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I. ABSTRACT

Angle-resolved (AR) RABBIT measurements offer a
high information content measurement scheme, due to
the presence of multiple, interfering, ionization channels
combined with a phase-sensitive observable in the form
of angle and time-resolved photoelectron interferograms.
In order to explore the characteristics and potentials of
AR-RABBIT, a perturbative 2-photon model is devel-
oped; based on this model, example AR-RABBIT results
are computed for model and real systems, for a range
of RABBIT schemes. These results indicate some of
the phenomena to be expected in AR-RABBIT measure-
ments, and suggest various applications of the technique
in photoionization metrology.
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II. INTRODUCTION

The RABBIT methodology - “reconstruction of at-
tosecond harmonic beating by interference of two-photon
transitions” [1] - essentially defines a scheme in which
XUV pulses are combined with an IR field, and the two
fields are applied to a target gas. The gas is ionized,
and the photoelectrons detected. In the typical case, the
IR field is at the same fundamental frequency ω as the
field used to drive harmonic generation, and the XUV
field generated is an atto-second pulse train with har-
monic components nω, with odd-n only. In this case, if
the intensity of the IR field is low to moderate, the resul-
tant photoelectron spectrum will be comprised of discrete
bands corresponding to direct 1-photon XUV ionization,
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and sidebands corresponding to 2-photon XUV+IR tran-
sitions [1]. (The energetics of this situation are illustrated
in fig. 1.) Temporally, if the XUV pulses are short rel-
ative to the IR field cycle, the sidebands will also show
significant time-dependence, since they will be sensitive
to the optical phase difference between the XUV and IR
fields, with an oscillatory frequency of 2ω. In this case,
a measurement which is angle-integrated, or made at a
single detection geometry, can be viewed as a means to
characterising the properties of the XUV pulses (spec-
tral content and optical phase), provided that the ioniz-
ing system is simple or otherwise well-characterised [1];
RABBIT can therefore be utilised as a pulse metrology
technique [1, 2], and this is the typical usage.

Conversley, RABBIT can also be regarded as a pho-
toelectron metrology technique, since it is sensitive to
the magnitudes and phases of the various photoioniza-
tion pathways accessed. In contrast to most traditional
(energy-resolved) photoelectron spectroscopy techniques,
RABBIT has the distinction of interfering pathways re-
sulting from different 1-photon transition energies: it is
thus sensitive to the energy-dependence of the photoion-
ization dynamics, as well as to the partial-wave com-
ponents within each pathway. An angle-resolved (AR)
RABBIT measurement is particularly powerful in this re-
gard, since the partial-wave phases are encoded in the an-
gular part of the photoelectron interferogram. Although
this is a potentially powerful technique, the underly-
ing photoionization dynamics may be extremely compli-
cated, hence quantitative analysis of experimental results
is challenging.

In essence, AR-RABBIT can therefore be considered
as a technique which combines traditional photoioniza-
tion and scattering physics with an additional (time-
dependent) perturbation in the form of the IR laser field.
This field provides additional couplings between the 1-
photon (XUV) channels. In the usual RABBIT inten-
sity regime, these two steps can be decoupled, allowing
for the XUV absorption to be treated as a weak-field
bound-free transition (photoionization), followed by ab-
sorption of an IR photon - this latter step is a tran-
sition purely between different free electron states in
the continuum, often termed continuum-continuum cou-
pling. This scheme is illustrated in the energy-domain
in fig. 1(left). Therefore, the problem becomes one of
dealing with a two-photon matrix element, describing
these two sequential light-matter interactions. Further-
more, if the continuum-continuum coupling is assumed
to be at long-range (i.e. temporally and spatially dis-
tinct from the bound-continuum coupling of the first,
bound-free, step, and at the asymptotic limit of the con-
tinuum wavefunction), then a simplified treatment can
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be developed for this second transition. In this vein,
Dahlström, L’Hullier and coworkers have done significant
work, including angle-integrated resonant cases and ex-
tensive theoretical treatments of the problem. See, for
instance, Introduction to attosecond delays in photoion-
ization [3] and Study of attosecond delays using perturba-
tion diagrams and exterior complex scaling [4] for general
background theory and perturbative treatments similar
to those discussed herein, Phase measurement of reso-
nant two-photon ionization in helium [5] for a specific
example (angle-integrated), and On the angular depen-
dence of the photoemission time delay in helium [6] for
work on this specific angle-resolved case.

In this work, the same basic conceptual path to mod-
elling RABBIT as a sequential two-photon process is fol-
lowed, but the emphasis is placed on the role of the pho-
toinization dynamics. This provides a route to the mod-
elling and analysis of angle-resolved RABBIT, based on
canonical photoionization theory and employing a full
partial-wave treatment of the continuum. Following the
similar treatment of ref. [7], which investigated sequen-
tial 3-photon ionization in a time-dependent IR field
(conceptually similar to a RABBIT scheme), the elec-
tric fields are modelled in a circular basis to allow for
arbitrary field polarization states. The treatment is gen-
eral, and applicable to any atomic or molecular system,
provided that the IR field can be neglected for the first
step. Essentially, within this framework angle-resolved
RABBIT can be considered as an extension of tradi-
tional angle-resolved photoelectron measurements, and
many of the same fundamental considerations and po-
tential applications apply [8, 9]. As usual, in cases where
the XUV and/or IR field is strong, only full numerical
treatments are capable of correctly describing the cou-
pled light-matter system (see, for instance, refs. [10–12]),
and this regime is not within the scope of the perturba-
tive model discussed herein.

In the following, a framework for AR-RABBIT mod-
elling is defined in terms of the general form of the re-
quired photoionization matrix elements, the final contin-
uum wavefunctions and the resultant observables (sect.
III). This framework is then applied to simple model
cases (sect. IV), in order to develop a phenomenolog-
ical understanding of AR-RABBIT measurements. To
explore the application of the framework to real systems
(sect. V), numerical treatments for the radial matrix el-
ements are detailed (sect. V A), and the framework is
applied to model a range of specific AR-RABBIT mea-
surements of neon.

