.com

Client

Consellería de Medio Ambiente, Territorio e Infraestruturas
Rúa Roma, nº 6.

15707 Santiago de Compostela. A Coruña.

Teléfono: (+34) 881 999 654

Authors Title
Paulo Chambel Leitão Civil Eng., PhD Environment

Verification Title
Ricardo Miranda

José Chambel Leitão
Mechanical Eng., Master Environment

Civil Eng., Doutor Mech Eng.

Production date Page number Reference number
28/1/2014 33 Version 2

mailto:hidromod@hidromod.com

MOHID parallelization following a domain decomposition approach P a g e 3 / 33

Index

 Introduction .. 6

 Methodology... 9

Present MOHID parallelization approach... 9

Domain decomposition implementation ... 12

Decomposition methodology .. 14

Changes to MOHID projects .. 18

Specific changes to MeteoGalicia implementations ... 18

 Results .. 20

Freshwater Square .. 20

Ria de Arousa operational implementation ... 25

 Common errors and limitations ... 28

Land mapping hdf5 name .. 28

Nesting and automatic domain decomposition ... 29

Father/nesting vs domain decomposition ... 30

Problem with the SUBMODEL_EXTRAPOLATE option .. 31

 Conclusions ... 32

MOHID parallelization following a domain decomposition approach P a g e 4 / 33

Figure Index

Figure 1 : Diagram showing the workload distribution for the MOHID parallelization

methodology “one model – one process”. .. 10

Figure 2 : Example of a tree.dat file where the domain decomposition is turn on. 13

Figure 3 : Default domain decomposition done by MOHID. ... 15

Figure 4 : Possible domain decomposition specified by the user. 15

Figure 5 : Example of a domain decomposition procedure specified by the user. 16

Figure 6 : Default sub-domain’s ID order. .. 17

Figure 7 : “Freshwater square” surface velocity when the equilibrium state is reached.

Upper panel – velocity field at the surface, bottom panel – velocity field near the

bottom. ... 22

Figure 8 : Zonal section in the domain center of the meridional velocity. The positive

velocity is a positive meridional velocity. Near the surface it is possible to see the signal

of the clockwise circulation and in the bottom the anticlockwise circulation associated

to salinity gradient. ... 23

Figure 9 : Speedup factor for MOHID in 32 bits run in 8 cores (2.53GHz) computer.

Green line – ideal speedup, blue line – speedup with the domain decomposition option

implemented using MPI. Red line – speedup using the do loops parallelization with

OpenMP option. ... 24

Figure 10 : Speedup factor for MOHID in 32 bits run in 32 cores (2.2GHz) computer.

Blue line - domain decomposition option implemented using MPI. 25

MOHID parallelization following a domain decomposition approach P a g e 5 / 33

Figure 11 : Surface velocity: Left panel ROMS output used to define the open boundary

of the MOHID models implementation (Level 1). Right panel MOHID model

implemented for Ria Arousa (Level 2). .. 26

Figure 12 : Speedup factor for MOHID in 32 bits run in 8 cores (2.5G3Hz) computer.

Green line – ideal speedup, blue line – speedup with the domain decomposition option

implemented using MPI. Red line – speedup using the do loops parallelization with

OpenMP option. ... 27

Figure 13 – Tree.dat example where the user wants to use the domain decomposition

approach in a model (Lev_Rivieres) and associated nested model (Lev4_Baie). 29

Figure 14 – Four scenarios of a Domain decomposition of “father model” (model A) in 4

sub-domains with a nested model (model B): top two – valid and bottom two - invalid.

 ... 30

MOHID parallelization following a domain decomposition approach P a g e 6 / 33

 Introduction

In this document the MOHID parallelization upgrade done by Hidromod in the

framework of the EnergyMare project is described. The work was sub-contracted by

MeteoGalicia, one of EnergyMare partners. This upgrade had a global objective of

increasing the speedup factor associated with MOHID modelling system's

parallelization. A specific goal was to increase the computational efficiency of the

operational MOHID hydrodynamic model used by MeteoGalicia. This upgrade will

allow running larger model domains with the same horizontal discretization. This way

MeteoGalicia could merge the 4 operational MOHID models run for each Ria in a single

model covering the entire Rias maintaining the horizontal and vertical discretization.

