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An optimized technique for calculating the excess chemical potential of small molecules in dense
liquids and the binding affinity of molecular ligands to biomolecules is reported. In this method, a
molecular species is coupled to the system of interest via a nonphysical fourth spatial dimension w
through which insertion or extraction can be carried out �R. Pomès, E. Eisenmesser, C. B. Post
et al., J. Chem. Phys. 111, 3387 �1999��. Molecular simulations are used to compute the potential
of mean force �PMF� acting on the solute molecule in the fourth dimension. The excess chemical
potential of that molecule is obtained as the difference in the PMF between fully coupled and fully
decoupled systems. The simplicity, efficiency, and generality of the method are demonstrated for the
calculation of the hydration free energies of water and methanol as well as sodium, cesium, and
chloride ions. A significant advantage over other methods is that the 4D-PMF approach provides a
single effective and general route for decoupling all nonbonded interactions �i.e., both
Lennard-Jones and Coulombic� at once for both neutral and charged solutes. Direct calculation of
the mean force from thermodynamic integration is shown to be more computationally efficient than
calculating the PMF from umbrella sampling. Statistical error analysis suggests a simple strategy for
optimizing sampling. The detailed analysis of systematic errors arising from the truncation of
Coulombic interactions in a solvent droplet of finite size leads to straightforward corrections to ionic
hydration free energies. © 2005 American Institute of Physics. �DOI: 10.1063/1.1946750�

I. INTRODUCTION

The rapid advancement of computer technology has
stimulated the development of simulation tools designed to
calculate the excess chemical potentials of small molecules
in dense fluids1 and the binding affinities of molecular
ligands to biomolecules.2–6 The free energy difference be-
tween two states of a system can be obtained by calculating
the reversible thermodynamic work in a transformation from
one state to the other. The choice of a suitable pathway along
which the transformation can be made has long been
debated.7 Because free energy is a state function, this path-
way need not be, and for practical reasons, generally is not
chosen to be physical. In the realm of biomolecular simula-
tions, the two most widely used methods by which free en-
ergy changes have traditionally been evaluated are free en-
ergy perturbation8 and thermodynamic integration.9 In both
cases, the Hamiltonian �or potential energy function of the
system� H is altered to include a dependence on a coupling
parameter �; by forcing � from 0 to 1, the initial Hamiltonian
governing the state of the system is transformed into the final
Hamiltonian. In free energy perturbation, the free energy dif-
ference between two endpoint states is evaluated as

�G = − �
i=0

n−1

kBT ln�exp
− �H��i+1� − H��i��

kBT
�

�i

, �1�

and in thermodynamic integration, the equivalent calculation
can be expressed as

�G = �
i=0

n−1 � �H

��
�

�i

��i+1 − �i� , �2�

where kB and T are the Boltzmann constant and the absolute
temperature, respectively, and i represents an index for n
discretely chosen values of � in the range of 0–1. In this
formalism, the overall free energy change is evaluated as a
sum of individual free energy contributions from separate
simulations carried out at each i. The nature of the depen-
dence of the Hamiltonian on � defines the path of the trans-
formation and has been a subject of much research as de-
scribed below.

Transforming the Hamiltonian through scaling by the
coupling parameter �, or by some function of it,10,11 suffers
from a long-recognized statistical problem associated with
the repulsive part of the Lennard-Jones potential, namely, the
numerical instability due to the presence of an infinitely
small and infinitely repulsive body at small values of �. This
is sometimes referred to as the endpoint catastrophe. The
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simplest method of addressing this problem is by not simu-
lating at � values near the endpoint states, but rather attain-
ing the results at the endpoints through extrapolation.12 An-
other approach is to embed the repulsive core of an
appearing �or disappearing� particle inside the radius of an
adjacent atom by “sprouting” �or “desprouting”� an associ-
ated bond.13 However, this becomes nontrivial for complex
molecules. Alternatively, the instability problem can be com-
pletely bypassed by incorporating a �-dependent “shifting”
or “translation” term to the effective interatomic distance of
any Lennard-Jones or Coulombic interaction that is being
annihilated or created in the transformation.11,14 In that
scheme, the infinitely repulsive body �or “hard core”� is re-
placed by a potential energy barrier of finite magnitude �or
“soft core”� which smoothly diminishes to zero in the limit
of complete decoupling.

Other notable means of overcoming the singularity prob-
lem include the particle-insertion method by Widom15

�which was designed to calculate the solvation free energies
of small particles�, and the one-step perturbation method8

�which is limited to evaluating the free energy of conserva-
tive changes�. For a detailed introduction to the modern tech-
niques used for calculating free energies by molecular simu-
lation, see Ref. 5.

An advantage afforded by soft-core potentials over con-
ventional methods4,5 is that they are not limited to conserva-
tive changes between similar solutes. A systematic compari-
son of six scaling schemes has shown that the only reliable
and efficient protocols, which do not involve shrinking/
expanding bonds, are those employing soft-core scaling.7 Ac-
cordingly, soft-core potentials have become widely used in
absolute free energy calculations. In early applications, the
approach has been applied to the calculation of the hydration
free energy of neon and ethanol,11 to an atomic fluid,16 and to
the calculation of the binding free energy of camphor to
cytochrome P450.17 Examples of recent applications include
the calculation of the free energy of association of a
cyclophane-pyrene complex,18 the binding affinity of both
natural ligands and xenoestrogens to the estrogen receptor
binding domain,19 and the absolute hydration free energies of
15 amino acid side chain analogs.20 Although soft-core meth-
ods effectively overcome the singularity problem, the fact
that they rely on scaling of the Hamiltonian means that con-
sideration must be given to the selection of appropriate scal-
ing constants for both Lennard-Jones and Coulombic non-
bonded interactions as well as the functional form of the
scaling �linear, quadratic, or otherwise�.7,11,21

