
Evaluating Sketch-based Retrieval Speed-up for Behaviour Design in Soccerbots ∗†

Gonzalo Flórez-Puga and Belén Dı́az-Agudo and Pedro González-Calero
Complutense University of Madrid. Madrid. Spain

{gflorez, belend, pedro}@fdi.ucm.es

Abstract

Sketch-based retrieval is a technique that supports the design
of behaviour for game characters by reusing previously de-
signed behaviours. Most techniques for specifying behaviour
for game characters use some kind of graph-based formalism
to represent such behaviour. Through graph-matching tech-
niques, sketch-based retrieval allows to use any intermediate
graph generated along the design process, a sketch of the fi-
nal behaviour, as a query to retrieve similar behaviours from
a library of complete behaviours. In this paper we describe
the design and results from an experiment designed to mea-
sure to what extent having a library of reusable behaviours
accessed through sketch-based retrieval can speed-up the be-
haviour design process in the Soccerbots game.

Introduction
We present a new approach to the authoring of behaviours
for non-player characters (NPCs) in videogames based on
retrieval and reuse from a collection of reusable behaviours.
The motivation behind our approach is that typically in a
large game we can find simple behaviours that are repli-
cated within different complex behaviours. For instance, in
a soccer game, Defend could be a complex behaviour that
is composed of two simpler behaviours like Go to the
ball and Clear; meanwhile Attack could be made up
of Go to the ball, Dribbling and Shoot. How-
ever, the actual process of AAA1 games development, where
a group of game designers and programmers collaborate
over a long period of time to iteratively design a large num-
ber of complex behaviours (for instance, Halo 2 had an av-
erage of 60 different behaviours arranged in 4 layers (Isla
2005)), does not currently rely on behaviour reuse. With-
out supporting tools and technology, reuse is not an option,
and game designers tend to develop new behaviours from
scratch, resulting in variations of similar behaviours coex-
isting in the same game, ignoring the benefits of reuse in
terms of quality and scalability.

∗Supported by Spanish Ministry of Economy and Competitive-
ness under grant TIN2009-13692-C03-03.
†Funded by Complutense University of Madrid.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1High budget, high quality videogames, expected to sell well.

To help designers in the task of building and reusing be-
haviours we have developed eCo2, a visual editor capable
of storing, indexing, retrieving and reusing previously de-
signed behaviours. Although in this paper we exemplify
the approach with behaviours represented as hierarchical fi-
nite state machines (HFSMs) (Millington 2006), the editor
can deal with other formalisms typically employed for de-
signing behaviour in videogames, such as finite state ma-
chines (FSMs) (Bourg and Seemann 2004), and behaviour
trees (BTs) (Flórez-Puga et al. 2011).

One of the most notable features of our editor is its capa-
bility for sketch-based retrieval. In the image retrieval do-
main, sketch-based retrieval consists in finding a complex
image using an approximate representation of it (a sketch)
as a query (Eitz et al. 2012). We can translate that idea to
the behaviour domain, where a sketch is a partial represen-
tation of a behaviour (for instance, a FSM that is missing
some edges or where the behaviour of a node has not been
specified). In sketch-based retrieval of behaviours we search
in a repository for behaviours, represented as graphs, that
are similar to the one the user is drawing, making sugges-
tions about how to complete it. There are several CBR sys-
tems that use approximate graph retrieval in domains as dis-
parate as workflow retrieval (Bergmann and Gil 2011), tex-
tual CBR (Cunningham et al. 2004), image analysis (Eshera
and Fu 1984), or architectural design (Weber et al. 2010).
The novelty of our work resides in using the different in-
termediate states of the behaviour construction process as
queries to retrieve a relevant case.

The question we address in this paper is to what extent
sketch-based retrieval can speed-up the process of design-
ing a new behaviour when the target behaviour is already in
the library of reusable behaviours. In essence we measure
at what point in the design process our algorithm would re-
trieve the completed target behaviour and how much effort
is saved in terms of editing steps.

The rest of the paper runs as follows. Next section de-
scribes the main ideas of sketch-based retrieval and its im-
plementation in the eCo behaviour editor. Next we describe
the experiment setup before going into the section describ-
ing the results. Finally, we draw some conclusions.