This methodology will allow simulating Rias interaction. Additionally, with this new

upgrade MeteoGalicia will be able to run higher resolution models and consequently

enhance its capability to accurately identify areas with high potential to generate

marine current energy and fulfil one of the EnergyMare goals.

Currently MOHID has two main parallelization approaches implemented: (1) one

where each MOHID model/sub-model runs in a different process and the

communication between processes is done using MPI; (2) In the other approach each

“do loop” is parallelized using OpenMP directives; MPI allocates processes and

OpenMP allocates threads.

Along this document “process”, “thread” and “core” concepts will be used. The first

two are used when the discussion is focused in the software (MPI – processes,

OpenMP - threads) and third one (core) in the hardware (e.g. speedup quantification).

To avoid confusions, it is important to remember that a thread is a single line of

commands that are getting processed; each application has at least one thread, most

have multiples. In computing, a process is an instance of a computer program that is

MOHID parallelization following a domain decomposition approach P a g e 7 / 33

being executed. It contains the program code and its current activity. Depending on

the operating system (OS), a process may be made up of multiple threads of execution

that execute instructions concurrently. A core is the physical hardware that works on

the thread. In general a processor can only work on one thread per core, CPUs with

hyper threading can work on up to two threads per core.

The upgrade done in MOHID in the framework of the EnergyMare project aimed to

minimize one of the major limitations of the “one process – one model” approach that

is the workload distribution between cores. This limitation was minimized with the

domain decomposition concept implementation. The idea is to allow MOHID to

associate to one model more than one process. By default, MOHID assumes “one

model – one process” but in the new version the user has the possibility to associate to

one model more than one process. In this approach a model is broken-down in sub-

domains that communicate two-way along sub-domains interfaces.

The future goal is to test MOHID implementations following a hybrid programming

parallelization approach where MPI (domain decomposition) and OpenMP (do loop

parallelization using OpenMP) are used simultaneous. This type of approach is

considered to be a consolidated approach and is expected to be one of the near future

trends in high performance computing1. However in the long term (a decade or more

from now) programming languages may support enough native parallelism to obviate

the need for OpenMP directives. To better understand the framework behind the

strategy described in this report the reader should read the follow article

http://www.hpcwire.com/2013/12/03/compilers-accelerated-programming/.

In this document, the methodology is firstly presented, followed by a results chapter

where the increase of performance due to the new upgrade is quantified for schematic

1 Michael Wolfe, at PGI, writes about programming standards for the next generation of HPC

systems in HPCWire http://www.hpcwire.com/2013/12/03/compilers-accelerated-programming/

http://www.hpcwire.com/2013/12/03/compilers-accelerated-programming/

MOHID parallelization following a domain decomposition approach P a g e 8 / 33

and realistic MOHID implementations. Finally conclusions are presented. In this

chapter implementation limitations and future development guidelines are also

addressed.

MOHID parallelization following a domain decomposition approach P a g e 9 / 33

 Methodology

In the first phase of this chapter, an analysis to the parallelization methodologies

available in the MOHID standard version is presented. Finally the upgrade done based

in the domain decomposition concept is described.

Present MOHID parallelization approach

The present version of MOHID has two main parallelization approaches implemented:

 One model – one process (Figure 1) using MPI. This means if MOHID is run with

sub-models the user can allocate each model to a different process. MPICH is

the MPI implementation used (http://www.mpich.org/).

 Parallelization of each “do loop” using OpenMP (http://openmp.org/)

directives.

http://www.mpich.org/
http://openmp.org/

MOHID parallelization following a domain decomposition approach P a g e 10 / 33

Figure 1 : Diagram showing the workload distribution for the MOHID parallelization methodology “one model – one

process”.

The MPI based approach has not been used for many years due to an error occurring

when “father's” and nested models' time step was not the same. This error is now

corrected. Also in the framework of this upgrade, an error in the nesting process

between models with different vertical discretizations was identified and corrected.

