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Response to Comment on “Time delays in molecular photoionization”:
Extended Discussion & Technical Notes
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In a comment on our article Time delays in molecular photoionization [1], Baykusheva & Wörner
reproduce canonical scattering theory, and assert that our results are inconsistent with this well-established
theory [2]. We absolutely refute this assertion and the spirit of the comment, although we do agree with
Baykusheva & Wörner that the textbook theory is correct. In a short response, Response to Comment
on “Time delays in molecular photoionization” [3], we have already provided a clear rebuttal of the
comment, but gave no technical details. In this fuller response we extend those brief comments in the
spirit of completeness and clarity, and provide three clear rebuttals to Baykusheva & Wörner based on
(1) logical fallacy (category error), (2) theoretical details of the original article, (3) textural content of
the original article. In particular, rebuttal (1) clearly and trivially points to the fact that there is no issue
here whatsoever, with recourse to theoretical details barely required to demonstrate this, as outlined
in the short version of our response. Our numerical results are correct and reproduce known physical
phenomena, as discussed in the original article hence, as careful readers will recognise, the formalism used
is canonical scattering theory, and cannot be anything other. In fact, there is no new fundamental physics
here to dispute whatsoever, and nor was this the raison d’etre of the original article. Additionally, rebuttal
(2) provides the opportunity to discuss, at length, some of these textbook aspects of photoionization
theory, and we hope this discussion might be of service to new researchers entering this challenging field.

Preamble

In our article Time delays in molecular photoionization [1], we discussed Wigner time-delays within the context of canonical scattering
theory. More specifically, we discussed the historic background and physical concepts (sect. 1), then sketched an outline of canonical
theory in a wavepacket notation (sect. 2), with the aim of providing a physically-intuitive and paedagogical picture for the general
reader; we then proceeded to illustrate the results of numerical methods making use of computational tools developed by the scattering
and photoionization communities and, finally, to discuss recent experimental methods which have the potential to measure angle-
resolved Wigner delays. Our aim, therefore, was to present and discuss our methodology and numerical results in very general terms to
a general audience; to discuss the core scattering physics; and to demonstrate that Wigner delays can now be computed readily with
modest computational resources using established and user-friendly tools, with only minimal post-processing of the results required.

In this case, we saw both the potential interest for a general audience in the methodology and paradigmatic results (particularly
in the attosecond community, where there has been much recent interest in this topic), but were also aware of the possibility that
an unbalanced presentation may be viewed as too technical – hence unsuitable for a general physics audience – or may be perceived
to lack novelty due to the use of existing techniques from scattering theory, even though these techniques have never before been
applied to the computation of Wigner delays (to the best of our knowledge). In this light, we sought to strike a balanced presentation
between the well-known concepts, the application of numerical methods within this framework, and a discussion of the results so
obtained. This is, of course, standard practice in writing a manuscript, in which one must always seek to balance the presentation of
new results and developments with background/prerequisite fundamentals, in a manner which best serves the target reader. Textbook
results were, therefore, not reproduce in detail, but the focus was placed on general concepts, and how results for Wigner delays in
the case of molecular photoionization can now be obtained from well-established numerical methods, and illustrations of such results
for paradigmatic cases. This does, of course, place the onus on the reader to follow-up with references if they wish to improve their
background knowledge. To balance this somewhat, additional information was provided in supplementary documents and data files
for the interested or expert reader (available online via Figshare at http://dx.doi.org/10.6084/m9.figshare.2007486), which
more explicitly detailed the numerical methods used, and their specification within the usual photoionization theory formalism. The
raw numerical results were also provided directly, for researchers wishing to work further with this material. The original referees of
the article enjoyed this presentation, and saw the results as useful for the community.

However, it seems that, perhaps lacking this context, and perhaps unaware of the supplementary documentation, confusion has
arisen, leading Baykusheva & Wörner to the conclusion that the standard fundamental theories underlying our numerical computations
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were somehow both non-standard and incorrect. Since we wish to clear-up any such confusion, we present here three categorical
rebuttals to Baykusheva & Wörner’s specific assertion that “... the definition given in (1) is not consistent, neither with the established
interpretation of time delay phenomena [2, 3, 4, 5] nor the recent theoretical work on photoionization delays of atomic systems (see,
e.g. [6]).” [2].

Specifically, our rebuttals are categorised as follows:

1. Logical fallacy (category error): while we hope that Baykusheva & Wörner’s technical argument is due purely to an issue
of notation and presentation with our original manuscript, after careful reading of their comment it seems quite probable to us
that the spirit of the challenge is, in fact, rooted in a category error (vide infra). This seems to be the case since it is trivial to
demonstrate the logical fallacy in their assertion, which appeared to be made in earnest. Since this argument does not rely on
any fundamental knowledge of scattering theory or photoionization physics, and is a simple application of logic, we present this
first as a robust rebuttal to Baykusheva & Wörner’s comment, and most readers will find this sufficient to dispense with the
issue. The short “official” response to Baykusheva & Wörner’s comment was based on this analysis [3].

2. Formalism: technical details of the original article, discussion of the formalism therein, and extensions providing explicit de-
rivations for otherwise implicit definitions. In the sense of completeness and transparency, we include technical details (further
discussion and derivations), as another clear rebuttal of Baykusheva & Wörner’s technical argument, and in the hope of alleviating
any possibility of notational confusion with the original manuscript.