2eCo: http://gaia.fdi.ucm.es/research/eco



eCo Behaviour Editor
eCo is a visual editor that helps game designers in the task of
developing behaviours for NPCs in games. In particular, the
version presented in this paper allows creating HSFMs that
implement behaviours for Soccerbots robots, but the editor
can be configured to be used with other games. For a more
detailed description of eCo we refer to (Flórez-Puga et al.
2013).

Soccerbots3 is a well-known simulation environment that
simulates the dynamics and dimensions of a regulation
RoboCup4 small size robot league game. Two teams of five
robots compete on a soccer field by pushing and kicking a
ball into the opponent’s goal. To execute the matches we rely
on SBTournament5 (Jiménez-Dı́az et al. 2011), an enhanced
environment to run Soccerbots matches. SBTournament of-
fers different interfaces that allow to configure and run auto-
matically multiple matches between two sets of teams. Be-
sides, it generates a very useful complete log with statistics
regarding the matches played.

Aside from assistance for configuring and launching large
sets of matches, SBTournament provides users with a set
of sensors and actuators, which are an enhanced superset
of those provided by SoccerBots. Actuators are the most
simple actions that a robot can execute, while sensors are
the pieces of information that a robot can gather from the
game world. For example, actuators in SBTournament allow
users to kick the ball or set the desired heading and speed
for a robot. Likewise, sensors provide information about
the ball position or the position of the opponent’s goal. The
editor uses sensors and actuators to build the HFSMs that
our robots will execute. On one hand, sensors are used to
build the conditions for the edges of the HFSMs. On the
other hand, actuators are used to build the basic behaviours,
i.e. the basic building blocks for the robot’s behaviour. Basic
behaviours are the simplest actions that can be executed in a
node of a robot’s HFSM. These basic behaviours generally
consist of a sequence of calls to different actuators.

eCo allows users to “draw” HFSMs to specify the be-
haviour of SBTournament’s robots and teams. As the user
draws, the partially completed HFSM is used as a sketch to
retrieve previously created behaviours. The users can reuse
pieces of the retrieved behaviours to complete the one being
edited. Once a HFSM is finished it can be exported and ex-
ecuted in SBTournament. Finished behaviours are added to
a library of created behaviours in order to be reused later.

Figure 1 shows the editor’s graphic interface that allows
users to design individual players and teams. The area in
the middle is a canvas where users can draw the HFSMs that
represent the robots’ behaviours. Under the drawing canvas
there is a text editor where users can write code to create
and/or modify the basic behaviours.

The most important feature of the editor is its capabil-
ity to retrieve behaviours stored in a library using two kinds

3SoccerBots: http://www.cs.cmu.edu/˜trb/
TeamBots/Domains/SoccerBots

4Robocup: http://www.robocup.org/
5SBTournament: http://gaia.fdi.ucm.es/

research/sbtournament

of searches: attribute-based retrieval and sketch-based re-
trieval. For attribute-based retrieval we make the behaviours
in the library play several matches versus a set of prese-
lected trainer behaviours. From each match we gather some
statistics that describe the gameplay of the behaviour (for
instance, the number of goals scored, the covered distance,
the average distance to each goal, etc.). To issue a query,
the user assigns values to a subset of the statistics. The be-
haviours with the most similar statistics are retrieved from
the library. Sketch-based retrieval allows designers to in-
stead retrieve behaviours using as a query a partial graphical
representation of the desired behaviours as we describe next.

Sketch-based Retrieval
In sketch-based retrieval designers can use a sketch of the
desired behaviour as a query. A sketch is a partial or unfin-
ished representation of the behaviour. The sketch is typically
a behaviour that is being drawn by the designer but it is still
not finished (that is, an intermediate step in the process of
creating a behaviour). This allows the editor to automati-
cally suggest different ways to finish the behaviour.

This approach requires an appropriate similarity function.
For complete behaviours like the ones in the library, we can
make them play and gather statistics about their gameplay
to see if they are similar because they behave similarly. But
in the case of a sketch, that is not possible, because the be-
haviour is not finished yet. Instead, we have to rely on an-
other similarity metric that allows us to compare behaviours
and predict which of them behave similarly. In particular
we use the graph edit distance to compare the underlying
graphs of the sketch and the cases in the library. The prob-
lem with the, so to speak, “standard” graph edit distance is
that its cost is exponential on the number of nodes of the
graph (Bunke and Messmer 1994). For this reason we have
used the heuristic proposed in (Riesen and Bunke 2009),
adapting it to HFSMs. As we have shown in past studies
(Flórez-Puga et al. 2013) using this heuristic we obtain a
result set that is almost indistinguishable from the original
similarity function, but at a rather reduced cost in time.