The positive and negative points of the one model – one process using MPI approach

are:

 Positive:

o Communication between processes is done in the highest levels of the

software structure. MOHID allows each model to be “confined” in only

one object. This approach takes the most advantage of the object

oriented approach followed in the MOHID programming. The main

consequence is that the coding is contained in specific modules (e.g.

main, model, hydrodynamic) and far away from the more active coding

Model

Nested model 1

Nested model 2

MOHID parallelization following a domain decomposition approach P a g e 11 / 33

areas. These areas are the ones changed more often due to constant

upgrades to add new functionalities;

o Because this methodology was implemented using MPI this means that

it can be used in hardware architectures with distributed memory (e.g.

clusters);

 Negative:

o Lack of flexibility in the workload distribution between cores. The

parallelization is restricted to MOHID implementations with nested

models. Even in the implementations with several nested models the

only way to balance workload by core in a uniform way is if users define

models with a spatial and temporal discretization such that the

computation effort by model is equal. This can be very difficult,

particularly for MOHID beginners and even for experienced ones once it

is very time consuming;

o In MPI the communication between processes needs to be coded;

o Parallelization by itself changes the programming paradigm.

Programming in MOHID with MPI is very demanding. The level of

abstraction increases a lot. A simple “do loop” with MPI communication

can be quite demanding (e.g. nesting communication).

The positive and negative points of parallelization of each “do loop” using OpenMP

directives:

 Positive:

o The level of abstraction for “do loops” parallelization is very easy;

MOHID parallelization following a domain decomposition approach P a g e 12 / 33

o The communication between threads is done automatically when

OpenMP is used. The OpenMP directives allows a more easy

parallelization of the code at the “do loop” level;

o More efficient in the workload distribution by core than the “one model

– one process” old methodology.

 Negative:

o It is done in a very low level of software structure. Parallelization at

higher levels tend to be more efficient because decreases the number

of parallelization instructions;

o The parallelization at do loops level generates a lot of extra source code

focus only in parallelization;

o Only the new Fortran compilers allow efficient debugging of parallel

code (e.g. Intel 12).

Domain decomposition implementation

The upgrade done in MOHID aimed to minimize the major limitation of the “one

process – one model” approach that is the workload distribution between cores. This

goal was achieved implementing the domain decomposition concept.

Instead of implementing the domain decomposition from scratch, the use of the

software structure already present in MOHID to run several nested models was

decided. In MOHID, when in the compilation phase, the preprocessor definition

“_USE_MPI” is add each model is run as an independent process. In the new upgrade

this option is still valid but the user can additionally break down any model by several

processes. This way the user has more control over the computational workload

distribution between cores. This break down is done in the tree.dat input file where all

MOHID parallelization following a domain decomposition approach P a g e 13 / 33

models and nested models are listed. If the user wants to break down a specific model,

he only needs to add in front of a specific model “: “ and the number of processes that

he wants to allocate to a specific model (e.g. “ : 4” – in this case the user wants to

decompose a model in 4 sub-domains). In Figure 2 a tree.dat example is presented

where the user wants to run the simulation in 8 processes. In this example one process

is allocated to the “father model” and the remaining 7 processes to the nested model

(or son model).

Figure 2 : Example of a tree.dat file where the domain decomposition is turn on.

This new feature is only active if MOHID is compiled with the preprocessor definition

“_USE_MPI”. It is recommended to compile MOHID in 64 bits because it has the

following advantages, when compared to the 32 bits option:

 It is 10-30% faster;

 It allocates ~30% less RAM;

 It does not have any RAM limitations is opposition to the 32 bits that have

strong limitations for RAM allocations higher that 2 Gb.

If the 64 bits windows version the extra preprocessor definition “_NO_NETCDF” must

be add because the netcdf dll for 64 bits are not compiled yet. For compiling MOHID in

NIX platforms, the steps described in MOHID Wiki must be followed:

http://www.mohid.com/wiki/index.php?title=*NIX_platforms.

To execute the MOHID using MPI it is necessary to install in the computer the MPICH

(www.mpich.org) or similar. These installers have also the MPI libraries necessary to

the compilation procedure. The easiest way to run Mohid using MPI is with the

following command line:

http://www.mohid.com/wiki/index.php?title=*NIX_platforms
http://www.mpich.org/

MOHID parallelization following a domain decomposition approach P a g e 14 / 33

>mpiexec -np 2 -localonly M:\aplica\MPI\FATHER\exe\MohidWater.MPI.exe

In the above example, MohidWater is running with 2 processes, using only local

machine's resources.