3. Textural content of the original article: a range of quotes from the manuscript illustrating statements at odds with Baykusheva
& Wörner’s assertions. Again, we include this for completeness, although it will not be of interest to most readers.

Since it seems to us that (1) is a rather serious issue, we also take the opportunity to discuss, at length, some additional aspects
of photoionization theory, including tutorial examples and paedagogy, and classic papers on the topics, which we hope will serve as
additional, useful material for researchers struggling with the complex, and somewhat inaccessible, topic of molecular photoionization
physics.

I. LOGICAL FALLACY

The core scientific assertion of Baykusheva & Wörner’s comment is that our formalism does not include the dipole matrix element
and full angular dependence of the scattering wave, as defined in canonical energy-domain scattering theory. They provide a form of
the standard partial wave expansion for photoionization (eqn. 4 in their comment, further technical details are provided in the following
section), and the Wigner delay τ :

f(ǫ) =

√

4π

3

∑

l.m

〈ψlm|rν |ψ0〉Ylm(Ω
k̂
)Y1ν(Ων̂) (1)

τ =
d

dǫ
arg(f(ǫ)) (2)

Baykusheva & Wörner conclude their comment with “Although the spatial contribution from the phase of the spherical harmonics is
discussed in the original article, the dependence on the matrix elements has been neglected.” In other words, following their canonical
eqn. 4 (eqn. 1 herein), they believe our results to be based on continuum functions of the form:

f(ǫ) =

√

4π

3

∑

l.m

Ylm(Ω
k̂
)Y1ν(Ων̂) (3)

or, possibly,

f(ǫ) =

√

4π

3

∑

l.m

Ylm(Ω
k̂
) (4)

depending on whether one regards the photon angular momentum term to be part of the omitted dipole matrix element 〈ψlm|rν |ψ0〉.
Without any detailed knowledge of fundamental scattering or photoionization physics, one can simply apply logic and physical

intuition to see that this absolutely cannot be the case: without the requisite matrix elements there would be no energy dependence
to our numerical results, as shown explicitly in eqn. 3, hence the Wigner delay would show no energy dependence. To be even clearer
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here: the dipole matrix elements define the expansion coefficients for the partial waves. If these expansion coefficients are ignored,
one is simply left with an arbitrary sum over a set of states {l,m} with unknown magnitudes and phases, thus selected, presumably,
at random by the researcher, and with a fixed phase relationship defined purely as a function of angle by the form of the spherical
harmonics, i.e.

arg[f(ǫ)] → arg[
∑

l.m

Yl,m(θ, φ)] (5)

This is absolutely contrary to our results: in figures 1 & 2 clear angular and energy dependencies are seen in the results, which show both
τw and the photoionization cross-sections, and this complex behaviour was the main focus of the original manuscript. Furthermore,
the Supplementary Materials include full plots, and data, of the energy-dependent matrix elements used in the calculations.

Yet another form of this statement may be made in the framework of basic scattering theory: without a radial part to the solution,
there can be no radial asymptote, hence no defined phase to the wavefunction in the asymptotic (free particle) limit. To restate again
more generally: the well-known phenomena of scattering physics and photoionization physics (i.e. radial and angular dependence of
the outgoing scattering wave, a defined asymptotic phase, and the energy dependence of the angular interference pattern of the partial
waves etc. etc.), also observed in our results for the specific case of Wigner delays, could not be observed without inclusion of the
energy-dependent (radial) part of the problem. Throughout our manuscript, we discuss our results within the expected phenomena of
molecular photoionization physics, including polarization dependence, photoionization cross-sections (including the features of shape
resonances and Cooper minima) and the underlying scattering physics. None of this physics would be present in results based on eqn.
3. Sections 3 and 4 of our manuscript would be entirely redundant in this case. With apologies to Baykusheva & Wörner, since we
intend no embarrassment, we have to remark that, on reflection, we are therefore rather surprised by their assertion, which appears to
be a severe, if earnest, category error rather than simple notational confusion.

In fairness to Baykusheva & Wörner, one could posit a hypothetical case where the scattering physics was correctly treated, and
continuum wavefunctions computed, but no dipole integrals taken into account. In this case, there would be no logical fallacy in their
argument: the calculations would correctly include the scattering physics, but omit the photoionization physics. Indeed, examples
of such continuum wavefunctions were plotted in fig. 4 of the manuscript to provide physical insight, and the computation of the
scattering solutions is a prerequisite for the calculation of the dipole matrix elements, since they are overlap integrals between the
initial and final state wavefunctions. In this hypothetical case, there would be some energy and angular dependence of the continuum
functions, but the photoionization physics would be missing, hence no coupling of the continuum and bound state wavefunctions
incorporated, and no dipole overlap integrals between these states would be computed. More precisely, this case would yield correct
continuum states for scattering, but not dipole-prepared continuum waves corresponding to photoionization, and there would be no
difference to the continuum state as a function of electric-field polarization in the molecular frame, or ionizing orbital. This case,
however, would not correspond to the to the case Baykusheva & Wörner posit, i.e. eqn. 3 above, which yields a purely angular
expansion.