A method departing from the coupling parameter ap-
proach was proposed by Pomès et al. whereby an unphysical
fourth spatial dimension is added to the conformational
space of the system.22 The extension of physical space by an
extra dimension was originally proposed for efficient confor-
mational sampling of proteins23 and atomic liquids.16 This
idea was combined with an approach introduced by Kong
and Brooks,24 where the coupling parameter is treated as a
degree of freedom of the system rather than as a preset pa-
rameter, to yield the four-dimensional potential of mean
force �4D-PMF� method.22 In the 4D-PMF approach, the
coupling between a molecular species �the “solute”� and its

environment �the “solvent”� is modulated by a nonphysical
degree of freedom: their spatial separation in the fourth
dimension, wu. The free energy change for the extraction
�or insertion� of a molecular solute from �or into� a system of
interest corresponds to the difference between fully coupled
�wu=0� and fully decoupled �wu=infinity� states, and can be
obtained from the reversible thermodynamic work or PMF
along wu. The PMF can be computed by umbrella sampling
simulations, where biasing potentials �or “umbrellas” �Ref.
25�� are used to enforce the desired sampling profile along
the transformation coordinate.22

The 4D-PMF method, like other soft-core methods, is
not limited to applications involving conservative changes
between similar solutes. Instead, the approach makes it pos-
sible to compute the absolute solvation free energy of an
entire molecule. In addition, an up to twofold improvement
in efficiency is possible as all nonbonded interactions are
treated at once, without resorting to the separation of
Lennard-Jones and Coulombic interactions as is commonly
done.26 Finally, in contrast to conventional soft-core scaling,
there are no scaling parameters to be optimized, since no
atoms are created or annihilated in the process, but rather
atoms are separated in space. Groundwork results indicated
that the method is well suited for the calculation of the ab-
solute hydration free energy of molecules with a variety of
sizes, shapes, and polarities: Lennard-Jones spheres, water,
and camphor.22

The 4D-PMF approach presents practical advantages in
both short- and long-range limits. In the short-range �fully
coupled� limit, the method is formally analogous to soft-core
coupling schemes and effectively overcomes the problems
associated with the repulsive part of the Lennard-Jones po-
tential. In addition, it was shown that the shape of the PMF
profile at large solute-solvent separation distances can be de-
rived from the attractive part of the Lennard-Jones potential
and from Coulombic solvent-solute interactions in the limit
of a solvent continuum.22 This approximation, which was
verified in calculations of the hydration free energy of non-
polar and polar neutral solutes, can be used reliably to ex-
trapolate the PMF to infinite solute-solvent separation and
thus to the limit of complete decoupling, further improving
the efficiency of the approach.

In the current work, we present methodological advance-
ments designed to optimize sampling efficiency and we im-
prove upon the generality of the 4D-PMF algorithm by ex-
tending its application to charged solutes. Results are
presented for the absolute hydration free energies of both
charged and uncharged molecular species, together with ex-
tensive error analysis. We consider the advantages afforded
by calculating the PMF by thermodynamic integration in the
fourth dimension. The direct calculation of the mean force
from thermodynamic integration is shown to be more com-
putationally efficient and better suited for the 4D-PMF
method as compared to umbrella sampling.

Furthermore, we address the systematic errors arising
from the truncation of Coulombic interactions in free energy
calculations of charged solutes.27–32 A systematic analysis of
finite-size effects in a spherical water droplet containing an
ionic solute at its center leads to simple corrections to the
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hydration free energy. The spherical solvent boundary
potential33 �SSBP� accounts for the reaction field outside of
the explicit water droplet, which is reasonably well approxi-
mated by the Born energy in sufficiently large droplets. In
addition, a straightforward correction to account for the arti-
ficial polarization of water molecules at the droplet surface is
introduced. Together, these corrections are shown to lead to
consistent estimates of ionic free energies.

II. THEORY

Here we describe the theoretical foundations of thermo-
dynamic integration in four dimensions and its implementa-
tion in molecular-dynamics simulations. A single molecular
solute immersed in a bulk solvent is considered. While both
the solute and solvent atoms are allowed to evolve in physi-
cal three-dimensional space �with Cartesian coordinates x, y,
and z� as governed by a standard molecular mechanics force
field, the Hamiltonian of the system is extended such that the
solute atoms can be transported through an unphysical fourth
dimension �along the w axis�. The total Hamiltonian of the
extended system can be written as

H = Vvv + Vuu + Vvu, �3�

where Vvv, Vuu, and Vuv are the solvent-solvent, solute-
solute, and solvent-solute potential energies, respectively.
Since the solute is not covalently bonded to the solvent, the
only forces acting between atoms of the solute and solvent
are those resulting from nonbonded interactions, which in a
typical force field would consist of the Coulombic and
Lennard-Jones energy terms. Therefore, Vvu can be written as

Vvu = �
i

�
j

4�ij�	�ij

rij

12

− 	�ij

rij

6� + �

i
�

j

qiqj

4��0rij
,

�4�

where i and j are the indices of the solvent and solute atoms,
respectively, �ij and �ij are the solvent-solute Lennard-Jones
parameters, qi and qj are the solvent and solute atomic
charges, respectively, and �0 is the permittivity of free space.
In this equation, the only dynamic parameters on which Vvu

depends are the interatomic distances between the solute and
solvent atoms, rij. In four-dimensional Cartesian space �or
R4�, rij is computed as follows:

rij = ��xi − xj�2 + �yi − yj�2 + �zi − zj�2 + wu
2, �5�

where xi, yi, and zi are the coordinates of solvent atom i; xj,
yj, and zj are the coordinates of solute atom j; and wu is a
parameter that specifies the distance, along the w axis, be-
tween the solute and solvent. For simplicity, the discussion
will assume that the four-dimensional position of the solvent
is fixed at zero and only the solute will travel through the
fourth dimension. Therefore, wu can be thought of as the
absolute position of the solute on the w axis. Also note that
Vvv and Vuu do not depend on wu, since all the atoms that
comprise the solvent, or equivalently the solute, share the
same position along the w axis. The PMF is determined from
the following calculation:

W�s� = 
0

s � �H

�wu
�dwu, 0 � s � � . �6�

Here the fourth dimension component of the mean force,
which is the expectation value of the derivative of the Hamil-
tonian with respect to wu, is integrated over the path of travel
along w. This yields the work or free energy change associ-
ated with the transport of the solute. This calculation is for-
mally analogous to the thermodynamic integration technique
using � as the coupling parameter, where the PMF can be
expressed as

W�s� = 
0

s � �H

��
�d�, 0 � s � 1. �7�

In practice, the mean force is acquired by averaging the
fourth dimension component of the force �or �H /�wu� be-
tween solvent and solute over the sampling run of a molecu-
lar dynamics simulation. A separate simulation is carried out
for each discrete step of wu; the distance between two adja-
cent steps needs to be small enough such that the numeri-
cally integrated data accurately reconstructs the PMF.