To run MohidWater using multiple computers use something like this:

>mpiexec -hosts 2 matrix 1 poseidon 2 -map M:\\matrix\projects

M:\aplica\MPI\FATHER\exe\MohidWater.MPI.exe

Both machines are required to have the same executable. Here an explicit map is made

so that both machines know where the executable is. M: must be a mapped drive and

mpiexec must be evoked from the mount point. -map will create the mount in slave

machines and unmounts it at the end of the run.

Each sub-domain writes its output in separate files. Therefore, when the model ends, a

post-processor tool that glues the sub-domain’s outputs in single files must be

executed in the directory where the input file “tree.dat” is located. The post-processor

tool is named DomainDecompositionConsolidation.exe and it is available (like MOHID

source code) via http://mohid.codeplex.com/ (source code directory:

software\domaindecompositionconsolidation) developed in collaboration with

Maretec-IST.

Decomposition methodology

By default, MOHID breaks down a model domain assuming sub-domains with the same

number of lines (Figure 3).

http://mohid.codeplex.com/

MOHID parallelization following a domain decomposition approach P a g e 15 / 33

Figure 3 : Default domain decomposition done by MOHID.

However, the user can specify a different domain breakdown (Figure 4) via a specific

input file. The name of the input file is defined in the bathymetry input using the

keyword D_DECOMP.

Figure 4 : Possible domain decomposition specified by the user.

MOHID parallelization following a domain decomposition approach P a g e 16 / 33

In this new input file, the user needs to define, for each sub-domain ID (MPI_ID), the

limits of each boundary (ILB_IUB, JLB_JUB) and the number of boundaries

(INTERFACES_NUMBER). Additionally the user needs to specify for each boundary the

adjacent sub-domains (Figure 5). Boundaries are divided in two types: along lines

(<BeginInterfaceWE>/<EndInterfaceWE>) and along columns

(<BeginInterfaceSN>/<EndInterfaceSN>).

Figure 5 : Example of a domain decomposition procedure specified by the user.

MOHID parallelization following a domain decomposition approach P a g e 17 / 33

The numeration of the sub-domains’ ID (MP_ID) follows the order of the models list in

the tree.dat file. In the case presented in Figure 2, the MPI_ID of the first model is 0

and for the 7 sub-domains of the second model it goes from 1 to 7. By default the

order of these ID’s between sub-domains follows the order of the line’s indexes (Figure

6). If the decomposition procedure is specified via input file, the order is the one

chosen by the user.

Figure 6 : Default sub-domain’s ID order.

Additionally the user can specify the dimension of the halo area. By default this

dimension is 2 cells (HALOPOINTS keyword) to cope with second order advection

methods and the biharmonic filter. This default value implies that in adjacent sub-

domains the number of lines (or columns depending from the boundary orientation)

that are overlapped is 4. However, if a first order advection method is used and the

biharmonic filter is disconnected the MOHID user can specify only 1 HALOPOINTS

reducing to 2 the number of overlapping lines (or columns).

MOHID parallelization following a domain decomposition approach P a g e 18 / 33

Changes to MOHID projects

Discharges and Time Series location must be given in coordinates using the following

keywords:

COORD_X : -9.5556

COORD_Y : 42.3455

The location using the cells indexes (keywords I_CELL : line and J_CELL : columns)

cannot be used when a domain decomposition approach is used. Additionally the

keyword IGNORE_ON must be set to true (IGNORE_ON : 1) in the discharge input file.

This way if a discharge is outside of the sub-domain the model does not stop and

ignores it. The necessary change, for example, in the discarges_x.dat file of the original

Arousa project run in operational mode by MeteoGalicia are presented below.

Specific changes to MeteoGalicia implementations

The level 1 model of MeteoGalicia implementation had a 3600 s time step when the

ROMS solution hdf5 file had a time step of 900 s. The time step of level 1 should be

900 s and not 3600 s.

In the new version of MOHID, in the input file atmosphere_x.dat for the data block of

property “precipitation”, it is necessary to add the following keyword

MOHID parallelization following a domain decomposition approach P a g e 19 / 33

“ACCUMULATE_VALUES : 1”. The specified units are “mm” so based in the input

data (in mm) the MOHID model needs compute the flux in time (e.g. mm/h).

The “RibaixasA” project, operationally run by MeteoGalicia, was changed following the

specifications presented above. The new project can be downloaded from

https://www.dropbox.com/s/r8a1yl28yrmd8yk/RiasBaixasA.rar.