II. FORMALISM

Let us return to the core scientific assertion of Baykusheva & Wörner’s comment: that our formalism does not include the dipole
matrix element and full angular dependence of the scattering wave, as defined in canonical energy-domain scattering theory. As per
the above, they provide a form of the standard partial wave expansion for photoionization as (eqn. 4 in their comment):

f(ǫ) =

√

4π

3

∑

l.m

〈ψlm|rν |ψ0〉Ylm(Ω
k̂
)Y1ν(Ων̂) (6)

Here, their notation indicates that the scattering wave f(ǫ) is defined by the matrix element 〈ψlm|rν |ψ0〉, and the product of two
spherical harmonics Ylm(Ω

k̂
) and Y1ν(Ων̂). In this form, the matrix element is, strictly speaking the generic dipole matrix element,

of the form 〈ψf |r.E|ψi〉, written specifically for an initial state ψ0, and with both the dipole operator and the final state expanded in
spherical harmonics, to allow separation of the radial and angular (geometric) parts of the scattering state, i.e.

〈ψf |r.E|ψi〉 = 〈ψf |rν |ψ0〉Y1ν(Ων̂) =
∑

lm

〈ψlm|rν |ψ0〉Y1ν(Ων̂)Ylm(Ω
k̂
) (7)

Here the matrix element defines a purely radial integral over the initial and final state wavefunction, coupled by the raidal part of
the dipole operator - as such this is often termed the radial integral or radial matrix element in the literature or, more generically, the
dipole or photoionization matrix element (although this may refer to the full matrix element or the radial matrix element). If one is to
be precise, this expansion assumes a single electron system (there is no residual ion included in the final state) or, equivalently, a single
active electron. There is also an assumption of a single polarization geometry, defined by the coordinates Ων̂ , resulting in an absorption
of a single photon with one unit of angular momentum, and projection ν into the reference frame, implicitly assumed to be the molecular
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axis here. To be pedantic, since no angular integrations are defined, this wavefunction is more completely labelled as f(ǫ,Ω
k̂
; Ων̂), fully

labelling the functional dependence on energy and angle, for a specific polarization geometry. With these stipulations, this equation
indeed defines a valid scattering solution resulting from a dipole interaction.

It is of note that this type of solution is absolutely standard, has long been in textbooks [4] and in the literature, and has been
written for many different sets of assumptions and with different notations. Particularly notable and clear derivations, for the specific
cases of atomic and molecular photoionization, have been presented by Zare and colleagues [5–7], and Dill [8]; more recent works
have also provided clear derivations in cases including molecular dynamics [9, 10], aligned molecular distributions [10, 11] and for a
computationally-tractable simple model [12]. For clarity, we note that the core photoionization physics here is identical to the case of
photoelectron angular distributions (PADs), in which the partial wave interferences are manifested in the angle and energy-dependent
photoelectron yields. One of the current authors has been working in this field for almost a decade and has built significant expertise
in this area; see, for example, refs. [13–18].

Throughout our manuscript we are clear on the use of exactly this standard formalism for our work but, since our aim was not to
reproduce textbook materials, the notation was simplified to an effective partial wave expansion, vis.:

Ψg =
∑

lm

ψlm (8)

as given at the beginning of sect. 2. In this case, the notation is suppressed to a simple set of partial wavefunctions ψ, with l,m labels,
to emphasize the core fundamentals of the scattering state - namely that it is comprised of a set of partial waves, and different angular
momentum states will contribute and interfere (further discussion of this notational choice is provided below). Later in the article, in
defining the Wigner delays, the same generic partial wavefunction is more explicitly labled as ψ∗

lm(k, θ, φ). In the main article we did
not, however, explicitly define this wavefunction with a full partial wave expansion showing the constituent parts of the photoionization
solution, although the contributing factors were discussed, including scattering phases, dipole integrals and so forth (again, see below
for further discussion), as well as references to various articles on photoionization and scattering theory.

However, recognising that the interested or expert reader may wish to confirm the formalism used, or their general understanding
of the physics, we did include further discussion in the Supplementary Material (included here as an appendix for completeness), in
particular the following equations:

Ψ(r) =
∑

lm

Alχl(r)Ylm(θ, φ) =
∑

lm

ψlm(r) (9)

which defines a generic scattering wave expansion, with partial waves given as ψlm(r); and for the specific case of photoionization:

d(E) = 〈Φf (r); Ψ(r)|µ̂.E|Φi(r)〉 (10)

Ψ(E, θ, φ) =
∑

lm

dl,m(E)Ylm(θ, φ) (11)

which defines a general dipole matrix element d(E), and the photoionization wavefunction Ψ(E, θ, φ) as an expansion in spherical
harmonics, with coefficients defined by the dipole matrix elements dl,m(E). We did not provide a full derivation here, but plugging
Ψ(r) into the form of d(E), and solving analytically for a specific polarization geometry (with the dipole operator expanded as angular
momentum coupling terms - see, for example, [5, 8]), will provide a full photoionization solution. In this case, one can still write a
generic partial wave expansion, as per 8, e.g.