III. THEORY

In this section, a basic theoretical framework for AR-
RABBIT is defined. Further numerical details are dis-
cussed in sect. V.
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Figure 1. Energy and angular-momentum state diagram for
RABBIT processes, starting from an initial s-state. The up-
per and lower panels show states accessed by absorption of a
single XUV photon, of harmonic order n or n + 2, and field
polarization q. The middle panels shows states accessed by
2-photon pathways, involving subsequent absorption or emis-
sion of an IR photon, hence corresponding to a usual RABBIT
sideband. States are colour-coded according to contributing
pathways. For schemes involving even harmonics, absorption
of harmonic n + 1 results in additional accessible states, at
the same energy as the usual sidebands, but different angular
momentum - these are the p-states in the middle panel.

A. 1-photon ionization by the XUV field

The dipole matrix element for 1-photon ionization by
the XUV field, corresponding to direct ionization from
an initial bound state |nilimi〉 to a final continuum state
|lfmf ; k〉, is given as:

dxuv(k, t) = 〈k; lfmf |µ̂if .E(Ω, t, q)|nilimi〉 (1)

= Rlilf (k)Eqxuv(Ω, t)〈lfmf , 1q|limi〉 (2)

where µ̂if is the dipole operator. In the second line, the
matrix element is decomposed in terms of radial and ge-
ometric parts. Here Rlilf (k) denotes the radial integrals,
which are dependent on the magnitude of the photoelec-
tron wavevector k; 〈lfmf , 1q|limi〉 is a Clebsch-Gordan
coefficient which describes the angular momentum cou-
pling for single photon absorption, where the field polar-
ization (circular basis) is defined by q, and the spectral
(Ω) and temporal (t) properties of each polarization com-
ponent by Eqxuv(Ω, t).

This matrix element is essentially identical to canonical
treatments for 1-photon ionization (e.g. Cooper & Zare
[13, 14] for atomic photoionization, Dill [15] for fixed-
molecule photoionization), apart from the inclusion of
a time-dependent E-field. In this decomposition, the
Clebsch-Gordan coefficients can be calculated analyti-
cally, the E-field can be defined analytically or numeri-
cally, and the Rlilf (k) (complex) require numerical solu-
tion for a given ionizing system. Essentially, the analyt-
ical part of the solution encodes the angular momentum
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selection rules, while the Rlilf (k) provide the amplitude
and phase coefficients for each partial-wave channel for a
specific problem (ionizing system and energy). The nota-
tion used here implicitly assumes that the radial integrals
Rlilf (k) are independent of mi and mf . For atomic sys-
tems this is a good approximation, and allows for a sim-
plified treatment of the photoionization dynamics, but
for molecules this assumption does not hold (due to the
loss of spherical symmetry in the core region) and all
m components must be treated explicitly (see, e.g., refs.
[15, 16]).

B. Continuum-continuum coupling

The transition between two continuum states, i and
f , further labelled by energy and angular momentum,
coupled by 1-photon absorption or emission from the IR
field, can be similarly given as:

dir(ki, kf , t) = 〈kf ; lfmf |µ̂if .E(Ω, t, q)|ki; limi〉 (3)

= Rlilf (ki, kf )Eqir(Ω, t)〈lfmf , 1q|limi〉(4)

Note that, as for bound-free ionization, the radial part
of the matrix elements Rlilf (ki, kf ) are here not defined
explicitly, but must be considered specifically for the
problem at hand.

C. Final state wavefunctions

The final continuum states populated are given by ex-
pansions in continuum partial-waves |lfmf ; k〉. The ex-
pansion parameters are defined by the matrix elements
given above, for the various pathways of interest in a
RABBIT scheme, as:

• One photon (XUV) final states

Ψxuv(k, t) =
∑

lfmf ,limi

dxuv(k, t)|lfmf ; k〉 (5)

• Two photon (XUV+IR) final states

Ψ±(k, t) =
∑

lfmf ,lvmv,limi

dxuv(kv, t)dir(kv, k, t)|lfmf ; k〉

(6)
where the ± refers to absorption or emission of
an IR photon, and v denotes the intermediate 1-
photon continuum states.

• Generic channel summed and partial-wave resolved
final states. This notation simply indicates a final
state which is the resultant sum over various
ionization channels c, each decomposed into a
set of final |lfmf 〉 waves, and serves as a general

short-hand.

Ψ(k, t) =
∑
c

Ψc(k, t) =
∑
c

∑
lfmf

ψclfmf
(k, t) (7)

In this case, the number of angular momentum com-
ponents (l, m) involved depends on the ionizing system.
For centro-symmetric systems (e.g. hydrogen), l is a good
quantum number and only bound-free transitions with
∆l = ±1 are allowed; this is also usually a reasonable
approximation for multi-electron atomic systems. How-
ever, as eluded to previously, for molecular systems many
angular momentum components are typically expected,
due to the loss in symmetry of the scattering potential at
short range, and the problem becomes more complex; for
discussion on this topic see, for instance, refs. [15, 16].

In this treatment, t denotes the temporal dependence
of the final states, due to both laser fields E(Ω, t, q).
This dependence can be simplified to a dependence upon
only the relative XUV to IR field delay, τ , under the
assumption that the XUV field is short relative to the
rate of change of the IR field. In the limiting case, the
time-dependence of the XUV field is a δ-function, and
only the instantaneous properties of the IR field at t = τ
are important, hence no temporal integration is required.