MOHID parallelization following a domain decomposition approach P a g e 20 / 33

 Results

The MOHID upgrade was tested extensively so far for two implementations:

 schematic case entitled “Freshwater Square”;

 operational implementation done by MeteoGalicia for Ria de Arousa.

The goal of the tests was to check the increase of speed of the new update versus the

number of cores relative to a MOHID executable with no parallelization. Additionally

the same tests were made for the standard version of MOHID where the parallelization

is done at the “Do loops” level. The idea was to check the improvement of this new

upgrade relative to the present parallelization option available to MOHID users.

The testing has focus in the MOHID executable for windows in single precision for 32

bits. This is the MOHID executable configuration more disseminated among MOHID

users. Additionally tests were done for 64 bits version.

Freshwater Square

The “Freshwater Square” (schematic case) consists in a model with constant depth of

1.000 m and no land points. The domain is a square and has 1.000 km per 1.000 km.

This implementation only has one model level (no nesting). The spatial horizontal

discretization is 500x500 cells with a spatial step of 2 km. Vertically a 10 layer sigma

discretization with equal thickness was assumed. The only water property simulated

was salinity. A k- model is used to simulate vertical turbulence and in horizontal a

constant horizontal viscosity was defined.

MOHID parallelization following a domain decomposition approach P a g e 21 / 33

The initial condition for salinity is a constant value in all the domain of 36 psu except in

a centre square (200 km x 200 km) where salinity is 35.9 psu in the entire water

column.

A 2 cells halo region was used to cope with the second order advection numerical

scheme usually used in ocean implementations. The domains’ decomposition was

done dividing the original domain only along the lines (X direction or West-East). This

means all domains have always the same number of columns.

This model is run for a period of 1 day with a time step of 90 s. After an initial spin up,

due to the geostrophic adjustment a clock-wise rotation is established at the surface

along the isohalines being the maximum velocity located where the salinity gradient is

also maximum (upper panel - Figure 7). Near the bottom a similar circulation is

established but with counter-clockwise rotation (lower panel - Figure 7). The

circulation is forced by the radial density gradient. At the surface the only force that is

able to balance the sea level gradient (barotropic force) is the coriolis force. At mid

water the baroclinic force balances the barotropic force (null velocity) but near the

bottom the baroclinic force overpowers the barotropic force and the rotation is

inverted.

MOHID parallelization following a domain decomposition approach P a g e 22 / 33

Figure 7 : “Freshwater square” surface velocity when the equilibrium state is reached. Upper panel – velocity field at

the surface, bottom panel – velocity field near the bottom.

MOHID parallelization following a domain decomposition approach P a g e 23 / 33

Figure 8 : Zonal section in the domain center of the meridional velocity. The positive velocity is a positive meridional

velocity. Near the surface it is possible to see the signal of the clockwise circulation and in the bottom the

anticlockwise circulation associated to salinity gradient.

The tests were done in two computers with the following hardware configurations:

 Intel® Xeon® CPU E5420 2 processors 2.53GHz with 4 processors (total 8 cores),

12 Gb of RAM and 64 bit operating system.

 Intel(R) Xeon(R) E5-4620 2.20GHz 4 processors (32 cores), 64 Gb of RAM,

Windows Server 2012 R2 Standard

For the first computer the tests done are resumed in Figure 9. For the “Freshwater

Square” schematic case with 4 cores the domain decomposition using MPI option is

able to have a speed up of 3 while the do loop parallelization using OpenMP has a

speedup slighter above 2. For 8 cores the first option as speedup of almost 5 while the

second option has a speed of almost 3. For this case, and for 8 cores, this means the

new upgrade is able to almost double the performance of the standard parallelization

MOHID parallelization following a domain decomposition approach P a g e 24 / 33

methodology of MOHID. Using the MOHID 64 bits version a slight increase in the

speedup factor for the domain decomposition using MPI functionality is achieved. For

example, in 8 cores the MOHID 32 bits version has a speedup factor of 4.7 and the 64

bits version a speedup factor of 5.3.

Figure 9 : Speedup factor for MOHID in 32 bits run in 8 cores (2.53GHz) computer. Green line – ideal speedup, blue

line – speedup with the domain decomposition option implemented using MPI. Red line – speedup using the do loops

parallelization with OpenMP option.