Ψ(E, θ, φ) =
∑

lm

dl,m(E)Ylm(θ, φ) =
∑

lm

ψlm(E, θ, φ) (12)

where the partial wavefunction is explicitly a function of energy and angle, but the dependence on the dipole integrals is implicit.
Again, this is perfectly standard notation.

Finally, and more specifically, we included the formalism provided by the authors of ePolyScat, which defines the numerical compu-
tations reported in the manuscript (ref. [19]):

I
piµi,pfµf

l,m,µ (E) = 〈Ψpi,µi

i |d̂µ|Ψ
pf ,µf

f ϕ
(−)
klm〉 (13)
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T
piµi,pfµf
µ0

(θ
k̂
, φ

k̂
, θn̂, φn̂) =

∑

l,m,µ

I
piµi,pfµf

l,m,µ (E)Y ∗

lm(θ
k̂
, φ

k̂
)D1

µ,−µ0
(Rn̂) (14)

Full details of the notation are given in the original Supplementary Material, but suffice to note here that, structurally, this formalism
is again - fundamentally - canonical scattering theory, with a partial wave expansion applied to the case of photoionization. In the
ePolyScat case, the equations are further defined by point group symmetries (with the matrix elements symmetrized over sets of
spherical harmonics as appropriate), and include a Wigner rotation matrix element for the polarization geometry, thus allowing any
set of Euler angles to define this physical parameter. The radial matrix elements denoted Ipiµi,pfµf

l,m,µ (E) are output by the ePolyScat
calculations, and post-processed according to eqn. 14, the Wigner delay is then calculated in the standard manner (see below).

To belabour the point - all of these formalisms are effectively identical, as far as the fundamental physics is concerned, and within
a given set of approximations. There is no new physics here, and fundamental results of this type have been well-established since the
1950s in general, and since the 1960s and early 1970s for some of the specific photoionization cases. Baykusheva & Wörner comment
that “We argue that the denition given in (1) [our original manuscript] is not consistent, neither with the established interpretation
of time delay phenomena [2, 3, 4, 5] nor the recent theoretical work on photoionization delays of atomic systems (see, e.g. [6]).” In
fact, notational differences aside, these various forms of the photoionziation matrix element, the resultant scattered wave, and the
total (asymptotic) phase, are essentially identical. Therefore, the phase content of the final wavefunction is the same, and will provide
the same results for the Wigner delay. These results are absolutely canonical, and absolutely consistent with both the established
interpretations of time delay phenomena and the recent work cited by Baykusheva & Wörner. For a more thorough touchstone review,
which includes time delays for a range of types of scattering problem, including wavepackets, we refer the reader to ref. [20]. For
a more thorough review of scattering theory, including various distinct energy and time-domain (wavepacket) frameworks, and the
equivalence of the phase information of same, see ref. [21].

In practice, it was effectively the final flavour of these formalisms that was applied in the numerical calculations, which made use of
ePolyScat results, as described in sect. 3.A. of the original manuscript (emphasis added):

“Continuum wavefunctions and dipole matrix elements were computed with ePolyScat, for the highest-lying σ-orbitals in
both cases, for linearly polarized ionizing radiation in both parallel and perpendicular geometries, and for photoelectron
energies from 1 to 45 eV. The phase information from the raw matrix elements, expressed in terms of angular momentum
channels, provides the full scattering phase-shift, and application of eqn. 3 provides τw for each channel. Similarly, eqn. 4
provides the group, or photoelectron wavepacket, delay. In the calculations, radial integrals are evaluated for rmax = 10 Å,
defining an effective range to the interaction at which the total phase (hence delay) is defined. By calculating the
photoionization matrix elements for a range of photoelectron energies, the energy dependence of the process can be
mapped out, and the complete dependence of the Wigner delay τw(k, θ, φ) obtained.”

Again, although no formalism is given explicitly here, we believe that most readers will follow the clear content and logic of the text.
To be yet more explicit, one can write the Wigner delay for this formalism, starting from the final simplified form given in the original

manuscript and substituting in the full expression for the final state, as follows:

τgw(k, θ, φ) = ~
d arg(

∑

l,m ψ∗

lm(k, θ, φ))

dǫ
(15)

→ τ
g,piµi,pfµf
w, µ0

(ǫ, θ
k̂
, φ

k̂
; Rn̂) = ~

d

dǫ
arg





∑

l,m,µ

I
piµi,pfµf

l,m,µ (ǫ)Y ∗

lm(θ
k̂
, φ

k̂
)D1

µ,−µ0
(Rn̂)



 (16)

In this form, the unsummed indicies from the ePolyScat results (which pertain to the specific ionization channel(s) present) remain
explicit, the results are further labelled to correspond to a specific polarization geometry, as defined by the set of Euler angles Rn̂,
and incident photon projection in the lab. frame (µ0). For clarity, the energy dependence has been labelled with ǫ, instead of denoted
by the photoelectron momentum k. Additional normalization factors are included within I

piµi,pfµf

l,m,µ (ǫ). Although this form appears
complicated, we note that we have significant experience with the use of ePolyScat and post-processing of the results, and recently
released the first version of a software suite, ePSproc, for such purposes. This software evolved from codes developed over a number
of years, and carefully tested both in multiple applications. For the ePSproc release, the code was further tested against benchmark
results provided by the authors of ePolyScat, for the computation of molecular frame photoelectron angular distributions - an almost
identical problem to that discussed herein; further details, including the software, examples and documentation, may be found in refs.
[22, 23].