The suggestion feature in the editor works as follows:
while the designer is drawing the behaviour, the editor uses
the current (probably unfinished) behaviour as a query. If
the designer takes a new step, like adding a node or changing
the label on an edge, a new query is issued with the changed
sketch. The top results of the query are shown in the sugges-
tions panel, which is at the left side of the drawing canvas
in Figure 1. The designer can use any of the results instead
of the current sketch, or can combine them with the sketch
being edited. When the user selects a behaviour suggested
from the library, the editor shows some statistics about it in
the table below. The statistics are gathered by making the
teams play versus a predefined set of trainer teams.

The adaptation process is not automatized, but the system
offers some assistance for manual adaptation. Information
regarding the gameplay of the teams suggested can be em-
ployed by the users to adjust the team being built. For in-
stance, if the user wants to develop a team that has a defen-
sive gameplay she could compare her team with the teams
suggested. She could then find a more defensive team (with



Figure 1: Capture of eCo

few goals against or matches lost) but still similar to hers,
and use it as a model to modify its configuration.

Experiment setup
As we have seen, sketch-based retrieval can help game AI
designers to create behaviours for NPCs by providing candi-
date behaviours to be reused. This way, development time of
new behaviours can be reduced. In this section we describe
an experiment we have conducted to measure the savings in
development time or, more precisely, in development steps.

The idea behind the experiment is to compare the number
of steps taken by a user to create the same behaviour with
and without the sketch-based retrieval feature. The experi-
ment was conducted with 43 students from the Knowledge
Based Systems course of the Complutense University, di-
vided in 16 groups, during two sessions of two hours. In
the first session we taught the users how to build the be-
haviours using the editor: we asked them to follow a tutorial
that taught them how to build an example goalkeeper be-
haviour and then a team using different simple behaviours.

Before the second session they had one week to design
several roles (e.g. goalkeepers, forwards, defenders, etc.)
for a Soccerbots team using “pen and paper”. For the sec-
ond session we asked them to implement those roles in the
editor and build a team combining them. For this second
session they weren’t allowed to use the retrieval features of
the editor.

Once they had finished, we collected the behaviours they
built. In total we collected 95 behaviours with an amount
of nodes that ranged from 2 in the simpler behaviours (e.g.
“Go to my goal” or “Kick ball”) to more than 20 for the team

behaviours.
Together with the behaviours, we collected an execution

trace generated by the editor, that contained all the editing
steps that the users had followed. We consider an editing
step any operation that introduces a change in the behaviour
being edited: adding or deleting a node or edge, editing the
label associated to a node or an edge or changing the initial
node of a behaviour. We don’t consider editing steps, for in-
stance, the creation of new basic behaviours or adding a be-
haviour to the library. Unsurprisingly, the quantity of steps
is related to the number of nodes of the behaviour. In the
behaviours we collected we found that the number of steps
ranges from around 10 for the smaller behaviours (with 2 or
3 nodes) to more than 300 for the teams. Using this trace we
were able to rebuild the original behaviours.

For each behaviour implemented by the users, Bi, we
used its trace to obtain a set of intermediate steps, which
are incomplete versions of the behaviour Bi. We called this
set the intermediate behaviours Ii = {Ii,0, . . . , Ii,si}, where
si is the total amount of steps taken to obtain Bi. Hence,
the set Ii ranges from the empty behaviour Ii,0 (a behaviour
without any nodes or edges) to the final behaviour that was
implemented Ii,si = Bi. Each Ii,j is the intermediate be-
haviour obtained after applying step j.

To run the experiment we also needed a case base. Our
case base is composed of all the final behaviours from the
users, plus a set of 205 behaviours that were created by ran-
domly composing different roles we already had from past
experiments (Flórez-Puga et al. 2013), which makes a total
of 300 behaviours in our case base. The size of the added
behaviours ranges from 14 to 35 nodes.



0%	  
10%	  
20%	  
30%	  
40%	  
50%	  
60%	  
70%	  
80%	  
90%	  
100%	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	  

St
ep

s	  p
re
ve
nt
ed

	  

Behaviours	  retrieved	  

AVERAGE	  STEPS	  PREVENTED	  

Figure 2: Average steps saved when using sketch-based re-
trieval

To determine the number of steps saved by the sketch-
based retrieval for each Bi, we have used as a query each of
the intermediate behaviours Ii,j , with 0 ≤ j ≤ si, retriev-
ing from the case base the k-nearest neighbours. In this way
we are mimicking the behaviour of the editor when using
the sketch-based retrieval feature. As we will see in the fol-
lowing section, the number of behaviours retrieved, k, has a
great influence on the final results.