D. Observables

The energy and angle resolved photoelectron measure-
ments, as a function of the XUV-IR delay τ , are then
given by:

• One photon transitions, single path - direct ion-
ization, the usual case for odd-harmonic bands in
standard RABBIT experiments (odd-harmonics
only in the XUV spectrum). Note this signal is
effectively time-independent, since the signal does
not depend on τ

I1(E, θ, φ) = Ψxuv(k, t)Ψ
∗
xuv(k, t) (8)

• Two photon matrix elements, with two paths -
usual RABBIT sidebands for an XUV spectrum
with odd-harmonics only

I2(E, θ, φ, τ) = (Ψ+(k, τ) + Ψ−(k, τ))× c.c. (9)

• One & two photon paths - all photoelectron bands
for “extended” RABBIT experiments, when the
XUV spectrum also contains even-harmonics

I3(E, θ, φ, τ) = (Ψ+(k, τ)+Ψ−(k, τ)+Ψxuv(k, τ))×c.c.
(10)
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In all cases the resultant observable, for each photo-
electron band observed in a RABBIT scheme, centered at
photoelectron energy E, can be described by an expan-
sion in spherical harmonics YL,M with time-dependent
expansion parameters βL,M ;E(τ), and a Gaussian radial
function:

I(E, θ, φ, τ) =
∑
L,M

βL,M ;E(τ)YL,M (θ, φ)G(E, σ) (11)

In practice, the Gaussian features centered at energies
E, of width σ, are defined from the experimental har-
monic spectrum. In principle, the energy dependence
of the matrix elements across each photoelectron band,
and the effect of this dependence on the radial spectrum,
should be considered; however, in many cases it is rea-
sonable to assume that the matrix elements are smoothly
varying as a function of energy, and may be approximated
as constant for each discrete photoelectron band (typ-
ically spanning a few 100 meV) - hence a single energy
point at the peak of the band is assumed to be representa-
tive of the band. This is essentially the “smoothly vary-
ing continuum” (SVC) approximation, but will clearly
break-down in the presence of any sharp features such
as autoionizing resonances. For more general discus-
sion, in the context of photoionization and the energy-
dependence of PADs, see refs. [16, 17].

IV. MODEL SYSTEMS

While general, the preceding treatment does not offer
much direct insight since many details remain to be de-
fined - specifically the angular momentum states which
play a role, and the radial integrals. In order to proceed,
one must model specific cases, thus select appropriate
initial states and compute the relevant integrals - for ex-
ample, Dahlström et. al. have presented specific results
for a hydrogenic treatment, including different levels of
approximation [3]. Herein, the cases of “standard” and
“extended” RABBIT are explored, starting with a basic
model system to provide physical insight, while sect. V
details specific real cases.

A. Sidebands in standard AR-RABBIT

The “usual” RABBIT sidebands result from two inter-
fering pathways, corresponding to 2 photon transitions
via H(n) + IR and H(n+ 2)− IR, where H(n) denotes
a harmonic of order n. The corresponding wavefunctions
were denoted by Ψ+ and Ψ− above. To model this, and
explore paradigmatic behaviours, the dipole matrix ele-
ments required can be set as model parameters, and the
energy dependence of the pathways neglected. This pro-
vides a model in which the angular interferograms, and
temporal behaviour, can be probed.

Fig. 1 illustrates a basic RABBIT scheme, for the
simplest model system. Ionization is from a pure s-state,

resulting in ionization pathways s
xuv−−→ p

±ir−−→ s + d.
To model this case, identical radial matrix elements were
set for each 2-photon channel (denoted c), with variable
phases:

Rcs→p = 1eiφ
c
s,p (12)

Rcp→d = 1eiφ
c
p,d (13)

Rcp→s = 0.3eiφ
c
p,s (14)

Fig. 2 shows the results for these case, in which the
laser fields are set to q = 0 only (linear polarization), and
the XUV phases are set to zero. The phases of the dipole
matrix elements were varied to probe the behaviour of the
sidebands, and the three example cases have the following
phases set:

(a): All phases set to 0.

(b): φ2s,p = π/2 - an overall phase-shift in the second
path.

(c): φ2s,p = π/2 and φ1p,d = π/4 - an overall phase-shift
in the second path, plus a phase-shift of the d-wave
for channel 1.

Physically, intra- and inter-channel magnitude and
phase differences of the partial-wave components are ex-
pected purely from the energy-dependence of the ioniza-
tion dynamics. Contributions from the harmonic phase,
or from other physical processes such as resonances at
the 1-photon level in specific channels, can also play a
role. Depending on the physical origin, such phase ef-
fects might shift all partial waves in a given channel (the
simplest case of an optical phase shift in the XUV), or
affect the photoionization dynamics in more complex and
subtle ways. For further discussion on and around this
point see, for example: refs. [18] and [19] for a general
discussion and observation of resonant phase effects in
photoionization, ref. [5] for a similar observation in RAB-
BIT measurements, and ref. [20] for the case of autoioniz-
ing resonances in RABBIT-type measurements (recently
demonstrated experimentally [21]); ref. [22] for the re-
lated case of control over multi-path ionization schemes,
specifically with l-wave parity breaking due to interfering
1 and 2-photon pathways, and ref. [23] for application in
an AR-RABBIT type experiment (see also sects. IV C
and V D herein); ref. [24] discusses conceptually sim-
ilar cases of time-domain control schemes in photoion-
ization, including temporal and polarization control in
multi-photon ionization schemes.

For the usual sidebands, the amplitude of the resultant
wavefunction will oscillate at 2ωir, with a total phase de-
fined by the interfering partial-waves for each channel (in-
cluding any contribution from the XUV optical phase).
Within the approximations described above, the angular
form of the sidebands will not show any time-dependence,
since this requires a change in the relative phases of the



5

contributing paths as a function of time. In this simple
case, there are no dynamics which affect these quantities,
and it is only the absolute amplitudes which vary as the
IR-laser field oscillates. Hence, the angle-resolved inter-
ferograms will appear to simply breathe (in intensity) as
a function of time. However, the presence of any time-
dependence to the dipole matrix elements - e.g. Stark
shifts affecting the ionizing states as the IR field cycles
- would create additional time-dependence in the angu-
lar content, and might be expected in the strong-field
regime.