Alternatively, the PMF can be calculated22 using the um-
brella sampling method where the underlying relationship is
as follows:

W�wu� = − kBT ln	 ���wu��
���0�� 
 , �8�

where � is a probability function of wu attained from a mo-
lecular dynamics simulation in which wu is allowed to evolve
freely as governed by the Hamiltonian.25 In practice, a series
of simulations are run, each biased with a harmonic potential
such that a different portion of the PMF is sampled effi-
ciently. Raw data from this “umbrella sampling” scheme are
subsequently debiased, resulting in an overall PMF for the
abstraction �or insertion� of the molecule from �or into� the
system of interest.

Based on Eqs. �4� and �5�, we note that Vvu goes to zero
when wu→�, and that Vvu is equal to the physical �three-
dimensional� solvent-solute interaction potential when
wu=0. These two states correspond to noninteracting solvent
and solute, and to a fully interacting, physical three-
dimensional system where the solute is completely immersed
in the solvent, respectively. The excess chemical potential is
calculated as the difference between the PMF at wu=0 and
wu=�,

	 = W��� − W�0� . �9�

The usefulness of any integration pathway depends on
the sampling efficiency throughout the entire thermodynamic
transformation. The advantages of the 4D-PMF approach
stem from the effective treatment of both short- and long-
range interactions. The largest forces acting on the solute
occur when rij is small enough that solvent-solute interac-
tions are dominated by the repulsive part of the Lennard-
Jones potential �i.e., the rij

−12 term in Eq. �4��. The endpoint
catastrophe encountered when inserting or extracting solutes
with simple scaling of solvent-solute interactions is due
to the singularity in Vvu in the rij =0 limit. The 4D-PMF

034104-3 Absolute free energy calculations by thermodynamic integration… J. Chem. Phys. 123, 034104 �2005�
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approach avoids the endpoint catastrophe because finite val-
ues of wu allow solvent-solute overlap. Thus, by analogy
with shifting or other soft-core approaches, the extra degree
of freedom �wu� allows solvent-solute interactions to be
coupled or decoupled without the need to create or annihilate
atoms. However, unlike parametric approaches �such as scal-
ing or shifting�, which may be described as alchemical
transformations34 because they modify the nature of the po-
tential energy hypersurface during the course of the free en-
ergy calculation, the 4D-PMF method relies entirely on spa-
tial coordinates.

When wu is large enough, Vvu becomes dominated by
long-range interactions and the potential of mean force can
be derived by integrating solvent-solute interactions in the
limit of a solvent continuum.22 In particular, it was shown
that the long-range PMF profile in water obeys an asymptotic
form given by

W�wu� = −
kvdw

wu
3 −

kdd

wu
3 −

kcd

wu
+ W��� , �10�

where kvdw, kdd, and kcd are constants governing the strength
of solvent-solute van der Waals dispersion, dipole-dipole,
and charge-dipole interactions, respectively. In the case of
neutral solutes, the charge-dipole term drops out while in the
case of nonpolar molecules, kdd=0. Using Eq. �10�, it is pos-
sible to determine the asymptotic limit of the PMF, W���, by
extrapolation.22

III. METHOD

The PMF for the abstraction of a �single� TIP3P �Ref.
35� water molecule, a methanol molecule, and three ions
from bulk water were calculated at 300 K using Langevin
molecular-dynamics simulations and thermodynamic integra-
tion in four spatial dimensions. Version c28b1 of the
CHARMM program36 was utilized and parameters for all sol-
utes were taken, without modification, from the CHARMM

force field, versions 22 and 27.37 Simulations were carried
out in a 20 Å radius sphere containing between 992 and
1041 TIP3P water molecules. In addition, several simulations
were designed with droplets varying in size between 14 and
1032 water molecules in order to study the effect of the
system size on the free energy of hydration of an ion �see
Table II�. In all simulations of charged systems, the SSBP
�Ref. 33� method was utilized to account for the reaction
field due to the electrostatic interactions extending beyond
the limits of the explicit system. Furthermore, simulations
�of 100 ps in length� of the same droplets �containing be-
tween 14 and 1032 water molecules� but lacking a solute
were carried out to examine the effect of the SSBP boundary
on the charge density of the solvent. The observed boundary
polarization effect was corrected by determining the work
required to extract, along the 4D axis, a positive unit test
charge, given the averaged radial charge density. Calculating
this correction was computationally very inexpensive �rang-
ing from 0.1 to 35 CPU hours for the various system sizes�.
A spherical quartic potential boundary was used for all simu-
lations containing neutral solutes. In all cases, a weak har-
monic restraint, which acts solely on the x, y, and z coordi-

nates and ignores the w coordinate, was imposed on the
solute to keep it at the center of the water droplet. No cutoffs
for nonbonded interactions were imposed. All simulations
were carried out using a time step of 2 fs and a friction
coefficient of 5 ps−1 applied to all nonhydrogen atoms.

