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An analytic expression for the rotational dephasing of an ensemble of symmetric top molecules excited
by a short laser pulse is developed. This expression can be used to discern rotation from electronic and
vibrational dynamics in polarization resolved studies and is computationally less demanding than
numeric simulations used previously. The result agrees well with quantum mechanical treatment, both
at room temperature and at cold rotational temperatures found in molecular beams. Applications to tran-
sient anisotropy and photoelectron angular distributions are given. Finally, we raise the possibility of
combining transient anisotropy techniques with time-resolved photoelectron spectroscopy.
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1. Introduction

Time-resolved polarization dependent pump–probe measure-
ments such as transient anisotropy or photoelectron angular distri-
butions (PADs) present powerful methods for obtaining
information on excited state dynamics that cannot be obtained
by population dependent measurements only. In anisotropy exper-
iments based on transient absorption or fluorescence up-conver-
sion, pump and probe pulses are polarized in two configurations:
parallel or perpendicular with respect to each other [1,2]. The dif-
ference between the signals of these configurations is normalized
by the signal under magic angle conditions, and is recorded in
dependence of the time delay between pump and probe pulse. In
time-resolved photoelectron spectroscopy, the observable may be
the angle-integrated photoelectron yield or, in a more differential
measurement, the angle-resolved yield. The latter observable, the
PAD, contains detailed information on both the excited state
dynamics [3–6] and the ionization dynamics [7–10] due to its sen-
sitivity to the angular-momentum character of the photoelectron
[10,11]. The angle-integration of the PAD to provide the total pho-
toelectron yield necessarily obscures some detail, but much can
still be learned from the time-resolved photoelectron spectrum
(TRPES).

Disentangling the rotational, vibrational and electronic compo-
nents of the excited state dynamics is a key challenge in the under-
standing of excited state processes. Various investigators have
explored the effect of rotational dynamics on transient anisotropy
[12–15], polarization resolved ion yield measurements [16–18],
011 Published by Elsevier B.V. All

hl für BioMolekulare Optik,
traße 67, 80538 München,

n.de (O. Schalk).
and PADs by considering the effects of static alignments [9,10] or
by the use of full numerical calculations for time-dependent align-
ment [3,4]. Here, we present an analytic expression for the reorien-
tation of a symmetric top molecule, simplifying the treatment of
collision induced rotational dephasing in liquids. This is also a con-
venient way to directly incorporate the rotational dynamics into a
treatment of PADs, allowing the analytic separation of rotational
dynamics from vibronic dynamics. Example calculations are pre-
sented and compared with the existing literature to stimulate pro-
gress in this direction.
2. The model

2.1. Excitation moments

In the absence of overlap between the pulses, a pump–probe
experiment can be decomposed into three steps: pump, propaga-
tion and probe. For the pump step, we here consider the simple
case of an isotropically distributed sample of molecules that is ex-
cited by a laser pulse linearly polarized along the laboratory fixed
z-axis, the typical set-up in many time-resolved experiments (exci-
tation with circular or elliptical polarized light can be implemented
by applying the Jones-vector formalism [19] to the derivation in
[15]). For a one photon pump the resulting distribution of transi-
tion dipole moments is /cos2#. More generally, for an n-photon
process, the resulting distribution of excited molecules is given
by [9,10,15,20]

PðnÞð#Þ ¼
Xn

i¼0

an;iP2iðcos#Þ �
Xn

i¼0

an;iY2i;0ð#Þ; ð1Þ

where n is the number of pump photons and # is the angle between
the z-axis and the transition dipole moment along which a molecule
rights reserved.
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Figure 1. Comparison of the an,1,j parameter for n = 1, 2 in dependence of the shape
of a symmetric top molecule defined by the rotational constants about the two axes
of inertia, B1 and B3.
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is excited. P2i(cos #) are Legendre polynomials and Yk,l(#) are spher-
ical harmonics. For linear polarization there is no u dependence, the
decomposition into different basis functions are interchangeable,
save for different normalization factors. Most generally there may
also be a u dependence to the distribution, requiring terms which
are only described by Y2i,q–0; this situation is discussed in
Section 2.4. The an,i can be given analytically as [15]