Then, we checked if the retrieved list contains the final be-
haviour Bi. If Bi belongs to the list of behaviours retrieved
by query Ii,j it means that using sketch-based retrieval the
user can obtain the desired behaviour at step j, saving the
remaining steps until si.

Results
In the Figure 2 we show the average number of steps saved
for each value of k up to 15 behaviours retrieved. We can
see that, when we increase the value of k, the number of
steps saved is also increased. Although we have registered
better values of saved steps for values of k higher than 15,
it is not practical for the users to have a big list of retrieved
behaviours and, in any case, they are most likely to analyse
only the first few of them.

We observe that when we only show the most similar be-
haviour to the user (that is, when k = 1), the user can save
one third of the total amount of steps. If we show more
behaviours to the user, the number of saved steps rises to
around 50% for k = 3. From there on the improvement is
more gradual, reaching the 60% when k = 11. This ob-
servation indicates that, on average, users can save a great
number of editing steps (up to 50%) when showing them
only a few results from the query.

The standard deviation σ for each value of k remains al-
most constant around 20% for all the values shown. This in-
dicates that for most of the cases, the number of saved steps
are in a ±20% range from the average.

To narrow this range and get a better idea of the overall
results we also have studied the frequencies of the results
for different values of k, as shown in the Figure 3. Each pie
chart represents the results of retrieval for a different value
of k. Each section in the chart represents the proportion of

retrieved behaviours for which we save at most the percent-
age of steps indicated. Table 1 shows the specific values of
frequency. Each column in the table represents a value for k,
while each row is a range of saved steps. The value in each
cell shows the number of behaviours for which we save a
number of steps in the corresponding range.

We note that for k = 1 there is a saving of more than
50% of the steps needed to create the behaviour in 16 out
of the 98 behaviours studied. This value grows to 34 when
k = 2 and to 44 (almost half of the total) when k = 3.
This upward trend is steady for bigger values of k, but with
a gentler increase. We also can see that the section labelled
with 0% is present only when k = 1. This means that, when
the number of retrieved behaviours is 2 or more, there is no
case in the case base for which we don’t save any steps.

Another factor to take into account is from what step the
results retrieved are reliable. If a query is issued after too few
steps, the sketch is less likely to summarize the structure of
the desired behaviour and, hence, the retrieved behaviours
won’t be what the user expects. For that reason, before issu-
ing any query it is advisable that the user takes some editing
steps to reach a more detailed sketch. We have observed that
the number of steps needed before obtaining the desired be-
haviour depends on the final size of the behaviour and on the
number of elements retrieved in each query.

Table 2 shows the number of editing steps the user needed
to take to retrieve the desired behaviour using sketch-based
retrieval. We divided the set of behaviours in three groups
according to their size: small behaviours with a total of 2
or 3 nodes (41 of them), medium, with 4 to 7 nodes (also
41) and large behaviours, with 8 and 9 nodes (of which we
have 5). The remaining 8 behaviours are too scattered to be
grouped. The second column shows the average number of
editing steps that the users needed to create the behaviours in
that group. This gives an upper bound of the number of steps
needed in the worst case (that is, without using sketch-based
retrieval). The remaining columns show the average number
of steps needed to obtain the desired behaviour using sketch-
based retrieval for different values of k.

We can see again that when we increase the number of
behaviours shown to the user (k) the number of steps needed

Retrieved behaviours (k)
Spared steps 1 2 3 5 10 15

0 % 7 0 0 0 0 0
(0, 10] % 8 3 1 0 0 0

(10, 20] % 21 11 6 3 2 2
(20, 30] % 15 18 17 14 10 8
(30, 40] % 12 17 14 11 9 9
(40, 50] % 16 12 13 15 14 13
(50, 60] % 9 13 11 12 14 11
(60, 70] % 4 11 18 20 21 23
(70, 80] % 0 5 7 9 8 8
(80, 90] % 3 5 8 9 12 12