For the 32 cores computer, the domain decomposition MPI implementation reveals a

speedup factor with a constant growth rate until 12 cores (speedup factor of 6 – see

Figure 10Figure 10). The speedup factor still growths from 12 to 24 cores but with a

lower rate. Above 24 cores the speedup factor starts to decrease. For this MOHID

implementation (55x500x10) the ideal number of cores to be used is ~12. Above this

number the speedup factor increment is residual.

This schematic case can be downloaded from

https://www.dropbox.com/s/29ztms06668m3n1/FreshWaterSquare.rar ready to be

run in a windows platform.

https://www.dropbox.com/s/29ztms06668m3n1/FreshWaterSquare.rar

MOHID parallelization following a domain decomposition approach P a g e 25 / 33

Figure 10 : Speedup factor for MOHID in 32 bits run in 32 cores (2.2GHz) computer. Blue line - domain

decomposition option implemented using MPI.

Ria de Arousa operational implementation

MeteoGalicia presently runs MOHID in operational mode for several Rias along the

Galicia coast. These models are nested in off-line with a ROMS implementation for the

entire Galicia coast (

Figure 11).

The new upgrade of MOHID allows for this case a speedup factor of 4 for 8 cores

(Figure 12). In this case the speedup factor increase using domain decomposition,

relative to the do loops parallelization, is lower than the previous schematic case. In

this case, for 8 cores the increase is only 30% (Figure 12) while in the previous case was

50% (Figure 9) for the same hardware. The possible reasons for this difference are

listed below:

MOHID parallelization following a domain decomposition approach P a g e 26 / 33

 The cells number of the Arousa (cells = 126x111x34) implementation is 5 times

smaller than the schematic case (cells = 500x500x10). The domain

decomposition speedup factor efficiency is proportional to the number of

computation cells. The bigger the number of the computation cells the closer is

the speedup factor to the ideal speedup limit;

 The domain decomposition implementation was integrated in the original

implementation of MPI that allocates at least one model to one process. This

means that one core is allocated to the first level that only reads every 15

minutes the ROMS solution from an hdf5 file. This core is underused along the

simulation. The other 7 cores (7 sub-domains resulting from the domain

decomposition approach) are used intensively to simulate the Arousa model

hydrodynamics. This means that there is a slight unbalance of the computation

effort by the available cores.

Figure 11 : Surface velocity: Left panel ROMS output used to define the open boundary of the MOHID models

implementation (Level 1). Right panel MOHID model implemented for Ria Arousa (Level 2).

MOHID parallelization following a domain decomposition approach P a g e 27 / 33

Figure 12 : Speedup factor for MOHID in 32 bits run in 8 cores (2.5G3Hz) computer. Green line – ideal speedup, blue

line – speedup with the domain decomposition option implemented using MPI. Red line – speedup using the do loops

parallelization with OpenMP option.

MOHID parallelization following a domain decomposition approach P a g e 28 / 33

 Common errors and limitations

Land mapping hdf5 name

The error " HDF5ReadWindowI4_2D - ModuleHDF5 - ERR20" or

"HDF5ReadWindowI4_3D - ModuleHDF5 - ERR20" can occur when the domain

decomposition/MPI functionality is used in MOHID projects with input files (initial or

boundary conditions) in hdf5 format. When the domain decomposition / MPI option is

ON each subdomain only read a subsection (sub-window) of the hdf5

boundary/initialization input files. In this procedure the Field4D module is used. This

module is able to construct all the modules related with the spatial discretization just

reading the hdf5, for example, 2D and 3D mapping. The Field4D module associates by

default the follow names to the land mapping:

- 2D mapping : WaterPoints and WaterPoints2D

- 3D mapping : WaterPoints3D

When a different name is used from the three already presented the errors presented

above occur. This error is related with the use of a nonstandard name in an hdf5 for

the land mapping field. In this case it is necessary to specify the land mapping name

using the keyword MASK_GRID in every block you are defining an hdf5 input file. For

example, if the name “LandCells” is used in the hdf5 file you need to define something

like :

<beginproperty>
…
FILENAME : WindVelocity.hdf5
MASK_GRID : LandCells
…
<endproperty>

MOHID parallelization following a domain decomposition approach P a g e 29 / 33

In other cases where the user need to specify the name of the land mapping is when
the HDF5 file have two land mapping field, for example, “WaterPoints” and
“WaterPoints3D”.