an;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4iþ 1
p

ð2nÞ!
2n�i�1

2ðn� iÞ!ð2nþ 2iþ 1Þ!!
: ð2Þ

In the propagation step, the an,i = an,i(t) evolve in time. This time
dependence is generally not known since it depends on various
parameters such as the induced dynamics and the shape of a mol-
ecule. In the following, we will apply the following assumptions:
(i) The molecule does not undergo collisions or electronic dynam-
ics (although collisions may be modeled by free rotation between
collision events [15]). (ii) The moments of inertia J1, J2 and J3 do
not change in the course of an experiment. (iii) Two of the mo-
ments are equal (J1 = J2). This final condition is only strictly fulfilled
in symmetric tops, but many molecules possess two moments of
inertia that are approximately equal.

In the remainder of this section, we will deal with the propaga-
tion step only. As described in the introduction, there are many
ways to probe the evolution of the system. Some of these methods
are discussed in Section 3.

The time dependence for the an,i(t) was previously solved for
two special cases: linear (J3 = 0) and spherical (J3 = J1 = J2 = J) mole-
cules. The solutions are given by [15,21]:

an;iðtÞ ¼ an;ið0Þ �
P2iðhcos bðtÞiÞ linear molecule

1
2iþ1 P1=2;�1=2

2i ðhcos bðtÞiÞ spherical molecule

(
;

ð3Þ

where Pi(b) are Legendre polynomials and P1=2;�1=2
i ðbÞ are Jacobi

polynomials. The time dependence is governed by b(t) = xt. For a
classical molecule, the averages are given by a Boltzman distribu-
tion and are calculated via

hcosn xti ¼
Z 1

0
2axe�ax2

cosn xtdx; ð4Þ

where a = J/2kbT and T is the canonical temperature of the system.
Eq. (4) can be solved analytically for different values of n [15].

2.2. Solution for the symmetric top

For a symmetric top molecule J1 = J2 – J3. Let us define
x ¼ J3=J1 x 2 1

2 ;1
� �� �

and h ¼� J
!

3;
~d, where~d ¼~dðhÞ is the rotation

axis of the molecule. According to Euler’s formula, a rotation about
~d can be described by [22]

FðTðbÞÞjk ¼ djk cos bþ djdkð1� cos bÞ þ sin b
X3

l¼1

�jkldl; ð5Þ

where the probability for a rotation about a certain angle h is given
by [23,15]

PkðhÞ ¼
ffiffiffi
x
p

2 1þ ðx� 1Þ cos2 hð Þ3=2 : ð6Þ

For the beginning, let the transition dipole moment be parallel
to the principle axis of inertia as is often the case in symmetric
tops. Contrarily to Ref. [15], the angle integration of ðF~lÞ2n

z , i.e.,
the rotated transition dipole moment, h has to include the proba-
bility defined in Eq. (6). The time dependent distribution then
becomes, in the case of a one photon pump (n = 1),
Pð1Þð#; t; xÞ / 1
3

P0ðcos#Þ

þ
ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

4þ 7x� 2x2
� �

� 9
ffiffiffi
x
p

arcsinh ð
ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

Þ
6ðx� 1Þ5=2

 

þ�3x
ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

�
ffiffiffi
x
p
ð2xþ 1Þarcsinh ð

ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

Þ
ðx� 1Þ5=2 hcos bi

þ x
ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

ð2xþ 1Þ �
ffiffiffi
x
p
ð4x� 1Þarcsinh ð

ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

Þ
2ðx� 1Þ5=2 hcos2 bi

!