Thus, in the usual regime, although the shape of the
angular distribution is sensitive to the relative phases of
the matrix elements, it is time-invariant; the total photo-
electron yields are, however, sensitive to both the phases
of the matrix elements and the instantaneous laser field.
In particular, the phase shift of the yields relative to the
laser field is sensitive to both the relative phases of the
channels (hence may be used to probe the effect of reso-
nances in one channel, as per ref. [5]), and the partial-
wave phases within each channel. In this manner, the
angular information provides a phase-sensitivity which is
otherwise lost in an angle-integrated measurement.

B. Sidebands in AR-RABBIT with non-linearly
polarized light

As illustrated in fig. 1, the use of polarization states
other than linear (and a parallel polarization geometry),
will result in population of different m states. In the
most general case, where the XUV and IR fields have
different polarization states, many additional pathways
may play a role. Here a simplified case is illustrated,
in which the XUV and IR fields are assumed to have
the same ellipticity ξ, in order to illustrate the general
concepts and trends with polarization state.

The results are shown in fig. 3. In these calculations,
the model system detailed above is utilized, incorporating
the set of phase shifts (c) (sect. IV A). The three columns
in the figure show the results for different ellipticities, de-
fined mathematically by the phase shift between the two
Cartesian components of the E-fields (φy) (see ref. [7] for
details), and illustrated by the two spherical components
of the IR field (q = ±1). The effect of the polarization
state is quite clear here: as the polarization state moves
from linear (equal magnitudes for the q = ±1 compo-
nents) towards pure circular polarization (q = +1 in this
example) the continuum wavefunction becomes increas-
ingly dominated by the |d,m = 2〉 component. In this
(relatively) simple example, this is a direct consequence
of the selection of pathway by the polarization state of
the light: the handedness of the light is approximately
mapped onto the m = ±2 final states. The most in-
teresting case is, therefore, shown in fig. 3(b), where the
presence of both q = ±1 breaks the cylindrical symmetry
of the distribution. In contrast, fig. 3(c), pure q = +1
light, produces a much simpler angular distribution, with

only the |d,m = 2〉 continuum state contributing. The
symmetry breaking is also present in fig. 3(a), but is
not yet pronounced with only a slight difference in the
magnitudes of the m = ±2 states.

In this simple case, the additional pathways accessible
with q = ±1 allow for breaking of the cylindrical symme-
try of the angular distribution when the E-fields are el-
liptical, thus providing additional interferences, hence in-
formation content, in such measurements. Generally, the
mapping between q and the final observable is less direct,
since many more states typically play a role. Examples
for a more realistic case are given in sect. V C. In tra-
ditional ionization studies, the use of polarization state
and geometry is a powerful tool, and has been used in
a variety of methodologies, for example in photoelectron
metrology [25–27] and control problems, including time-
domain polarization-multiplexed schemes [28, 29]. Re-
cently, the related case of XUV field polarization effects
on photoionization in the strong field regime has been
investigated by Yuan, Bandrauk and co-workers (see, for
example, refs. [30, 31]); of particular note in that case
is the presence of a strong radial (energy) dependence of
the angular interferogram within a single photoelectron
energy band, and asymmetries in the molecular frame.
Polarization geometry in XUV-XUV 2-photon transitions
have been investigated theoretically by the same authors
[32], and XUV-IR schemes with polarization control have
also recently been investigated experimentally [33].

C. Sidebands in extended AR-RABBIT with even
harmonics

Additional interferences in the final state wavefunction
can be created by adding ionization channels. In a RAB-
BIT experiment the addition of even-harmonics is the
simplest scheme which achieves this, and is illustrated
in Fig. 1. Adding an interfering 1-photon channels has
two effects: (1) time-dependence of the angular inter-
ferograms is now present, since the 1-photon channel is
not coupled to the IR field, hence remains an invariant
reference throughout the measurement; (2) the mixing
of channels with odd and even photon order provides a
route to parity breaking via the mixing of odd- and even-l
waves.

In more detail, (1) implies that this scheme can be
considered as a hetrodyne measurement, in which the 1-
photon channel acts as a local reference for the 2-photon
channels. This implies that additional information may
be gained on the photoionization dynamics, since the
usual sidebands are now additionally referenced to this
1-photon channel. In the usual case, the phase of the
photoelectron yield provides relative phase information
on the interfering 2-photon paths, referenced to the IR
field. In this extended case, the overall phase remains
referenced to the IR field, but the individual partial-
wave phases play a more significant role in the time-
dependence of the observed angular interferogram. In
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essence, one expects to see different features of the an-
gular interferogram at different delays, and a much more
complex time-dependence than the basic breathing mode
of the usual RABBIT sidebands.

Generally, (2) applies to any scheme which mixes chan-
nels of odd and even photon order provides a route to
parity breaking via the mixing of odd- and even-l waves.
While this type of final state control can be achieved in
a number of ways (see, for example, refs. [22, 34, 35]), in
a RABBIT experiment the addition of even-harmonics is
the simplest and most appropriate route [23]. In this spe-
cific case, one can view the temporal dependence of the
resulting interferograms as a form of control, since this
is nothing but a shift of the relative phase of the path-
ways defined by τ ; however, it is a relatively weak form
of control, since the amplitudes of the 2-photon pathways
are also dependent on the IR field. The use of additional
E-fields, different polarization states, or shaped pulses,
could all potentially provide more powerful means of in-
terferogram control.