The CHARMM program,36 which had already been previ-
ously modified to include 4D capability,22 was refined further
to record the w-axis projection of the net force acting on the
solute at every time step. In all 4D-PMF simulations, the
w coordinates of all solvent atoms were fixed at 0, while the
w coordinates of the solute atoms were fixed at a preset wu

value. Separate simulations were executed for discrete preset
w-axis positions of the solute ranging from wu=0 Å to wu

=20 Å. In all cases, the spacing between adjacent windows
was the smallest in places where the function to be inte-
grated, the force, can potentially vary most rapidly, namely,
at small values of wu.5,26 Step intervals of �wu=0.1 Å be-
tween wu=0 Å and wu=4 Å; then �wu=0.5 Å between
wu=4 Å and wu=10 Å; and finally �wu=1 Å beyond
wu=10 Å were used �63 sampling runs in total per solute�.
Furthermore, a second PMF for a TIP3P water molecule was
generated using five times as much sampling. In this control
calculation, the interval between sampling runs in the range
wu=0.1 Å to wu=4 Å was �wu=0.05 Å �103 sampling runs
in total�.

Each simulation consisted of a short equilibration run
followed by a longer sampling run. For methanol, the equili-
bration time �2 ps� and sampling time �20 ps� were the same
for all simulations. In the case of a water solute, an equili-
bration time of 0.5 ps was used for all simulations and a
more efficient sampling scheme was used in which CPU re-
sources were directed to where the uncertainty in the force
was the greatest, near wu=2 Å. Upwards of 30 ps of sam-
pling per simulation �60 ps for the “control” simulation�
were performed in this vicinity of wu. Simulations of the ions
were carried out using a similarly optimized scheme and
consisted of 2 ps equilibration and up to 100 ps �in the vi-
cinity of wu=2 Å� sampling runs. Furthermore, a correction
free energy was calculated for turning off the charge of the
ion in the presence of the SSBP, to account for the interac-
tion between the charge and the reaction field outside the
explicit system. This was done using the PERT module of
CHARMM �using 11 windows and thermodynamic integra-
tion�. Each window consisted of a 0.4 ps equilibration and
1.6 ps sampling run.

For comparison, the 4D-PMF for TIP3P water was also
calculated using umbrella sampling.25 Harmonic biasing po-
tentials of 30 kcal/mol/Å2 were set up at intervals of
�wu=0.1 Å over the range from wu=0 Å to wu=10 Å. Only
minor adjustments in the duration of the sampling runs were
made in order to keep the total CPU time identical for both
the thermodynamic integration and the umbrella sampling
simulations. See Table I for the relevant simulation times and
CPU requirements for all the simulations.

The equilibration part of a simulation was started as a
continuation of the equilibration portion of the simulation
preceding it and was followed by the production run. Cas-
cading the simulations in this way leads to a trivially paral-
lelizable scheme for performing the calculations. Since each
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step in wu was small �in most cases 0.1 Å�, the time required
for equilibration after each perturbation was inherently short.
For thermodynamic integration, the total force acting on the
solute in the w direction was recorded at each time step at
each discrete wu value. The PMF was then calculated by
numerically integrating the mean force with respect to wu

over the defined range �as per Eq. �6��. The weighted histo-
gram analysis method algorithm38,39 was used to debias the
data obtained from umbrella sampling and construct the
PMF.

The error in the thermodynamic integration data was
analyzed as per Allen and Tildesley40 and is summarized
here. The statistical property of interest is the force F, which
was sampled n times in a given run. The mean force �F� was
calculated, along with its standard deviation �. If each
sample of F was assumed to be statistically independent of
the others then the standard deviation in the mean would
simply be

�mean =
�

�n
. �11�

However, since samples of F were recorded at every time
step, they are naturally highly correlated. It is therefore nec-
essary to determine the correlation time or statistical ineffi-
ciency, a value reflecting the time that needs to elapse in a
simulation before a new statistically independent sample of
F can be acquired. The standard deviation in the mean is
then adjusted accordingly,

�mean =
�

�n
�s , �12�

where s is a statistical inefficiency value calculated by divid-
ing the entire data set into blocks each containing nb

samples. This is repeated for progressively larger blocks and
the trend is extrapolated to block sizes of infinite size,

s = lim
nb→�

nb

�blocks
2

�2 , �13�

where �blocks is calculated by finding the mean of the data in
each block and then determining the standard deviation of
these mean values. The statistical errors associated with the
PMFs are determined by choosing an error of zero for the
first data point at wu=0 and accumulating the error over the
integration using standard propagation rules.

IV. RESULTS AND DISCUSSION

A. Hydration free energy of a TIP3P water molecule

The results of the extraction of a single TIP3P water
molecule from bulk water are shown in Fig. 1. Figure 1�a�
depicts the mean force acting on the solute versus the w
coordinate of the solute as derived from the “control” calcu-
lation. A one standard deviation error in the mean is also
shown as the shaded area.

The shape of the force curve in the large-w limit is de-
termined by differentiating equation �10�. Since a water mol-
ecule is neutral, the charge-dipole interaction drops out
�kcd=0�:

F�wu� = 3
kvdw + kdd

wu
4 . �14�

The long-range fit, with kvdw+kdd=62 kcal Å3/mol, was de-
termined using least squares analysis on the PMF between
wu=6 Å and 20 Å. The black line in Fig. 1�b� shows the
PMF resulting from the integration of the mean force data.
This control curve appears smooth and noise-free as it was
derived from a substantial 4.8 ns of sampling. The dotted
line is a curve fit to this PMF and takes the form of Eq. �10�.
An optimal W��� was chosen as 6.70 kcal/mol. Since W�0�
was arbitrarily chosen as 0, the overall free energy change
for the extraction of a TIP3P water molecule from bulk was
determined to be 6.70±0.04 kcal/mol. The corresponding

TABLE I. Details of the free energy simulations.