� P2ðcos#Þ: ð7Þ

The general, n-photon, solution has the structure
PðnÞð#; t; xÞ /
Xn

i¼0

an;iðt; xÞP2iðcos#Þ with

an;iðt; xÞ ¼
X2i

j¼0

an;i;jðxÞhcosjðbðtÞÞi: ð8Þ

The an,i,j(x) for two photon excitation are shown in Appendix A.
Eq. (7) is the solution for symmetric top molecules and correctly
describes the time dependence for a linear (x =1) and the spheri-
cal molecule (x = 1, see Eq. (3)) as well as the long time limit for the
spherical top, as derived in Ref. [15], and represents the main result
of this Letter. Figure 1 shows the dependence of an,1,j(z) from
z � x�1 (z 2 [0,2]) for n = 1, 2. The structure of the z-dependence
in both cases is similar. As required

P2i
j¼0an;i;j ¼ an;i "x. For linear

molecules an,i,j = 0 for odd i as required for even Legendre polyno-
mials. Rotation about b can also be expressed as an eigenvalue
equation in analogy to Eq. 28 of Ref. [15] as

DbðxÞP2iðcos#Þ ¼ R2iðb; xÞP2iðcos#Þ with

R2iðb; xÞ ¼
P2i

j¼0an;i;jðxÞhcosj biP2i
j¼0an;i;jðxÞ

: ð9Þ

Dbðx;nÞ is the operator for a rotation about b and dependent on
the molecular shape defined by ratio of the moments of inertia x.
The R2i(b,x) are normalized by

P2i
j¼0an;i;j and turn out not to be

dependent on n, even though the an,i,j are. The Ri(b,x) are the gen-
eral form for the Legendre and Jacobi polynomials in Eq. 28 of Ref.
[15] and Eq. (3) now reads:
an;iðt; xÞ ¼ an;ið0ÞR2iðbðtÞ; xÞ; ð10Þ
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where the time dependence for the ensemble is given by

bðtÞ ¼ xt ! x0t
1þ ðx�1 � 1Þhcos2 hið Þ1=2 ¼ x0t

1
3
ð2þ x�1Þ

� ��1=2

:

ð11Þ

The transition dipole moment does not necessarily point in the
same direction as the principle moment of inertia, but can lie per-
pendicular with respect to it. In true symmetric top molecules,
the final state may be a degenerate state with transition dipole
moments pointing along I1 and I2 which can lead to processes
such as coherence decay and population transfer between these
states [24,25] and can be included in the present ansatz [26].
However, the information obtained critically depends on the
experiment and the applied conditions (e.g. the probe wavelength
in transient absorption), where bleaching, excited state emission
and excited state absorption already show a complicated behavior
even without considering rotation. The effect on gaseous phase
experiments will be shown in a later publication. In molecules
with a lower symmetry, the transition dipole moment often
points along an axis which is (nearly) perpendicular to the prin-
cipal moment of inertia. We will discuss this more general case
in Appendix B.
2.3. Validity of the model

It is evident that a classical model is only an approximation to a
quantum mechanical treatment and is doomed to fail in describing
coherent quantum effects such as alignment revivals which should
be observed in the present case, provided the excited state lives
long enough. However, regarding only the initial rotational
dephasing, we can compare our classical solution with numeric
quantum mechanical calculations. A simulation of the alignment/
anisotropy for n = 1 (and one photon probe in the case of anisot-
ropy) is shown in Figure 2. We consider a spherical molecule with
a moment of inertia of J = 6 � 10�45 kg m2 at different rotational
temperatures (T = 2,5,20, and 50 K) for the quantum mechanical
and the classical case. The quantum mechanical case was
calculated with Eq. 29 from Ref. [15]. Plots of the anisotropy
r = 1/5(3cos2# � 1) and the cos2#-distribution show that the
classical model can be applied for a broad range of temperatures
which are commonly achieved in molecular beam experiments
where free rotation can be observed.
Figure 2. Comparison of the anisotropy/polarization of a spherical molecule with
J = 6 � 10�45 kg m2 calculated with the classical ansatz and a quantum mechanical
description.
2.4. Generalized PðnÞð#;u; tÞ and frame transformations

In the literature on alignment and photoionization it is common
to decompose PðnÞð#; tÞ into a basis of spherical harmonics, as
already shown in Eq. (1) for t = 0. Following this convention Eq.
(8) can be rewritten as:

PðnÞð#;u; tÞ /
Xn

i¼0

X2i

q¼�2i

AðnÞ2i;qðtÞY2i;qð#;uÞ; ð12Þ

The AðnÞ2i;qðtÞ are the n-photon, time dependent form of the AK,Q axis
distribution moments defined in Ref. [20] with 2i � K (hence only
even K terms present, as appropriate for aligned, but unoriented,
distributions) and q � Q. In the simplest case where the pump and
probe beam are parallel and cylindrical symmetry is not broken,
only terms with q = 0 are allowed:

AðnÞ2i;qðtÞ ¼
an;iðtÞ q ¼ 0
0 q – 0

	
: ð13Þ

In this case there is no u dependence of the distribution as
Y2i,q=0(#,u) / P2i(cos#).