The Wigner delays given here can be compared with eqns. (3) & (5) of Baykusheva & Wörner - again, canonical results - given in
their notation as:
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τ =
d

dǫ
arg(f(ǫ)) (17)

τ(k, θ, φ,Ων̂) = ~
d

dǫ
arg

(

√

4π

3

∑

l.m

〈ψlm|rν |ψ0〉Ylm(Ω
k̂
)Y1ν(Ων̂)

)

(18)

where f(ǫ), as defined in eqn. 6, has been explicitly expanded in the full form. Again, this is seen to be functionally identical (apart
from some assumptions and notational differences) to our formalism. It is, again, an absolutely standard result.

III. TEXTURAL SPECIFICS

Although the above discussions are more than sufficient to dispense with Baykusheva & Wörner’s contention, in the spirit of
completeness and transparent discussion, we note here some additional points from our manuscript which also attest to the aims and
content of the work. As noted above, throughout our manuscript we are clear on the use of a standard photoionization formalism for
our work, and discussed this in a time-domain (wavepacket) picture, which is formally equivalent to the more usual energy-domain
formalism. In particular:

• As stated in the introduction, in reference to scattering phases: “These results are most simply derived in a stationary state
(energy-domain) picture of scattering, but a wavepacket (time-domain) treatment yields the same essential features [21]. Hence,
in a time-domain picture of photoionization, the scattering phase-shift and associated time delay can be viewed as a group delay
of the outgoing photoelectron wavepacket, born at a time t0 within the ionizing laser pulse.”

• Also from the introduction: “More traditional scattering theory approaches are usually time-independent and most suited to
the weak field regime, hence are appropriate for the consideration of the intrinsic Wigner delay of the scattering system. Such
approaches often use a partial-wave formalism, which allows separation into "geometric" and "dynamical" parts. In this case
much progress can be made analytically, and a deep physical insight into the characteristics of the scattering can be gained
(see, for example, ref. [8]). However, to obtain a complete solution to a complex scattering problem numerical methods are still
ultimately needed for the dynamical part, and a specific formalism for the scattering system of interest is usually constructed in
order to yield tractable equations (see, for example, refs. [24, 25]); solving molecular scattering problems is therefore non-trivial
for even the simplest cases. This problem can, however, be addressed via the use of variational techniques to solve the numerical
part of the problem [26], allowing for a methodology which retains the full physical insights of scattering theory and the generality
of fully-numerical approaches, but at a significantly lower computational cost.
In this work, we investigate Wigner delays from molecular ionization based on this general approach.”

• The use of a time-domain formalism allows for a physically intuitive picture of the problem (see discussion in ref. [Time-domain
book] for example) and, as detailed in the canonical textbook by Rodberg and Taylor (ref. [21] as above), is formally identical.
Rodberg and Taylor discuss this at length, and present numerous energy and time-domain derivations of canonical scattering
theory, and the interested reader is referred to that seminal text for details.

• Many other authors have used a similar formalism, as pointed out at the start of sect. 2: “As discussed by Wigner [27], Smith
[28] and, more recently, in some depth by various authors [20, 29, 30], the phase of the scattering wavefunction can be associated
with a time delay of the outgoing wavepacket, Ψg. In a partial-wave decomposition, Ψg is expressed as a coherent sum over
partial-waves, Ψg =

∑

lm ψlm. Here each component is defined by the quantum numbers (l,m), the electronic orbital angular
momentum and its projection onto a given quantization axis respectively, and each (l,m) pair defines a partial-wave scattering
channel.”
“Here ηg represents the total (group) scattering phase, determined from Ψg, hence from the coherent summation over the
partial-wave channels.”

• The dipole matrix elements (radial integrals) can be determined numerically from ePolyScat, as discussed in sect. 3.1: “The
phase information from the raw matrix elements, expressed in terms of angular momentum channels, provides the full scattering
phase-shift, and application of eqn. 3 provides τw for each channel. Similarly, eqn. 4 provides the group, or photoelectron
wavepacket, delay. In the calculations, radial integrals are evaluated for rmax = 10 Å, defining an effective range to the
interaction at which the total phase (hence delay) is defined. By calculating the photoionization matrix elements for a range of
photoelectron energies, the energy dependence of the process can be mapped out, and the complete dependence of the Wigner
delay τw(k, θ, φ) obtained.
In the following, we present and discuss these results for the general reader. Supplementary materials, including additional
technical details of the results, e.g. channel-resolved dipole matrix elements, which may be of interest to some readers, are
available online via Figshare at http://dx.doi.org/10.6084/m9.figshare.2007486.”

http://dx.doi.org/10.6084/m9.figshare.2007486
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• The formalism for the ePolyScat results and photoionization matrix elements referred to above was given more explicitly in the
Supp. Mat., wherein the details of the scattering calculations and results obtained from ePolyScat are discussed. The details
of this discussion have already been sketched out above, and are also reproduced below for completeness. In this case, the
dipole matrix element - equivalent to the term 〈ψlm|r|ψ0〉Y1ν(Ων) given by Baykusheva & Wörner - is defined as d(E), and
the full asymptotic wavefunction is then given by Ψ(E, θ, φ) =