The basic concept of phase control is illustrated in Fig.
4, which shows the concept for a simplified two channel
model. In this case, path 1 has only odd-l components (as
per the previous example, outlined in Sect. IV A), and
path 2 has only even-l components. The phases of all
components are set to zero, but a relative phase between
the paths is varied in the model. The resultant wavefunc-

tion therefore takes the form Ψ = Ψ1 + Ψ2e
iφ2

. In this
case, the change in the relative phase of the paths (φ2)
results in different regions of constructive and destructive
interference, with lobes in the final interferogram shift-
ing as a function of phase. Again, this phase could be
the result of the time-dependence of one path, as for (1)
above, but could also be the result of another form of
phase-control, or result from other dynamic effects. The
full time-dependence of the angular interferograms in this
class of scheme is discuss further in Sect. V.

Path 1 (s+d)

Path 2 (p+f)

(b) φ2 = 0(a) φ2 = -�/2

(c) φ2 = �/2(d) φ2 = �

Su
m

s

E

Figure 4. Basic concept of odd-even parity mixing in a
two-path photoelectron interferometer. In this case, the usual
cylindrical symmetry is broken, and the sum over paths varies
as a function of the relative phase φ2.

V. REAL SYSTEMS

In order to treat real systems within the framework
defined herein, a numerical treatment for the photoion-
ization matrix elements (specifically, the radial integrals)
for a given ionizing system is required. In this work,
the bound-free matrix elements are computed using the
ePolyScat suite [36–38], and the continuum-continuum
matrix elements treated as hydrogenic (similar to the
treatment of ref. [3]). This specific choice of numerical
treatment is general, since ePolyScat is capable of ac-
curate calculations for both atomic and molecular scat-
tering systems, but is expected to be poor at low en-
ergies where the assumption of hydrogenic continuum-
continuum transitions does not hold.

A. Numerical details

As discussed above, in order to model real systems nu-
merical methods must be employed in order to determine
the radial matrix elements (as distinct from the model
cases above, in which the radial matrix elements are set
as model parameters). In order to achieve this, a combi-
nation of numerical treatments was used:

• Bound-free matrix elements. For a given ionizing
system and ionizing orbital, ePolyScat (ePS) can be
used to compute dipole matrix elements. ePS takes
electronic structure input from standard quantum
chemistry codes, solves the continuum wavefunc-
tions variationally with a Lipmann-Schwinger ap-
proach, and computes dipole integrals based on
these wavefunctions; for further details, see refs.
[36–38].

• Continuum-continuum matrix elements. Absorp-
tion of an IR photon in the continuum is modelled
using Coulomb functions, in a similar manner to
ref. [3], see sec. V A 1 for details.

• VMI measurements. To model the experimental
VMI measurements, the input harmonic spectrum
(800 nm driving field) was estimated as a series
of Gaussians. Photoelectron energies then follow
from the photon energies so defined, and IP of the
ionizing system. This procedure also provided spe-
cific photoelectron energy points for the ePS and
continuum-continuum calculations, and the matrix
elements were assumed to be constant over the
width of the spectral features and as a function of
the laser field intensity. See sect. V A 2 for details.

In this manner, ionization of any given system, at
a given photon energy, can be accurately computed
(ePS), while the continuum-continuum coupling is ap-
proximated assuming Coulombic (asymptotic) contin-
uum wavefunctions.
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1. Continuum-continuum coupling with Coulomb
wavefunctions

The continuum wavefunctions in this case are, as pre-
viously (eqn. 7), given by a general expansion, which
can be written in radial and angular functions. For the
Coulombic case this is usually given as (see, e.g., ref.
[39]):

ψlm(k, r) = φl(k, r)Ylm(θ, φ) = Al(k, r)Fl(r)Ylm(θ, φ)
(15)

Where,

Al =
2l + 1

kr
ileiσl (16)

σl = arg Γ

[
l + 1− iZ1Z2

k

]
(17)

Here Fl is a regular Coulomb function [40], σl is the
(Coulomb) scattering phase, Z1 and Z2 are the charges
on the scattering centre and scattered particle, and Γ is
the gamma function. Solutions of these equations can be
computed numerically, as herein; analytical approxima-
tions have also been derived [3].

The explicit form of the continuum-continuum radial
matrix element, for specific initial and final states defined
by |k, l,m〉 is then given by:

Rlilf (ki, kf ) =

∫
r

dr φlf (kf , r).r.φli(ki, r) (18)

Of note in this case is the assumption of an m-
independence to the scattering problem, which is cor-
rect over all r for a Coulombic scatterer (point charge),
but only correct asymptotically in general: hence this
continuum-continuum form is appropriate only for over-
lap integrals at long-range from the ionic core in general.
For general discussion on short and long-range scattering,
see ref. [16]; for discussion of far-field onset in multipo-
lar systems see ref. [41]; for discussion in the context
of RABBIT see ref. [3]. Physically, the characteristic
ranges of the problem will depend on the scattering sys-
tem and the precise details of the potential (which may
additionally be affected by the IR field in cases of mod-
erate to strong fields), and may need to be evaluated for
specific cases when a high degree of accuracy is sought.

Finally, it is interesting to note that Dahlström et. al.
[3] analyse these matrix elements analytically, and derive
some approximate forms. Of particular interest is that
the phase contribution from the continuum-continuum
transition can be approximated as:

φcc(ki, kf ) ≡ arg

{
(2kf )iZ/kf

(2ki)iZ/ki
Γ[2 + iZ(1/kf − 1/ki)] + γ(ki, kf )

(kf − ki)iZ(1/kf−1/ki)

}
(19)

γ(ki, kf ) = iZ
(kf − ki)(k2f − k2i )

2k2fk
2
i

Γ[1 + iZ(1/kf − 1/ki)] (20)

Here Z is the nuclear charge, and the term γ(ki, kf ) is a
long-range amplitude correction. This form, according to
ref. [3], “leads to an excellent agreement with the exact
calculation at high energies”. However, this comparison
with exact results also indicated that it is not expected to
work well at low energies, <8eV. Also of note in this ap-
proximation is that the continuum-continuum transition
simply defines an energy-dependent phase-shift, with no
l-dependence.