In the general case PðnÞð#;u; tÞmay need to be transformed into
a different reference frame. This is the case if the probe step
involves a laser polarization which is not parallel to the pump step.
Following Eq. (12), frame rotations can be written in terms of
Wigner rotation matrix elements [27] which give the coefficients

AðnÞ2i;q0 ðtÞ in the rotated frame defined by the Euler angles (U,H,v)
[20]:

AðnÞ2i;q0 ðtÞ ¼
X

q

D2i
q0 ;qðU;H;vÞA

ðnÞ
2i;qðtÞ: ð14Þ

This very general frame rotation can be applied as required to
obtain PðnÞð#;u; tÞ in a given frame of reference.

3. Applications

3.1. Transient anisotropy

Transient anisotropy is defined as

rðtÞ ¼ Ik � I?
Ik þ 2I?

; ð15Þ

where

Ik ¼ hPðnÞð#; t; xÞ cos2m #i#;u
I? ¼ hPðnÞð#; t; xÞ sin2m

# sin2m ui#;u
ð16Þ

are integrated over a unit sphere and m is the number of probe pho-
tons. I can represent different observables such as the fluorescence
yield in up-conversion experiments or excited state absorption,
transient bleach or stimulated emission in transient absorption
experiments. The result is [15]

r½nþm�ðtÞ ¼
Pminðn;mÞ

i¼0 a0n;i a0m;i �
ð2m�1Þ!!
ð2mÞ!! b0m;i


 �
R2iðt; xÞPminðn;mÞ

j¼0 a0n;i a0m;i þ 2 ð2m�1Þ!!
ð2mÞ!! b0m;i


 �
R2iðt; xÞ

ð17Þ

where a0n;i ¼
ffiffiffiffiffiffiffiffi
2nþ1

2

q
an;i and b0n;i ¼

ffiffiffiffiffiffiffiffi
2nþ1

2

q
bn;i with

bn;i ¼
Xn

k¼0

n

k

� �
ð�1Þkak;i ¼ ð�1Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4iþ1
p

ð2nÞ!ð2i�1Þ!!ð2nÞ!!
2n�1

2i!ðn� iÞ!ð2n�1Þ!!ð2nþ2iþ1Þ!!
:

ð18Þ

R2i(t,x) is given by Eqs. (9) and (11). Eq. (17) is valid for the free
rotation for a symmetric top molecule. Collision effects can be trea-
ted in the same way as described in Ref. [15].



240 O. Schalk, P. Hockett / Chemical Physics Letters 517 (2011) 237–241
3.2. Photoelectron angular distributions

As shown by Underwood and Reid [20], the lab frame (LF) PAD
can be expressed as the convolution of PðnÞð#;u; tÞ with the
molecular frame (MF) PAD. The bl,q coefficients which parametrize
the PAD are then given by:

bl;qðtÞ ¼
Xn

i¼0

AðnÞ2i;qðtÞB
ðmÞ
l;2i;qðtÞ: ð19Þ

Here the bl,q(t) are the expansion coefficients describing the PAD in

a spherical harmonic basis, the AðnÞ2i;qðtÞ are the time-dependent axis

distribution moments defined in Eq. (14), and the BðmÞl;2i;qðtÞ describe
the ionization dynamics for an m-photon ionization which, in turn,
depend on the vibronic dynamics of the excited state [28], as well as
the angular momentum coupling (including the polarization state
of the ionizing radiation), and radial wavefunction overlap (for fur-

ther discussion of the form of the BðmÞl;2i;qðtÞ parameters see, for exam-

ple, Refs. [5,8,20]). Hence the BðmÞl;2i;qðtÞ can be considered as
describing the MFPAD, and are convolved with the axis distribution
moments to give the LFPAD. In the most general case the ionization
dynamics are time-dependent, while in the case of purely rotational

dynamics they are time-independent. The form of the BðmÞl;2i;qðtÞ is
quite complicated [5,20] and, although the angular momentum cou-
pling can be calculated analytically, the full calculation of the bl,q(t)
requires the challenging ab initio computation of the radial part of
(a)