∑

lm dl,m(E)Ylm(θ, φ). Note that the matrix element includes
integration over the radial coordinate r. The equivalent equation for the numerical results, as defined by the authors of ePolyScat
[19], is given as T piµi,pfµf

µ0
(θ

k̂
, φ

k̂
, θn̂, φn̂) =

∑

l,m,µ I
piµi,pfµf

l,m,µ (E)Y ∗

lm(θ
k̂
, φ

k̂
)D1

µ,−µ0
(Rn̂), where Ipiµi,pfµf

l,m,µ (E) are, again, the

radial dipole integrals defined as Ipiµi,pfµf

l,m,µ (E) = 〈Ψpi,µi

i |d̂µ|Ψ
pf ,µf

f ϕ
(−)
klm〉.

• Regardless of an energy or time-domain picture, the asymptotic phase of the photoelectron wavefunction is given by the scattering
phase. In other words, arg(Ψg) is given by the scattering phase ηg, which is determined by the scattering of the electron from
the molecule (see ref. [7] for detailed discussion). In the case of photoionization - a “half-collision” - in the weak field limit,
the composition of the outgoing scattering wave is described by a dipole matrix element, which couples the ionizing orbital
to the continuum wavefunction. This matrix element defines the scattering phases. As discussed above, without this matrix
element there would be no energy dependence to the scattering state, nor any dependence on the ionization dynamics, since the
continuum wave would not be coupled to an ionizing orbital - ionization physics could not be modelled. This physical concept,
and consequent details, are stressed multiple times throughout the manuscript, vis. [emphasis added]:

– “In atomic ionization, the relatively simple nature of the scattering potential results in a continuum wavepacket with little
spatial structure, which can often be described by just two partial-wave channels. In molecular ionization, the anisotropic
nature of the potential means that many more partial-waves are required to describe the photoelectron wavepacket, and
significant spatial and energy structure is expected. In essence, the angular structure of the photoelectron wavepacket is
the result of the angular interferences between the partial-waves at a given energy, while the difference in the dependence
of the phase-shift of any given l-wave on the photoelectron kinetic energy results in the strong energy-dependence of the
photoionization cross-section and τw.” (Sect. 2)

– “ In these plots the surface topography follows the magnitude of the dipole matrix element (proportional to the square-root
of the photoionization cross-section), while the colour-map shows the energy and angle-resolved Wigner time.” (Sect. 3.B)

– “In both cases, the ionizing orbital is the valence σ-bonding orbital, with lobes oriented along the molecular axis. The
choice of polarization of the ionizing radiation - either parallel or perpendicular to the molecular axis - defines the symmetry
of the ionization continuum accessed, hence the symmetry of the continuum photoelectron wavefunction.” (Sect. 3.B)

– “Physically, the peaks in the cross-section correspond to maxima in the dipole integrals which define the coupling between
initial orbital and final continuum wavefunctions induced by ionizing radiation, with an angular dependence given by the
partial-wave interferences. For N2(Σu) this peak is the well-known shape-resonance [26, 31, 32], corresponding to an
enhancement of the l = 3 partial-wave, which can be considered as a trapping of this part of the outgoing wavepacket due
to the form of the molecular potential energy surface.” (Sect. 4, telling entitled “Scattering Dynamics”)

– “In the case of CO the picture is quite different. Here the Wigner delays are predominantly negative, indicating a slight net
repulsive effect from the molecular potential, and the results are highly asymmetric, consistent with the loss of inversion
symmetry and the form of the ionizing orbital for a polar diatomic. The repulsive nature of the potential is most significant
at the oxygen end of the molecule, where the extent of the ionizing orbital is much reduced relative to the carbon end.”
(Sect. 4)

– “This can be understood by consideration of the radial part of the continuum wavefunction: at higher energies the pho-
toelectron wavelength becomes shorter, and the continuum function will become more penetrating relative to the core
wavefunction. Consequently, the spatial overlap integral will incorporate more bound-state density closer to the core, which
is effectively more strongly bound...” (Sect. 4)

– “Visualization of the scattering wavefunctions provides additional physical insight into the dynamics of the process. Figure
4 shows a selection of continuum wavefunctions at different photoelectron energies, chosen to represent the evolution of
the scattering wavefunctions towards the peak in the cross-sections (shape-resonance), with symmetries concomitant with
ionization parallel to the molecular frame (N2(Σu) and CO(Σ)).” (Sect. 4)

– “with the observed continuum structure corresponding to the rise and fall of the l = 3 partial-wave component over this
energy range, including a significant change in the magnitude of the wavefunction in the core region which has a strong
effect on the overall ionization yield” (Sect. 4)

– “In all cases, the asymptotic phase-shift of the waves is approximately established at the length-scales shown (rmax =10 Å),
and phase differences can be observed in the plots.” (Sect. 4)