2. Velocity Map Image (VMI) Simulation

In order to provide visceral results, and provide a more
direct comparison with experimental measurements, the
calculated photoelectron interferograms can be used to
simulate velocity map imaging (VMI) measurements of
photoelectron interferograms. Numerically, this involves
calculating a volumetric (3D) space, simulating the pho-

toelectron distribution and summing to form 2D image
planes: full details of the approach can be found in ref.
[7]. In the current model the radial (energy) spectrum
is not calculated directly, so measured or estimated har-
monic spectra are used to determine a set of Gaussian
radial functions G(k), as discussed above, which are then
mapped to velocity space and used to describe each band
in the measured photoelectron spectrum. An example is
given in figure 5, where the main features correspond to
direct 1-photon ionization (labelled as ‘DB’) by the in-
put harmoic spectrum (odd-harmonics from an 800 nm
driving field), and the minor bands correspond to the
position of the 2-photon RABBIT sidebands (labelled as
‘SB’) and even-harmonics (if present). These radial dis-
tributions are combined with the modelled angular distri-
butions to determine the final photoelectron distribution
on a 200x200x200 voxel array, and consequent 2D pro-
jections on a 200x200 pixel grid.
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Figure 5. Example of energy to velocity space conversion in
VMI, based on an approximate photoelectron spectrum. The
main features correspond to direct ionization (direct bands,
‘DB’), reflecting the spectrum of the incident (odd) harmonics
(Hn), while the minor features indicate sideband positions
(‘SB’) in “usual” RABBIT schemes, and also correspond to
the position of even-harmonic orders. In this case, an 800 nm
driving field was assumed, and an IP of 21.56 eV (1st IP
of neon). Note that low-energy features are spread out in
velocity space, hence appear as large central features in the
final image, while high-energy features will be compressed,
and appear as sharp outer rings in the image.

B. AR-RABBIT results

Following the prescription of sec. V A, model results
for photoionization of neon, and RABBIT measurements,
were calculated. In modelling this case, ionization from
a single initial state |p,m = 0〉 was assumed for sim-
plicity, corresponding to one component of the 2p va-
lence orbital. Experimentally, one would assume that
all degenerate m states contribute equally, however the
general phenonmenology and form of the results is un-
changed by incorporating the degenerate m = ±1 initial
states. Physically, the choice of a single m state corre-
sponds to a choice of reference frame and, potentially, a
form of alignment: in the atomic case this can be consid-
ered as orbital polarization, while in the molecular case

may correspond to an aligned molecular ensemble, or to
the molecular frame [15]. The calculated photoionization
matrix elements for the 1 and 2 photon transitions are
given in the appendix (sect. VIII).

The position of the direct and sidebands calculated fol-
low those shown in fig. 5, which assumes an 800 nm driv-
ing field and the 1st ionization energy of neon (21.56 eV
[42, 43]). The lowest energy feature, SB1, is not accu-
rately modelled in this case, since the Ψ+ pathway cor-
responds to direct (and possibly resonant) 2-photon ion-
ization, which is not defined by the simple 2-step model.
(For discussion of the similar case of RABBIT measure-
ments in He, which also involved a resonant channel, see
ref. [5].) However, this pathway was approximated by us-
ing the lowest energy bound-free matrix elements, and is
included here to emphasize the velocity mapping effect,
which causes this central feature to perceptually domi-
nate the final VMI measurements. All other direct and
sidebands are expected to be within the range of appli-
cability of the model, although accuracy of the model is
expected to vary slightly as a function of energy due to
the form of the continuum-continuum matrix elements
assumed.

Figs. 6 - 8 provide a summary of the results. Fig.
6 provides the (angle-integrated) photoelectron yeilds,
I2(τ) for the four sidebands, and the corresponding, time-
invariant, angular interferograms are shown in fig. 7 for
both contributing channels, and the resultant (channel-
summed) observable. Fig. 8 illustrates a set of iso-
velocity (Newton) spheres from the full 3D photoelec-
tron distribution, which each sphere corresponding to one
band in the photoelectron spectrum, and the 2D projec-
tions of the full distribution.

A number of features are of note from these results:

1. As expected, the sideband phases vary according to
the ionization dynamics (as a function of energy),
incorporating both the direct ionization phase and
the continuum-continuum phase.

2. The angular interferograms reflect the changing
magnitude and phases of the Ψ+ and Ψ− channels,
and this is particularly apparent for SB3 and SB4.
In these cases, it is primarily the relative phase of
the SBs which contributes to the change in the final
observable. The PADs change form significantly,
and the temporal traces show a phase difference of
approximately π/2.

3. The resultant PADs indicate structures with L
higher than the usual symmetry-imposed labora-
tory frame (LF) limit (for an isotropic initial state
distribution) of L ≤ 2N , where N is the photon-
order of the process [8, 15, 44, 45]. However, these
structures only follow from the assumption of po-
larized orbitals (m = 0 selection), which allow a
specific definition of the frame of reference. Addi-
tional m-state averaging over all initial |pm〉 com-
ponents would reinstate the usual symmetry re-

http://physics.nist.gov/PhysRefData/Handbook/Tables/neontable1.htm
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striction; conversely, the presence of these struc-
tures in experimental measurements would provide
evidence for orbital polarization, and this effect has
recently been observed in AR-RABBIT measure-
ments [46, 47]. As mentioned above, it is of note
that these considerations are analogous to those
for laboratory versus molecular frame measure-
ments [15] and angular distributions from aligned
molecules [48].