(b)

Figure 3. (a) bl,q and for s ? pz ionization. (b) bl,q and for pz ? s + dz ionization. In
both cases the alignment parameter Að1Þ2;0 (1-photon pump process) is shown.
the ionization matrix elements; conversely, experimental bl,q(t)

combined with calculated AðnÞ2i;qðtÞ can provide a means to determine
the ionization dynamics [4,29]. Even without knowledge of the

BðmÞl;2i;qðtÞ, deconvolution of the rotational and vibronic contributions
to the measured bl,q(t) provides insight into the vibronic dynamics
of the excited state.

We show here model examples for one photon ionization of
Rydberg orbitals following a one photon pump; the pump and
probe pulses are parallel. Rydberg orbitals provide tractable mod-
el systems due to the small number of angular momentum com-
ponents. Valence states can be treated with the same formalism,
but require many more ionization matrix elements due to their
more complicated angular momentum composition. The simplest
case is ionization of an s Rydberg state, leading to only a pz con-
tinuum state. Only a single ionization matrix element is required
in this case. Ionization of a pz Rydberg allows population of s and
dz continuum states, and the form of the PAD is determined by
the phase difference between the s and dz waves. Figure 3 shows
these examples, in all cases the angular momentum coupling is
calculated analytically (see Ref. [5], Eq. 45) and all the required
radial ionization matrix elements have been set to unity. It is
immediately clear that all the bl,q respond to the alignment
parameter AðnÞ2;0ðtÞ, but the magnitude of this response is very dif-
ferent for the example cases shown here (note the different
scales on Figure 3a and b). This reflects the changing sensitivity
of the ionization to alignment, according to the BðmÞl;2i;qðtÞ. The
changes may be in-phase with the degree of alignment, for in-
stance the b2,0(t) in Figure 3a, or out-of-phase as shown by the
b2,0(t) in Figure 3b. Such effects have been experimentally ob-
served, and also calculated using numerical methods, by Suzuki
et al. for the case of picosecond photoelectron imaging of Ryd-
berg states in pyrazine [29,30]. With knowledge of the radial part
of the ionization dipole moments for ionization of pyrazine via
the 3s and 3p Rydberg states, these results could be directly com-
pared with those of Suzuki et al. Even without this knowledge,
we see that the trends in the BðmÞl;2i;qðtÞ agree well with their
observations.

4. Conclusion

In conclusion, we have presented an analytic expression for
reorientational dynamics of an ensemble of symmetric top mole-
cules excited by one or more photons. Moreover, we have shown
that this result is in line with expectations from existing work
[4,9,15], but without the need for numerical methods in the
solution of an,i(x, t).

Our methodology can be used to treat the more complex case of
ionization by convolving an,i(x, t) with the ionization dynamics. Our
model results for Rydberg orbital ionization show good agreement
with existing angle-resolved measurements and numerical calcu-
lations. Furthermore, by allowing for frame rotations between
pump and probe steps, our formalism suggests the possibility of
transient anisotropy measurements in angle-integrated ionization
experiments. Such measurements, analogous to the existing tran-
sient anisotropy measurements mentioned in Section 3.1, could
be obtained by recording time-resolved photoelectron spectra
(TRPES) for two orthogonal polarization geometries. The additional
information provided could be sufficient to uniquely assign the
electronic character of states giving rise to different bands in the
TRPES, which is often not possible from data recorded at a single
polarization geometry.

Acknowledgment

O.S. thanks the Humboldt Foundation for financial support.