Solute

Number of
water

molecules in
droplet Method

Total
equilibration

time �ps�

Total
sampling
time �ns�

Total CPU
time �h�

TIP3P water 1041 TIa 31.5 0.89 330
TIP3P water

�control�
1041 TI 51 4.8 1700

TIP3P water 1041 Ub 50.5 0.87 330
Methanol 1041 TI 112 1.1 449

Sodium ion 14 TI 124 4.9 5
Sodium ion 22 TI 124 4.9 11
Sodium ion 37 TI 124 4.9 19
Sodium ion 58 TI 124 4.9 43
Sodium ion 124 TI 124 4.9 119
Sodium ion 449 TI 124 4.9 1162
Sodium ion 1032 TI 124 4.9 1760
Cesium ion 992 TI 124 4.9 1760
Chloride ion 1041 TI 124 4.9 1760

aThermodynamic integration.
bUmbrella sampling.
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hydration free energy is −6.70±0.04 kcal/mol. This result
has an error of 6.3%, as compared to the experimental value
of −6.3 kcal/mol.41 The result obtained in the present study
is also in good agreement with values ranging from
−5.5 to −6.4 kcal/mol �Refs. 20, 22, 33, 42, and 43� re-
ported from other computer simulations. The control calcu-
lation reported here was executed over �4 d on about 20
R3800 SGI processors with a total CPU time of 1700 h.

Figure 1�b� also compares the PMF computed from less
than one-fifth of the sampling of the control. From this PMF
and following the error analysis prescription by Allen and
Tildesley40 �see Eqs. �12� and �13��, we report an extraction
free energy of 6.61±0.08 kcal/mol. The fivefold decrease in
sampling has resulted in roughly a doubling of the magnitude
of the error. This is in line with previous work that has
shown the statistical error to be proportional to the inverse of
the square root of the amount of sampling.44

Finally, the PMF determined by umbrella sampling is
shown for comparison. With an equivalent amount of

sampling, the calculation yielded a result qualitatively in
agreement, although the PMF is plagued with severe statis-
tical noise. A PMF attained using umbrella sampling inher-
ently suffers from statistical noise arising from nonuniform
sampling within each umbrella and from cumulative error
introduced by the uncertainty in matching adjacent umbrel-
las. This problem has been examined elsewhere.45,46 By con-
trast, thermodynamic integration is easier to optimize in that
the amount of sampling performed at any wu is the only
parameter of concern and this parameter can be adjusted
trivially. Optimizing a series of umbrella sampling runs is
more difficult because it involves the interplay between three
parameters, the umbrella separation distances, umbrella stiff-
ness, and the amount of sampling in each umbrella.5,47 One
way to avoid the need to specify these parameters in advance
is to build up a nearly optimal biasing function as the simu-
lation progresses. In such adaptive biasing force
methods,45,46,48 free energy barriers are effectively removed;
however, uniform sampling is limited by diffusion and can
only be realistically attained in very long simulations. Fur-
thermore, it has been argued that the use of shorter sampling
simulations with a larger number of narrow umbrellas rather
than wider umbrellas with more sampling in each39 is more
efficient because sampling uniformity can be guaranteed in
simulations of any length. In the limit of infinitely stiff um-
brellas, the calculation becomes equivalent to thermody-
namic integration, which partly explains the gain in effi-
ciency afforded by thermodynamic integration in the 4D-
PMF method.

However, the greatest pitfall of umbrella sampling in the
present application resides in its inherent inefficiency at sam-
pling regions of the PMF at large solvent-solute separations
�i.e., beyond wu=4 Å�. As the solute moves away from the
solvent, both the magnitude and fluctuations of the w projec-
tion of the force acting on the solute quickly diminish. Once
the force is small enough, the solute is not compelled to
move appreciably within the umbrella �and would not move
at all if it were not for the random force of the Langevin
integrator�. As a result, it is necessary to space the umbrellas
very densely to maintain a sufficient overlap between them.
In adding more umbrellas, it is inevitable that the time spent
sampling a region where the fluctuations are small, and thus
the mean force is already quite certain, is not put to good
use.

The control over the sampling profile afforded by the
thermodynamic integration technique is well suited to im-
proving statistical efficiency in the 4D-PMF method because
it leads naturally to a strategy for optimizing the distribution
of sampling over the relevant wu range. Consider the plot of
the force acting on a water molecule through the fourth di-
mension versus its position along the w axis �Fig. 1�a��. The
vertical width of the shaded region on this graph is an indi-
cator of the uncertainty in the mean force �see Methods�. To
minimize the overall uncertainty in the PMF, it is logical to
sample more thoroughly regions of wu where the force fluc-
tuates the most. In the calculation reported here, almost all of
the sampling was directed to the region between wu=0 Å
and wu=4 Å. Although the amount of sampling done was
decided a priori, the process can be truly optimized by tai-

FIG. 1. Extraction of a single TIP3P water molecule from bulk water along
a path through the fourth dimension. �a� Mean force acting on the molecule
as it is removed into the fourth dimension. A positive force indicates attrac-
tion between solute and solvent while a negative force represents repulsion.
The vertical width of the shaded region indicates a statistical error of one
standard deviation. The dotted line is a large-w fit to the force curve and is
given by the equation F=186/wu

4. �b� Corresponding potential of mean force
�PMF� profile arising from the extraction. The three plots show the PMF
attained after 4.8 ns of sampling with thermodynamic integration �solid line;
error bars are roughly the thickness of the line and are omitted for clarity�,
0.89 ns of sampling with thermodynamic integration �dashed line with error
bars�, and 0.87 ns of umbrella sampling followed by weighted histogram
analysis method analysis using 0.1 Å wide bins �dot-dashed line without
error bars�. The dotted line is a large-w fit to the black line and is given by
the equation W=−62/wu

3+6.70.
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loring the sampling distribution to the system at hand in real
time. This can be done easily as it only requires that the error
in the mean force be recomputed frequently, as new data are
being generated, and available CPU resources be focused
subsequently to the regions where the uncertainty is the
greatest.49

The error calculated using the method described by
Allen and Tildesley40 was checked against an alternate
means of error analysis, in which the standard deviation was
attained from 20 independent trials of the same water PMF
calculation. The simulation setup for each of these was iden-
tical to the 330 CPU-hour hydration free energy calculation
of a TIP3P water molecule discussed above. However, each
calculation was started with a different set of initial condi-
tions where the positions, orientations, and velocities of the
solvent molecules were assigned at random. The distribution
of the final results is shown in Fig. 2. The fit Gaussian �also
shown� has a mean of 6.65 kcal/mol and a standard devia-
tion of 0.12 kcal/mol. The value attained using the Allen and
Tildesley treatment40 �6.61±0.08 kcal/mol�, when compared
to this result, shows an underestimate of the statistical error,
in this case by 33%, and there is evidence suggesting that
this gets worse for larger, more complex solutes �data not
shown�. However, attaining pinpoint accurate estimations of
the statistical error is not critical, since errors as high as
0.12 kcal/mol or 2% are still likely to be much smaller than
the errors introduced by the approximations in the force field
in most cases �which are expected to be on the order of
1 kcal/mol, see Ref. 20�.