– “The scattering phases of individual partial waves, at a single energy, can be determined by measurements of photoelec-
tron angular distributions. These are usually termed “complete” photoionization experiments, and have been successfully
demonstrated for a range of atomic and molecular ionization process (see refs. [6, 33] for example, for more comprehensive
reviews see refs. [34, 35]), and most recently for multi-photon ionization with femto-second pulses, including electronic
dynamics [16].” (Sect. 5)
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– “The reconstructed phases agreed reasonably well with theoretical results, which were based on ePolyScat calculations
similar to those employed herein.” (Sect. 5, in discussion of the results of ref. [36], with ePolyScat calculations and
post-processing performed by some of the current authors)

– “...calculations based on a modified 3-step model using time-dependent ionization and propagation calculations, combined
with accurate recombination matrix elements (hence scattering phases) were able to recreate the intensity envelope of the
harmonic spectrum and spectral phase differences between opposites end of the molecule” (Sect. 5, in discussion of the
results of ref. [37] - again, ePolyScat calculations and post-processing performed by some of the current authors)

– “Molecular ionization is a complex phenomenon, with the outgoing photoelectron wavepacket experiencing a highly aniso-
tropic scattering potential. In the time-domain, this results in a highly-structured Wigner delay, as a function of energy and
angle in the molecular frame. With the use of scattering calculations, the angle-dependent Wigner delay τgw(k, θ, φ) was
examined for two simple diatomics, and these results illustrate the magnitudes of the delays, and types of structures, which
might generally be expected in molecular photoionization. The deep link between the Wigner delay and the photoionization
matrix elements is also revealed in the correlation of energy-domain photoionization phenomena - in this case the shape
resonance in N2 - with features in the Wigner delay.” (Sect. 6)

Summary

In conclusion, we hope our response to Baykusheva & Wörner’s contention is quite clear and robust: there is no issue here, either
conceptually, in the technical details of the formalism used, or numerically. We further hope that our lengthy and detailed response
serves as useful material for researchers interested in the fascinating and challenging topics of molecular photoionization and Wigner
delays, and provides a suitable reading list of canonical works.

Appendix - Notes on Scattering Theory & ePolyScat for Photoionization, reproduced from the Supp. Mat.

The following notes, originally included in the Supplementary Materials for our article (available online via Figshare at
http://dx.doi.org/10.6084/m9.figshare.2007486), are reproduced here for the interested reader.

General framework

Within scattering theory the free particle wavefunction can be expressed as a partial wave expansion in radial and angular functions:

Ψ(r) =
∑

lm

Alχl(r)Ylm(θ, φ) =
∑

lm

ψlm(r) (19)

The exact form of χl(r) and Al will depend on the potential V (r). For a Coulombic potential, V (r) ∝ Z1Z2/r, where Z1 and Z2

are the charges on the scattering centre and scattered particle, solutions are given by (using incoming wave normalization):

χl(r) = Fl(r)
r→∞

−→ sin

[

kr −
πl

2
−
Z1Z2

k
ln(2kr) + σl

]

(20)

Al =
2l + 1

kr
ile−iσl (21)

σl = arg Γ

[

l + 1− i
Z1Z2

k

]

(22)

Here the solution to the radial wavefunction, χl(r), is given by the (regular) Coulomb function Fl(r). This has a complicated
functional form near the scattering centre, but asymptotically goes to a sinusoidal form. Both Fl and Al contain terms involving σl,
this is the Coulomb phase, and is given by equation 22. Γ is the gamma function.

While the Coulomb potential is the exact form for a point charge, more generally a scattering system may have an additional short-
range contribution to the potential (one which scales as 1/rn, where n > 1), and this contribution may be non-centrally symmetric

http://dx.doi.org/10.6084/m9.figshare.2007486
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(i.e. anisotropic). However, the strength of these short-range interactions and multi-polar contributions to the potential will fall to
zero much faster than the Coulombic term, and we can define a boundary, rc, beyond which the potential is purely Coulombic. We
now have a potential defined by V ′(r < rc) and V (r ≥ rc). We do not know the exact (analytic) form of the wavefunction in the
region r < rc. However, in the Coulombic region the radial wavefunction still has an analytic form, and is now described by:

χl(r ≥ rc) = cos(δlm)Fl(r) + sin(δlm)Gl(r) (23)

Gl(r)
r→∞

−→ cos

[

kr −
πl

2
−
Z1Z2

k
ln(2kr) + σl

]

(24)

Al =
2l + 1

kr
ile−i(σl+δlm) (25)

Here Fl(r) is the regular Coulomb function as before, while Gl(r) is the irregular Coulomb function. δlm is an additional scattering
phase shift, which arises from the non-Coulombic part of the scattering potential. This phase shift defines the mixing of the regular
and irregular Coulomb functions, and this mixing also determines the asymptotic phase shift:

χl
r→∞

−→ sin

[

kr −
πl

2
−
Z1Z2

k
ln(2kr) + σl + δlm

]

(26)

Hence the scattering phase δlm describes the effect of the non-Coulombic part of the potential, V ′(r), and is labelled with m to show
that this may affect different components of each l-wave differently in an anisotropic scattering system. Note that the short-range
part of the potential may still be centrally-symmetric, in which case only m = 0 components will be present. Although the form of the
wavefunction is not generally known for r < rc (but could be found numerically for a given V ′(r)), the scattering phase carries all of
the information on the stength of the short range potential.