O. Schalk, P. Hockett / Chemical Physics Letters 517 (2011) 237–241 241
Appendix A. Two photon excitation

The parameters for the two photon excitations are
a2;0;0 ¼
1
5

a2;1;0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
x�1
p

4þ7x�2x2
� �

�9
ffiffiffi
x
p

arcsinh
ffiffiffiffiffiffiffiffiffiffiffi
x�1
p
 �

7ðx�1Þ5=2

a2;1;1 ¼
�18x

ffiffiffiffiffiffiffiffiffiffiffi
x�1
p

�6
ffiffiffi
x
p
ð2xþ1Þarcsinh

ffiffiffiffiffiffiffiffiffiffiffi
x�1
p
 �

7ðx�1Þ5=2

a2;1;2 ¼
3x

ffiffiffiffiffiffiffiffiffiffiffi
x�1
p

ð2xþ1Þ�3
ffiffiffi
x
p
ð4x�1Þarcsinh

ffiffiffiffiffiffiffiffiffiffiffi
x�1
p
 �

7ðx�1Þ5=2

a2;2;0 ¼
1

1680ðx�1Þ5
144x5�1160x4þ550x3þ5095x2�4245x�384
� �

þ105
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1�xÞ

p
4x3þ18x2þ12xþ1
� �

arccos
ffiffiffi
x
p� �
þ30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xðx�1Þ3

q
14x2þ149xþ47
� �

arcsinh
ffiffiffiffiffiffiffiffiffiffiffi
x�1
p
 �� �

a2;2;1 ¼
1

84ðx�1Þ5
xðx�1Þð244x2�628x�351Þ
� �

�21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1�xÞ

p
4x3þ18x2þ12xþ1
� �

arccos
ffiffiffi
x
p� �
�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx�1Þ3

q
38x2þ65xþ2
� �

arcsinh
ffiffiffiffiffiffiffiffiffiffiffi
x�1
p
 �� �

a2;2;2 ¼
1

56ðx�1Þ5
xðx�1Þ 48x3�128x2�658xþ48

� �� �
�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1�xÞ

p
4x3þ18x2þ12xþ1
� �

arccos
ffiffiffi
x
p� �
�18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx�1Þ5

q
ð10xþ1Þarcsinh

ffiffiffiffiffiffiffiffiffiffiffi
x�1
p
 �� �

a2;2;3 ¼
1

12ðx�1Þ5
xðx�1Þð92x2þ16x�3Þ
� �

þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1�xÞ

p
4x3þ18x2þ12xþ1
� �

arccos
ffiffiffi
x
p� �
�18x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx�1Þ

p
ð2x2þx�3Þarcsinh

ffiffiffiffiffiffiffiffiffiffiffi
x�1
p
 �
 �

a2;2;4 ¼
1

48ðx�1Þ5
xðx�1Þð48x3þ104x2�62xþ15Þ
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1�xÞ

p
4x3þ18x2þ12xþ1
� �

arccos
ffiffiffi
x
p� �
þ18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx�1Þ

p
�10x3þ11x2�2xþ1
� �

arcsinh
ffiffiffiffiffiffiffiffiffiffiffi
x�1
p
 �
 �

ðA:1Þ
Appendix B. Excitation perpendicular to the principal moment
of inertia

Calculating the Pð#; tÞ for a transition dipole moment perpen-
dicular to the principal axis of inertia (for example the y-axis) re-
quires transformation of the probability in Eq. (6). This
probability can be calculated analogously to the case of parallel
transition moments via [15,23]

P?ð#;uÞ ¼
Z 1

0
dj

2j
Q

exp � j2

kBT

"
B1 cos2 #?

(

þ sin2
#? B1 cos2 u? þ B3 sin2 u?

 �#)

¼
ffiffiffi
x
p

2 cos2 #? þ sin2
#? x sin2 u? þ cos2 u?

 �
 �3=2 : ðB:1Þ

Q ¼ ðpk3
BT3=B2

1B3Þ1=2 is the rotational partition function and
Bi = 1/Ji. The angle #\ is now the angle between the y-axis and
the rotational axis and the integration has to be performed includ-
ing #\ and u\. Unfortunately, no analytical solution could be found
in this case.
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