B. Hydration free energy of a methanol molecule

The PMF for the extraction of methanol from bulk water
�Fig. 3� is qualitatively similar to that of water. The profile
reflects the balance of Coulombic and Lennard-Jones forces,
at both short and long ranges. Both the shape and the mag-
nitude of the PMF for the extraction of methanol from water
can be rationalized in terms of solvent-solute interactions.
When the methanol molecule is fully inserted in the system

�wu=0 Å�, its hydroxyl group interacts favorably with the
solvent by forming hydrogen bonds with water molecules.
Because of this, there is an initial increase in free energy as
the solute is forcefully extracted into the fourth dimension.
At a point around wu=1.3 Å, attractive Coulombic forces
between water and the hydrophilic moiety of methanol
weaken sufficiently and can no longer compensate for the
entropic drive to fill the cavity with solvent and expel the
solute. Because methanol is larger than water and has a hy-
drophobic moiety, the “squeezing out” effect is significantly
more pronounced. When the solute has moved beyond the
Lennard-Jones contact radius, the cavity becomes filled com-
pletely and the squeezing out effect ends. Beyond this point,
the attractive force acting on the solute results from a com-
bination of dispersion and dipole-dipole interactions. The
large-w portion of the PMF expectedly follows a wu

−3 depen-
dence �Eq. �10�� and asymptotically approaches a limit as the
distance between the solute and solvent approaches infinity
and the force between them tapers to zero. The expressions
derived earlier22 for a solvent continuum predict that kvdw

=137 Å3 kcal/mol and kdd=0.69 Å3 kcal/mol, which is in
fair agreement with the fit curve in Fig. 3, where kvdw+kdd

=153 Å3 kcal/mol. Thus, dipole-dipole interactions contrib-
ute to a much smaller extent to the long-range part of the
PMF than do dispersion forces, consistently with the results
obtained for water hydration, where the ratio of dispersion to
dipolar interactions was shown to be 41.22 Based on the
long-range fit to the PMF and on error analysis, we predict a
hydration free energy of −4.24±0.11 kcal/mol. This result
differs by 17% from the experimental value of
−5.1 kcal/mol.41 The asymptotic limit of a PMF for an in-
homogeneous system such as one containing a protein or
other biological molecule may not be predictable from a con-
tinuum approximation; however, it is expected to follow a
well-behaved long-range profile and thus be predictable
through extrapolation.

C. Boundary polarization and reaction field
corrections for charged solutes

Because an accurate treatment of long-range electrostat-
ics is critical for charged solutes,27–32 we have considered

FIG. 2. Distribution of the free energy of dehydration of a TIP3P water
molecule from a set of 20 calculations, each starting from a system of
randomly placed water molecules. The solid line shows the actual histogram
created from the data �with 0.1 kcal/mol wide bins�. The dotted line is a
Gaussian distribution fit to the data with a mean of 6.65 kcal/mol and a
standard deviation of 0.12 kcal/mol.

FIG. 3. PMF associated with the extraction of a methanol molecule from
bulk water along a path through the fourth dimension. The dotted line rep-
resents the large-w fit to the PMF and is given by the equation
W=−153/wu

3+4.24.

034104-7 Absolute free energy calculations by thermodynamic integration… J. Chem. Phys. 123, 034104 �2005�

Downloaded 06 Dec 2011 to 142.150.248.72. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



two possible difficulties arising from the fact that any simu-
lated system containing explicit atoms must inevitably be
finite in size.

The first of these is the effect of the boundary on the
polarization of water molecules. Water molecules are prefer-
entially polarized at vacuum-water interfaces in finite-size
systems �see, for example, Refs. 33 and 50�. While this is an
effect of using a finite-sized system, it should be noted that
artifacts resulting from the truncation of Coulombic interac-
tions around charged solutes also result in systematic errors
in simulations employing periodic conditions.28 Our results
indicate that surface water polarization, which exists both in
the presence and in the absence of the SSBP �Ref. 33�
boundary potential, has a significant effect on the extraction
free energy of charged species. Figure 4 shows the average
charge density as a function of the distance from the center
of a spherical water droplet �no solute present� bound by an
SSBP boundary. At the vacuum-water interface, the solvent
molecules preferentially point their hydrogen atoms outward.
The effect of this polarization is propagated towards the in-
terior of the water sphere and the structure is evident as far in
as 10 Å. This gives rise to an artificial static field that favors
the extraction of negatively charged ions, and opposes the
extraction of positively charged ions into the fourth dimen-
sion. The degree to which this boundary polarization biases
the extraction free energy of a charged ion can be measured
with a simple calculation of the work required to move a
positive unit test charge from the center of the charge density
to a distance infinitely far away via the fourth dimension.
The force acting on the test charge and the accumulated work
is plotted in Fig. 5. This interaction energy is later used as a
correction to the extraction free energy of the three ions �see
below�.

Second, we have examined the effect of including a
solvent continuum outside the fixed boundary of the explicit
system �i.e., a dielectric medium with �=80�. The interaction
between the charged solute and resulting reaction field was
included by way of the SSBP algorithm.33 Because the SSBP
algorithm works in three-dimensional space and ignores the
fourth dimension, a 4D extraction by itself does not include
the effect of the reaction field. Accordingly, whether SSBP
or a simple quartic boundary potential is used does not
change the extraction PMF to any appreciable extent �data
not shown�. The reaction field contribution is, however, easy
to calculate, by alchemically removing the charge on the
ion once the ion is located far in the fourth dimension

�at wu=1000 Å� �see Methods�. Because the ion is at a large
wu, its interaction with the explicit system is essentially
turned off and it interacts only with the reaction field, via the
SSBP algorithm.