4. As discussed above, the simulated VMI measure-
ments show a perceptual dominance of the lowest
order bands due to the non-linear mapping from
energy to velocity space, despite the fact that all
bands are modelled in an identical fashion. Essen-
tially, the energy resolution of VMI is non-uniform
over the image, with the central region magni-
fied relative to the outer region. This feature of
VMI has previously been utilized to enable high-
resolution spectroscopy [49, 50] and combined with
field ionization for “photoionization microscopy”
experiments [51].

Overall, these model results indicate some of the ex-
pected features of AR-RABBIT, as measured using VMI.
Of particular note in this case is the fact that this
modelling was motivated by recent work on neon AR-
RABBIT measurements [46, 47], in which aspects of the
key features shown here were observed. In particular, the
experimental measurements, performed at IR field inten-
sities of ∼ 1013 Wcm2, revealed a 6-fold central struc-
ture, suggesting orbital polarization and selection in the
strong laser field. It is, however, of note that this obser-
vation may also indicate higher-order photon processes
than those expected (N > 2) contribute to the observ-
able: in general careful intensity-dependence studies are
required to determine which effect plays the key role [12].

C. Elliptically polarized light

Following from the above, example AR-RABBIT re-
sults were also computed for an elliptically polarized IR
field (ξ = 0.4, as shown in fig. 3(b)), and a circularly
polarized IR field. In these cases the XUV field was as-
sumed to be linearly polarized, and a crossed polariza-
tion geometry was also assumed. In this geometry, again
assuming a single initial |p,m = 0〉 state, the XUV ion-
ization accesses only m = 0 states, while the IR field
additionally accesses m = ±1 states. Essentially, this
case allows for some, but limited, m-state mixing in the
continuum-continuum transition.

Results are shown in fig. 9 for four sidebands. In
the observables for the elliptically polarized case, the
frame rotation between the XUV and IR field polariza-
tion vectors, and subsequent m-mixing in the continuum-
continuum transition, results in “twisted” structures
(with specific handedness) appearing in the resultant dis-
tributions in most cases. It is of note that 2D VMI projec-
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(a) Laser �eld

(b) SB1, E=0.14eV

(c) SB2, E=3.24eV

(d) SB3, E=6.34eV

(e) SB4, E=9.44eV

Figure 6. Photoelectron yields (angle-integrated) for the
RABBIT sidebands, I2(τ), based on neon photoionization cal-
culations. Each sideband is normalised to unity at the max-
ima.

tions (fig. 8) will usually obscure such symmetry break-
ing, see e.g. ref. [52] and references therein for discussion;
furthermore, other experimental factors which break spa-
tial symmetry (e.g. a strong laser field) may also lift the
m state degeneracy in practice, and may thus constitute
other mechanisms of spatial symmetry breaking. For the
circularly polarized case, the lack of m-state interferences
- since only a m = +1 states are accessed - results in a
distinct, but cylindrical symmetric, distributions. Exper-
iments utilizing this geometry are therefore particularly
sensitive to any effects which break the m-state symme-
try, such as a slight ellipticity in the XUV field or m-state
mixing in a strong IR field.

D. Extended AR-RABBIT

Extended AR-RABBIT, in which even harmonics also
contribute, presents the most information rich measure-
ment. In this case, the interference between the time-
dependent and time-independent channels provides an
additional phase reference, creates interferences between
channels with different photon orders, and results in a
time-dependent angular interferogram. This provides the
potential for control and metrology schemes analogous to
many explored in previous energy-domain studies, such
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Figure 7. Photoelectron angular distributions for the RAB-
BIT sidebands, based on neon photoionization calculations.
In each case, the two contributing paths, |Ψ±|, are shown as
well as the resultant (channel-summed) interferogram.

(a) 3D distribution (b) 2D projection, (Z,Y) plane

DB1
DB2

DB3
DB4

SB1
SB2

SB3
SB4

Z

Y

Xθ

φ

EirExuv

Figure 8. (a) Full 3D velocity distributions and simulated
VMI measurements (2D projections), based on neon pho-
toionization calculations, and incorporating the harmonic
spectrum (odd-harmonics only) shown in fig. 5. Each pho-
toelectron band is shown by a single iso-velocity shell, colour
mapped by the angular distribution. (b) Detail of the (Z, Y )
projection, with direct and sidebands labelled.

as odd-even parity mixing [22] and bound state resonance
measurements [18, 19]: indeed, related concepts have al-
ready been explored in the time-domain [5, 23, 53]. In
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Figure 9. Photoelectron angular distributions for the RAB-
BIT sidebands, based on neon photoionization calculations,
for linearly polarized XUV and (top) an elliptically polarized
IR pulse, (bottom) circularly polarized IR pulse, in a crossed
polarization-geometry.

principle, it may also be possible to obtain a full set
of partial wave magnitudes and phases using this tech-
nique (cf. “complete” photoionization studies, e.g. refs.
[8, 26, 28, 54]) for a large number of partial waves, and the
concept has recently been demonstrated for the atomic
case [47]; equivalently, one can consider the technique as
a means of obtaining full angle-resolved Wigner delays
[3, 55].

The same model methodology as outlined above was
employed, but with the addition of even harmonics in the
XUV spectrum. Example results are shown in fig. 10,
which shows the resultant observables I(θ, τ ;E) and asso-
ciated βLM (t;E) for three different photoelectron bands.
In all cases complex behaviours can be observed, with
multiple l-waves and phase contributions in the 3-path
photoionization interfereometer leading to highly struc-
tured observables. Accross all of the bands, a similar
structural motif is observed in the I(θ, τ) plots, with the
lobes along the laser polarization axis (θ = 90, 270o)
dominant, and weaker higher-order lobes. This structure
is particularly clear in the polar plots given at discrete
time-steps, and the corresponding βL,M (t) parameters,
which contain both even and odd L terms.