(90, 100] % 0 0 0 0 5 9

Table 1: Frequencies for different ranges of saved steps



0%#

10%#
20%#

30%#

40%# 50%#

60%#

70%#
80%#
90%#>#50%#

Retrieved(behaviours(1(

10%#20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#
>#50%#

Retrieved(behaviours(2(

10%#20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

>#50%#

Retrieved(behaviours(3(

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#100%#

>#50%#

Retrieved(behaviours(5(

20%#
30%#

40%#

50%#

60%#

70%#

80%#

90%#
100%#

>#50%#

Retrieved(behaviours(10(

20%#
30%#

40%#

50%#

60%#

70%#
80%#

90%#
100%#

>#50%#

Retrieved(behaviours(15(

Figure 3: Steps saved for different values of k

Size Total Steps needed for k
steps 1 2 3 5 10 15

Small 18 10.9 8.5 7.2 6.1 5.1 4.2
Medium 56 40.4 33.7 31.6 29.4 28.0 27.4
Large 80 58.4 54.2 50.2 38.4 33.2 32.8

Table 2: Number of editing steps needed on average to ob-
tain the final behaviour in a query

to obtain the behaviour decreases, fast for the first values of
k but in a smoother manner for values over 5. We can also
see that, for bigger behaviours the user needs to take more
steps to obtain the expected result.

In Figure 4 we show the evolution of the position of the
desired behaviour in the results list for three different be-
haviours of different characteristics. Although they are three
particular behaviours, we have chosen them in such a way
that they are representative of each of the classes described
before. The first case corresponds to a small behaviour, of
only 2 nodes, that was completed by the user in 27 steps.
The second one is medium sized, has 5 nodes and took the
user 40 steps. The last one is large, has 8 nodes and took
56 steps. The horizontal axis of the graphs represents the
number of steps taken by the user and the vertical axis the
position of the desired behaviour in the results for that step.
We have placed vertical dotted lines dividing the number of
steps at 25%, 50% and 75%. The desirable result is a graph
that goes down fast (meaning that the desired behaviour is
found after a few steps) and then stays stable at a low posi-
tion (this way, although the user has missed the behaviour in
the first positions of the results list, he can retrieve it again
in a later query). That is the case of the first example. We
can see that, although at the very first steps it is retrieved in
a high position, the position goes down to 3 at step 11 and is
retrieved the first after step 12, staying there for the remain-
ing steps. This means that using sketch-based retrieval, the

appropriate behaviour is retrieved using the 40% of the steps
that were needed to create it in the first place.

The second example behaves similarly. In this case we
see that the result needs more steps to stabilize (16 steps to
reach position 3 and 24 to reach the first position), but if we
attend to the percentage of steps, we are also around 40%. In
the results shown in the third graph we can see that it takes
still more steps to find the behaviour and also to stabilize.
The percentage of steps needed in this case has also grown
up to 55%.

Analysing the graphs of these and other similar be-
haviours we can conclude that the number of steps the user
needs to take before issuing a query grows along with the
size of the behaviour but decreases when we increment the
number of behaviours retrieved in each query (k). In gen-
eral terms, the user needs to take around 40% of the total
number of steps to be sure that the system retrieves the ad-
equate behaviour. This percentage is greater for the biggest
behaviours in our collection.

Regarding execution times, as we mentioned earlier, we
used a heuristic similarity function to avoid the exponen-
tial cost inherent to structural similarity functions for graphs.
Using this heuristic, each query was resolved in an average
time of 0.117 ms. Therefore it is possible for eCo to auto-
matically issue a new query after each editing step without
imposing any delays for the user interaction, at least for the
size of the cases bases that we have tried.

Conclusions and Future Work
In this paper we have presented the evaluation of a novel ap-
proach to the creation of intelligent behaviours that is based
on reuse. We have called this approach sketch-based re-
trieval. In sketch-based retrieval designers use a sketch of
the desired behaviour to retrieve from a library previously
created behaviours that are similar to it. The similar be-
haviours are shown to the user who can then select a com-



0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

45	  

1	   6	   11	   16	   21	   26	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

1	   6	   11	   16	   21	   26	   31	   36	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

1	   11	   21	   31	   41	   51	  

Figure 4: Evolution of the position of the target behaviour in
the results list for three example queries

plete behaviour or a fragment to complete the one used as
a query. It is interesting to note that the querying process
doesn’t require user intervention.