Figure 6 demonstrates the system size dependence of the
extraction free energy of a sodium ion, both before and after
corrections for the reaction field and boundary polarization
are applied. The number of water molecules in the system
was varied from 14 to 1032, resulting in a range of systems
with radii varying from 4.6 to 19.5 Å. Results are summa-
rized in Table II. The uncorrected data demonstrates a strong
system-size dependence throughout the examined range.
Both corrections decrease with increasing system size and
presumably go to zero in a system approaching infinite
size. A system size much greater than that studied here would
be needed to bring the systematic error due to the finite-size
boundary to the same order as the magnitude of the statistical
error �simulation of such a large system would be

FIG. 4. Charge density as a function of radial distance from the center of a
water droplet with radius 20 Å. Note that the peaks observed at a small
radial distance from the center of the sphere are not statistically significant
due to the fact that the integration took place over a small volume.

FIG. 5. Force �gray line; left-hand scale� acting and work done �black line;
right-hand scale� in the 4D extraction of a test positive unit charge from a
water droplet with radius 20 Å. Note that the results shown are calculated
directly from the charge density data in Fig. 4.

FIG. 6. Free energy of dehydration of a sodium ion vs the size of the
explicit water droplet. The three lines from bottom to top represent the free
energy of extraction as calculated using the 4D-PMF method, the free en-
ergy of extraction with Born energy correction applied, and the free energy
of extraction with both the Born energy and boundary polarization
corrections applied. The corresponding analytical fits are given by
W=−365/r1.68+99.6, W=−192 000/r6.58+104.6, and W=−5850/r3.87+94.7.
Also see Table II.
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impractical�. More practically, the hydration free energy of
an ion can be obtained via an extrapolation based on several
extraction free energy computations done with varying sys-
tem sizes as was done here for sodium �Fig. 6�. Extrapolating
this curve to an infinite radius yields a dehydration free en-
ergy of 99.6 kcal/mol, although this may be inaccurate be-
cause of the inherent sensitivity of the extrapolated result on
small errors in the data points. Furthermore, this is a compu-
tationally expensive procedure, since multiple systems of
varying sizes need to be simulated.

Figure 6 also demonstrates that upon correction of both
the boundary polarization and the reaction field errors, the
calculated extraction free energy of the sodium ion reaches a
plateau of 94.7 kcal/mol and becomes independent of sys-
tem size at a radius greater than 10 Å. Therefore, with the
corrections taken into account, the hydration free energy of
an ion can be feasibly calculated from a simulation of a
system as small as 10 Å in radius and would require roughly
120 h of CPU time. This amounts to an �26-fold reduction
in CPU requirements in comparison to the 3119 CPU hours
that were necessary for the extrapolation method discussed
above.

The calculated reaction field energies are also in very
good agreement with the respective Born energies51 �listed in
Table II�. According to the Born model, the energy ��GBorn�
should depend only on the radius �a� of the explicit system,
the charge on the solute �q�, and the dielectric constant of the
medium ���:

�GBorn = −
q2

8��0a
	1 −

1

�

 . �15�

Thus, in a homogeneous medium, the explicit calculation of
the reaction field may be replaced with a Born energy cor-
rection.

D. Extraction of ions from water

The artificial polarization of surface water molecules
leads to, in terms of extraction free energy, an underestimate
for negative ions and overestimate for positive ions. The
boundary polarization correction was applied appropriately
and the resulting PMFs for the extraction of sodium, chlo-
ride, and cesium ions from bulk water are shown in Fig. 7.
Asymptotic limits yield extraction free energies of 88.6±0.1,

80.5±0.1, and 53.9±0.1 kcal/mol, respectively �note that the
reaction field error correction is not accounted for in this
data�.

The extraction PMF profiles for the ionic solutes de-
picted in Fig. 7 are qualitatively different from those of water
and methanol. Because they are charged and considerably
more hydrophilic, cavity explusion is more than offset by the
attractive Coulombic interactions acting between the charged
solute and the polarized water molecules. The radial distri-
bution function shown in Fig. 8�a� demonstrates a clear pref-
erence for water molecules to point their negatively charged
oxygen atom towards the positive sodium ion, thus forming
an interaction that strongly disfavors the extraction of the
solute into the fourth dimension.

As early in the extraction process as wu=2.2 Å �Fig.
8�b��, overlap of the water molecules with the sodium ion in
the physical three-dimensional space becomes energetically
feasible. Note that there is still local ordering in the structure
of the first hydration shell. As demonstrated in an earlier
study of simple Lennard-Jones solutes, the cavity expulsion
only amounts to a few kcal/mol for small solutes but in-
creases with the solute size.22 On the other hand, the

TABLE II. Dependence of sodium hydration free energy on system size.

Number of
water

molecules in
the system

Water
droplet
radius

�Å�

Extrection
free energy
�kcal/mol�

Reaction
field

energy
�kcal/mol�

Born
energy

�kcal/mol�

Boundary
polarization

energy
�kcal/mol�

Free energy
of

dehydration
�kcal/mol�

14 4.6 70.8±7.1 25.7 26.9 18.0 78.6
22 5.4 79.4±3.1 22.8 23.9 14.5 87.7
37 6.4 83.8±1.1 19.6 20.8 13.5 89.9
58 7.5 86.1±8.1 17.1 18.4 12.2 91.1

124 9.6 90.8±6.1 13.8 14.8 11.5 93.2
449 14.7 95.5±1.1 9.6 10.1 10.2 94.9

1032 19.5 97.5±0.1 7.5 7.8 9.6 95.4

FIG. 7. PMF associated with the extraction of three ions, sodium, chloride,
and cesium, from bulk water along a path through the fourth dimension. The
PMFs depicted contain a correction for boundary polarization �see Fig. 5�.
Large-w fits to the PMFs �dotted lines� are given by W=−59.1/wu