Nesting and automatic domain decomposition

There is a limitation when the user wants to use the domain decomposition approach

in a model and associated nested models (Figure 13). If the user chooses the automatic

decomposition the “father” sub-domain of all nested models associated will be the

model sub-domain to be allocated in last or the upper sub-domain (higher indexes

lines). For example, if I have model with 100x100 cells and I decomposed it in two sub-

domains the one that automaticly will be considered the father model of associated

sub-models will be model will start in line 51 and ends in line 100.

This limitation can be workaround if the user specifies manually the domain

decomposition mapping. The user only needs to guarantee that the domain with

highest ID is the father model.

Figure 13 – Tree.dat example where the user wants to use the domain decomposition approach in a model

(Lev_Rivieres) and associated nested model (Lev4_Baie).

MOHID parallelization following a domain decomposition approach P a g e 30 / 33

Father/nesting vs domain decomposition

The present version assumes if a “father” model is decomposed the associated nested

models are linked with only one sub-domain (Figure 14).

Figure 14 – Four scenarios of a Domain decomposition of “father model” (model A) in 4 sub-domains with a nested

model (model B): top two – valid and bottom two - invalid.

Model A

Model B

Model A

Model B

YES

NO

Model A

Model B

Model A

Model B

YES

NO

MOHID parallelization following a domain decomposition approach P a g e 31 / 33

Problem with the SUBMODEL_EXTRAPOLATE option

When a model is break down in very small sub-domains the option

SUBMODEL_EXTRAPOLATE (horizontal extrapolation of the “father solution” velocity

field using the nearest neighbour approach) start to have problems, for example, the

model can stop with the follow error:

"ExtraPol3DNearestCell_8 - ModuleFunctions - ERR10"

When this error happens the user should replace the SUBMODEL_EXTRAPOLATE

(SUBMODEL_EXTRAPOLATE : 1) option by the MISSING_NULL (MISSING_NULL : 1). This

last option assumes null values in the horizontal extrapolation process of the “father

solution” velocity field.

MOHID parallelization following a domain decomposition approach P a g e 32 / 33

 Conclusions

The new MOHID parallelization upgrade (based in the domain decomposition concept)

allows a speedup factor of ~0.5 X cores number for 3D baroclinc implementations with

0.5 to 2.5 million computational cells. This speedup factor is valid from 2 to 13 cores.

Above this limit the speedup increase is residual and above 24 cores there is even a

decrease of the speedup. A speedup factor of 8 (24 cores) was the maximum speedup

achieved for ~2.5 million cells 3D baroclinic implementation for a computer with 32

cores (2.2GHz). An efficiency increase is expected for larger grids and for

implementations simulating more hydrodynamic or biogeochemical processes (e.g.

primary production).

The speedup increase due to the new upgrade, relative to the do loop parallelization

with OpenMP directives, is approximately 30% (for 0.5 millions computational cells) to

50% (2.5 millions computational cells) for 8 cores. Globally, the new method speedup

factor, relative to the old method, grows with the number of cores and with the

number of computation cells.

This new update opens the door for testing MOHID in clusters. Another important

future step will be to test strategies of using the “One process – One model” (MPI)

together with the do loop parallelization (OpenMP directives).

Operational implementations of the MOHID model done is several points of the globe

are usually for grids of the order of 200x200x50. Hidromod’s conviction is that with

this new upgrade it is possible to start implementing models with 1 to 2 orders of

magnitude more computational cells. In the case of the Galicia coast, it is

recommended that MeteoGalicia implements a model at least 10 times bigger than

the one already being run for Ria de Arousa. The old grid is 111x126x34 and, for the

present hardware of MeteoGalicia, it is possible to start testing a computational grid of

MOHID parallelization following a domain decomposition approach P a g e 33 / 33

1000x200x34. A huge step forward would be to start testing MOHID in a high

performance computing environment like the one managed by CESGA. It would be

interesting to analyse the MOHID performance, for example, running an

implementation of 2000x2000x50 in hardware’s facilities with a number of nodes of

the order of 1000.