Using the retrieved behaviours to finish the one being de-
veloped designers can save time in the edition of behaviours
while, at the same time, reduce the possible errors, because
they are using behaviours or pieces of behaviour that have
been previously tested. We have demonstrated experimen-
tally that using sketch-based retrieval actually reduces the
number of editing steps the designer has to take to obtain
the desired behaviour, hence reducing the development time.
For this experiment we assumed that the target behaviour is
already in the library.

The amount of steps saved is dependant on the number of
behaviours retrieved (k): when we increase the number of
behaviours retrieved the number of steps saved also grows.

But retrieving too many behaviours is not useful for the
user, because he would have to search in a long list for the
behaviours he is interested in. We propose to use a value
of k = 3. In our experiment we have shown that using this
value we save at least 50% in 47 behaviours out of the to-
tal of 98 cases evaluated. We have also found that for this
value of k we obtain good results for small behaviours (2 or
3 nodes) after the user has taken around 7 steps. For bigger
behaviours (between 4 and 7 nodes) we needed around 30
steps to get the result. For behaviours of 8 or 9 nodes, our
approach needed around 50 steps to return the relevant re-
sult within the first 3. In the examples of Figure 4 we have
drawn a dashed horizontal line in k = 3. We can see that for

the small behaviour, we obtain a good result after step 11, in
the second example, the medium sized, after step 16 and in
the last one after step 31.

In view of the promising results obtained, we plan, as fu-
ture work, to drive an evaluation experiment with game de-
signers. The idea of the experiment is to let game designers
use eCo to create several behaviours using also the sketch-
based retrieval tools and measure how many of the retrieved
behaviours are used, in which step and how many adaptation
steps are done by the designers after the retrieval. To com-
plete the experiment we also plan to conduct a satisfaction
survey of the users.

References
Bergmann, R., and Gil, Y. 2011. Retrieval of semantic work-
fows with knowledge intensive similarity measures. In IC-
CBR 2011, volume 6880 of LNCS, 17—31. Springer.
Bourg, D. M., and Seemann, G. 2004. AI for Game Devel-
opers. O’Reilly Media, Inc.
Bunke, H., and Messmer, B. T. 1994. Similarity measures
for structured representations. In EWCBR ’93, 106–118.
London, UK: Springer-Verlag.
Cunningham, C. M.; Weber, R.; Proctor, J. M.; Fowler, C.;
and Murphy, M. 2004. Investigating graphs in textual case-
based reasoning. In ECCBR 2004, 573–586. Springer.
Eitz, M.; Richter, R.; Boubekeur, T.; Hildebrand, K.; and
Alexa, M. 2012. Sketch-based shape retrieval. ACM Trans.
Graph. 31(4):31:1–31:10.
Eshera, M., and Fu, K.-S. 1984. A graph distance measure
for image analysis. Systems, Man and Cybernetics, IEEE
Transactions on SMC-14(3):398 –408.
Flórez-Puga, G.; Llansó, D.; Gómez-Martı́n, M. A.; Gómez-
Martı́n, P. P.; Dı́az-Agudo, B.; and González-Calero, P. A.
2011. Empowering designers with libraries of self-validated
query-enabled behaviour trees. In Artificial Intelligence for
Computer Games. Springer. 55–82.
Flórez-Puga, G.; González-Calero, P. A.; Jiménez-Dı́az, G.;
and Dı́az-Agudo, B. 2013. Supporting sketch-based retrieval
from a library of reusable behaviours. Expert Systems with
Applications 40(2):531–542.
Isla, D. 2005. Handling Complexity in the Halo 2 AI. In
Game Developers Conference.
Jiménez-Dı́az, G.; Menéndez, H. D.; Camacho, D.; and
González-Calero, P. A. 2011. Predicting performance in
team games. the automatic coach. In ICAART 2011, 401 –
406. Rome, Italy: SciTePress.
Millington, I. 2006. Artificial intelligence for games. The
Morgan Kaufmann series in interactive 3D technology. Mor-
gan Kaufmann Publishers Inc.
Riesen, K., and Bunke, H. 2009. Approximate graph edit
distance computation by means of bipartite graph matching.
Image Vision Comput. 27(7):950–959.
Weber, M.; Langenhan, C.; Roth-Berghofer, T.; Liwicki,
M.; Dengel, A.; and Petzold, F. 2010. a.scatch: seman-
tic structure for architectural floor plan retrieval. In ICCBR
’10, LNCS, 510–524. Berlin, Heidelberg: Springer-Verlag.