Most generally, the overall phase of each partial-wave channel is denoted ηlm = σl + δlm. The total phase (including angle-
dependence) can be most cleanly written as, simply, ηt(r) = arg(Ψ(r)), which incorporates the scattering phases ηlm, as well as any
additional channel-dependent phase contributions (e.g. phase contributions from Ylm terms etc.).

Photoionization

The asymptotic wavefunction defines the final state of the system, thus any experimental observations. The solution above defines
the continuum wavefunction in the presence of the scattering potential. In the case of photoionization, the amplitudes of the various
partial-waves in the asymptotic limit must thus be found from some overlap from the initial state. Typically we work within the dipole
regime, and the light-matter coupling at an energy E can be written:

d(E) = 〈Φf (r); Ψ(r)|µ̂.E|Φi(r)〉 (27)

Here Ψ(r) is the continuum (photoelectron) wavefunction of eqn. 19; Φi(r) is the inital N -electron state and Φf (r) the N−1 electron
final state of the ionizing molecule; µ̂ is the dipole operator and E the incident electric field.

In terms of the observable asymptotic wavefunction (or photoelectron wavepacket), which is defined as a function of energy and angle,
these matrix elements will determine the overall amplitudes and phases of the continuum wavefunction prepared via photoabsorption.
Hence we can write the final asymptotic wavefunction/wavepacket as:

Ψ(E, θ, φ) =
∑

lm

dl,m(E)Ylm(θ, φ) (28)

where dl,m(E) is the dipole matrix element expanded in partial-waves. Here, the dipole matrix elements include radial integration
over the continuum wavefunction of eqn. 19, and incorporates the asymptotic phases ηlm. The final observable is the square of this
wavefunction, and (for an angle-sensitive measurement) will retain phase sensitivity over the partial-wave channels:

I(E, θ, φ) = Ψ(E, θ, φ).Ψ∗(E, θ, φ) (29)
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ePolyScat

The dipole matrix elements are defined in ePolyScat [38–40] by, e.g., the definition of the MF-PADs as per eqns. 1-3 of ref. [19]:

Iµ0
(θ

k̂
, φ

k̂
, θn̂, φn̂) =

4π2E

cgpi

∑

µi,µf

|T
piµi,pfµf
µ0

(θ
k̂
, φ

k̂
, θn̂, φn̂)|

2 (30)

T
piµi,pfµf
µ0

(θ
k̂
, φ

k̂
, θn̂, φn̂) =

∑

l,m,µ

I
piµi,pfµf

l,m,µ (E)Y ∗

lm(θ
k̂
, φ

k̂
)D1

µ,−µ0
(Rn̂) (31)

I
piµi,pfµf

l,m,µ (E) = 〈Ψpi,µi

i |d̂µ|Ψ
pf ,µf

f ϕ
(−)
klm〉 (32)

In this formalism:

• I
piµi,pfµf

l,m,µ (E) is the radial part of the dipole matrix element, determined from the initial and final state electronic wavefunctions

Ψpi,µi

i and Ψ
pf ,µf

f , photoelectron wavefunction ϕ(−)
klm and dipole operator d̂µ. Here the wavefunctions are indexed by irreducible

representation (i.e. symmetry) by the labels pi and pf , with components µi and µf respectively; l,m are angular momentum
components, µ is the projection of the polarization into the MF (from a value µ0 in the LF). Each energy and irreducible
representation corresponds to a calculation in ePolyScat.

• T
piµi,pfµf
µ0

(θ
k̂
, φ

k̂
, θn̂, φn̂) is the full matrix element (expanded in polar coordinates) in the MF, where k̂ denotes the direction

of the photoelectron k-vector, and n̂ the direction of the polarization vector n of the ionizing light. Note that the summation
over components {l,m, µ} is coherent, and hence phase sensitive.

• Y ∗

lm(θ
k̂
, φ

k̂
) is a spherical harmonic.

• D1
µ,−µ0

(Rn̂) is a Wigner rotation matrix element, with a set of Euler angles Rn̂ = (φn̂, θn̂, χn̂), which rotates/projects the
polarization into the MF .

• Iµ0
(θ

k̂
, φ

k̂
, θn̂, φn̂) is the final (observable) MFPAD, for a polarization µ0 and summed over all symmetry components of the

initial and final states, µi and µf . Note that this sum can be expressed as an incoherent summation, since these components
are (by definition) orthogonal.

• gpi
is the degeneracy of the state pi.

The dipole matrix element of eqn. 32 - the radial part of the dipole matrix element - effectively defines the final state amplitude and
phase. Hence, is equivalent to the general form of eqn. 27, but here expanded in terms of symmetries of the light-matter system.

In practice, the inital N -electron and final (N−1)-electron wavefunctions are defined by standard computational chemistry methods
(as implemented in Gaussian, Gamess, etc.). The scattering state is solved numerically by ePS via a Schwinger variational procedure
[26], and the radial dipole integrals solved based on this scattering state. Numerically, an effective range for the interaction (rmax)
is defined by the spatial grid used in the calculation; other calculation parameters may also affect the numerical results, see ref. [26].
Matrix elements Ipiµi,pfµf

l,m,µ (E) are output for further processing, e.g. for MF-PADs or calculation of Wigner delays.
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