The time-dependence of the observables now contains
contains two frequency components: even L terms which
oscillate at 2ω, and odd L terms which oscillate at ω.
This basic behaviour has previously been observed and
modeled by Laurent et. al. [56]. However, the oscillation
of the even terms corresponds to the same “breathing”
mode as described in the 1-colour case (since no addi-
tional cross-terms between the 1 and 2-photon pathways
contribute), in which the photoelectron yield oscillated,
but the angular distribution shows no time-dependence.
Hence, normalisation of the angular interferograms by
the total yield removes the time-dependence, and reveals
time-invariant even L terms. For this reason, no oscil-
lations are observed in the even L terms shown in fig.
10 (right column), and this part of the angular interfero-
gram is time-invariant as for the “usual” RABBIT case.
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The odd L terms are more interesting, and result from
the interferences between even and odd l-waves, corre-
lated with the 1 and 2 photon transitions respectively.
The effect of these interferences is, as noted above, to
create up-down asymmetries in the observables. Clearly,
the resultant interferograms are complicated, and the
exact form of the observables are sensitive to the rela-
tive contributions and phases of the l-waves contribut-
ing to each of the three pathways. The relative phases
observed in the βLM (t) can be considered as a probe
of this behaviour, since different l-waves contribute to
different L terms [7, 57]; AR-RABBIT thus suggests a
route to disentangling different phase contributions, re-
lated to the contributing ionization paths and l-waves,
for use in phase-sensitive metrology scenarios. Of partic-
ular interest in this vein are “complete” photoionization
experiments, and angle-resolved Wigner delays, as noted
previously.

Also noteworthy is the apparent temporal asymmetry
of the observable in some cases: this is particularly ap-
parent in the higher energy bands (e.g. band at 7.9 eV,
fig. 10(c)), with arrow-like structures spreading from the
central lobes. This characteristic of the observable is a
result of distinct temporal dependencies to the phases of
the l-waves from different channels, leading to a skew in
the temporal behaviour in some cases. Similar behaviour
has previously been predicted based on a 2-path inter-
ferometer mediated by a vibronic wavepacket [58], which
resulted in analogous l-wave intereferences; however, in
that case the asymmetry was not cleanly observed ex-
perimentally due the the temporal resolution of the mea-
surement, although the results did strongly suggest such
asymmetry was present. The presence of this type of
temporal asymmetry in experimental measurements can
therefore be regarded as a (relatively) direct phenomeno-
logical signature of significant phase-shifts between dif-
ferent l-waves. This characteristic is potentially useful as
a means to observe experimentally-mediated changes in
l-wave phases (e.g. due to laser intensity or wavelength)
without the necessity of a full theoretical analysis of the
results.

VI. SUMMARY AND CONCLUSIONS

In this work, some general properties of AR-RABBIT
measurements have been investigated via a multi-
channel, 2-photon ionization model in the perturbative
regime. A range of interesting phenomena are observed
in this case, due to the range of interferences contribut-
ing to the final observable. Of particular note is the fact
that RABBIT type schemes mix bound-free matrix el-
ements of different energies, which cannot be interfered
in usual (energy-resolved) photoionization studies; fur-
thermore, angle-resolved RABBIT provides observables
which are also highly sensitive to the l-wave amplitudes

and phases (in direct analogy with traditional angle-
resolved photoelectron spectroscopy). As discussed in
the introduction, this presents AR-RABBIT as a poten-
tially interesting methodology for any metrology schemes
requiring phase-sensitivity to the ionization matrix ele-
ments as a function of angular-momentum and energy.
Studies of photoionization dynamics in the energy and
time-domain (Wigner delays) both come under this cat-
egory, as does polarization-sensitive XUV pulse metrol-
ogy. Experiments investigating the effects of bound-state
or continuum resonances are one clear application of AR-
RABBIT, and such effects can also be investigated as a
function of the IR field intensity. The capabilities of “ex-
tended” AR-RABBIT schemes, utilizing even haromics,
are most interesting here, since 1 and 2-photon chan-
nels are interfered in this case, providing a hetrodyne
type measurement, with the direct 1-photon channel as
a time-independent phase reference. This scheme also
allows for control over the resultant photoelectron inter-
ferogram, since up-down asymmetry can be broken as a
function of IR field phase (i.e. XUV-IR time-delay).

Some of these concepts have already been investigated
using RABBIT or AR-RABBIT techniques, but much
work is open to fruitful exploration in this vein. Since
VMI apparatus, along with other angle-resolved charged
particle techniques (e.g. COLTRIMS), have proliferated
in recent years, angle-resolved photoelectron measure-
ments are now routine for many experimenters. This
has lead to a range of novel studies utilising the related
high-information content observable of photoelectron an-
gular distributions [9], and the outlook and utility of AR-
RABBIT is similarly promising.
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VIII. APPENDIX - MATRIX ELEMENTS

The full set of matrix elements for the neon calcula-
tions are shown in figure 11. As detailed in sect. V A, the
1-photon bound-free matrix elements were computed us-
ing ePolyScat, while the continuum-continuum elements
assume Coulomb wavefunctions. In all cases the matrix
elements are shown as a function of the final photoelec-
tron energy. For the 2-photon bands the calculations
assume an 800 nm IR field, hence hν = 1.55 eV , and this
is the energy difference assumed between the final and
intermediate (1-photon) states in the calculation.
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Figure 11. Matrix elements for neon calculations. (a) 1-
photon, XUV direct (ePolyScat calculations), (b) & (c) IR
continuum-continuum couplings, for absorption (+) and emis-
sion (-) channels respectively. In all cases, the matrix ele-
ments are indexed by final photoelectron states (E, lf ), and
summed over multiple intermediate states li where applica-
ble. Solid lines show magnitudes, dashed lines phases. Final
energy points match the photoelectron band centres.
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J. Caillat, A. Maquet, B. Carré, F. Lepetit, J.-F. Her-
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