−1073/wu
3+88.6, W=19.7/wu−2821/wu

3+80.5, and W=−57.5/wu

−1316/wu
3+53.9 kcal/mol for sodium, chloride, and cesium, respectively.
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electrostatic attraction between the sodium ion and the polar-
ized solvent amounts to a dominating 40 kcal/mol when the
ion is transported to a distance of only wu=2 Å. At wu=3.8
�Fig. 8�c�� and beyond, the cavity is completely filled with
water and although local water structure has visibly vanished
at this point in the extraction, the water molecules remain
polarized on average by the ion’s presence. A final extraction
free energy of 88.6 kcal/mol is attained upon completion of
the extraction. Integration of Coulomb forces in the limit of a
solvent continuum predict that the long-range tail of the PMF
for a charged solute would follow a wu

−1 dependence.22 This
prediction could not be verified here because the reaction
field correction, a substantial contribution to the overall free
energy of hydration calculation, was not determined as a
function of the four-dimensional coordinate of the solute,

and thus cannot be added to the 4D PMFs. Instead, the cor-
rection was measured in a separate step where the charge of
the solute was scaled to zero �see Methods� and separately
added to the final extraction free energy values. However, the
missing corrections to the PMFs in Fig. 7 would necessarily
be identical for all three ions considered here, since such
corrections would only depend on the system sizes and mag-
nitudes of the ionic charges �both of which are identical�.
The intricacies of interactions involving explicit solvent do
not come into play in this correction. Although the cations
and anions investigated show a mixture of wu

−1 and wu
−3 de-

pendence, the coefficients differ significantly between posi-
tive and negative ions �equations of the fit curves are given
in the figure caption of Fig. 7�. A reaction field correction
applied identically to the PMFs of all three ions would not
correct this discrepancy. Simple molecular mechanics force
fields such as the one used in this study may be too crude to
capture all the details pertaining to the structure and thermo-
dynamics of ionic hydration. Recent studies have shown that
nonrigid and polarizable models of water considerably im-
prove the treatment of ionic hydration.52,53

Based on the results depicted in Fig. 7, and after sepa-
rately adding the correction for the reaction field energy �of
7.5 kcal/mol�, the final hydration free energies of sodium,
chloride, and cesium are reported as −96.1±0.1, −88.0±0.1,
and −61.4±0.2 kcal/mol, respectively, which is in fair agree-
ment with the experimental values of −98.4 �Refs. 54 and
55�, −76.1 �Refs. 54 and 55�, and −67.8 kcal/mol �Ref. 54�.
More importantly, our data indicate that combining reaction
field and boundary polarization corrections with a suffi-
ciently large spherical nonperiodic system can accurately
represent an infinite solvent system, and that such a setup can
be used for calculating hydration free energies of charged
species in dense media.

V. CONCLUSIONS

We have built upon the 4D PMF method by incorporat-
ing thermodynamic integration as a means to calculate effi-
ciently the excess chemical potential of a small molecule in a
dense liquid. Direct accumulation of the mean force was
shown to improve sampling efficiency over umbrella sam-
pling and to be inherently better suited to the 4D method.
The tractability, simplicity, effectiveness, and generality of
the method were demonstrated through the calculations of
the hydration free energy of water, methanol, and charged
ions. Statistical error analysis was performed to gauge the
magnitude of the sampling uncertainty resulting from these
types of calculations. The detailed analysis of systematic er-
rors arising from the truncation of Coulombic interactions in
a solvent droplet of finite size leads to straightforward cor-
rections to ionic hydration free energies. In turn, these cor-
rections yield consistent results for droplets greater than
10 Å in radius �i.e., containing as little as 124 water mol-
ecules�. Although there are many examples of PMF calcula-
tions for transformations in three-dimensional space,45,46,56 to
our knowledge the 4D-PMF approach is the only method that
allows the free energy difference between two chemically
distinct systems to be obtained without the need for creating

FIG. 8. Sodium-hydrogen and sodium-oxygen radial distribution functions
at various stages of progression as a sodium ion is transported into the fourth
dimension. Simulations are carried out in a system consisting of a 20 Å
radius sphere of water and a centered sodium ion. Functions corresponding
to four-dimensional positions of the sodium at wu=0.0 Å �a�, 2.2 Å �b�, and
3.8 Å �c� are shown. Note that the radial distribution functions illustrated
here �especially �c�� suffer from statistical noise at small separation dis-
tances due to an artifact of integrating over a small volume.
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or annihilating atoms in the transformation process but in-
stead by calculating a PMF along a spatial coordinate. An
inherent advantage not offered by conventional soft-core
methods is that it is practical to decouple both Lennard-Jones
and Coulombic interactions at once, thus saving computa-
tional resources. Computer efficiency is further enhanced by
the fact that the mean force converges to asymptotic behav-
ior at relatively short 4D separations as the solute molecule
is extracted from the solvent. Furthermore, the methodology
offers a straightforward prescription for optimizing sampling
at short 4D separations, where the fluctuations in the mean
force are greatest. Hydration free energy calculations of
small solutes, which represent an important step in the cal-
culation of absolute protein-ligand binding affinities, have
definitely entered the realm of practicability in the past sev-
eral years. The present study demonstrates that the 4D-PMF
method constitutes a viable alternative to conventional
approaches20,57 as results of comparable precision can be ob-
tained within the limits of one work day on a modern but
inexpensive cluster of computers. The advantages of statisti-
cal sampling efficiency afforded by the 4D-PMF method are
expected to hold in molecular systems of greater complexity,
such as proteins, and more generally, systems evolving on
rugged energy landscapes. In such systems, systematic errors
arising from slow relaxation of degrees of freedom perpen-
dicular to the reaction coordinate present an additional
challenge.48 Forthcoming work will focus on applications of
the method to solutes in inhomogeneous solutions and to
systems of biological scale where the “solvent” degrees of
freedom include those of a protein receptor or binding site.
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