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Systematic Study of Anharmonic Features in a Principal Component
Analysis of Gramicidin A
Martin Kurylowicz, Ching-Hsing Yu, and Régis Pomès*
Molecular Structure and Function Programme, Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
ABSTRACT We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-
dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA
eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law
scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge
to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have
subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We
characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive
components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared
measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen
atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also
apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features
of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations.
INTRODUCTION
Computer simulation has become an essential research tool

for understanding how the dynamics of proteins link their

structure to their function (1–4). Although molecular-

dynamics (MD) simulations have often been successfully

used to obtain such insight, the size of the resulting data

set makes interpretation difficult. Different parts of a complex

molecule may play various functional roles on different

length scales and timescales, and it is difficult to identify

these motions among the wealth of data resulting from MD

trajectories. In this work, we present a number of quantitative

measures that identify anharmonic motions for an archetypal

ion channel, gramicidin A (gA), and argue that these motions

are relevant to function. We obtained these measures not

only in the large-covariance regime, but also in the small-

covariance regime, which is usually ignored as noise, where

we identify short and fast collective motions with known

functional consequences in the channel backbone.

Functional dynamics of gramicidin A

Detailed atomistic studies of ion channels present a special

opportunity for understanding the structural and dynamic

correlates of function. Because of its relative simplicity,

gA is by far the most studied and best understood ion

channel, and its structural and functional properties have

been extensively characterized (5–7). It is a passive

transmembrane pore that is selective for small monovalent
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cations. Its structure has been characterized at high

resolution by 1H-NMR in lipid micelles (8) and by solid-state

NMR in lamellar-phase lipid bilayers (6,9). The native

channel is composed of two monomers that assemble as

a head-to-head noncovalently linked dimer, forming a cylin-

drical pore when solvated in a membrane bilayer (see Fig. S1

in the Supporting Material). Each monomer has 15

alternating L- and D-amino acid residues that form a b6.3-

helix with 2.5 turns per monomer. Four Trp residues stabilize

the C-terminals at the water-membrane interface. The gA

helix forms a 4-Å-wide cylindrical pore that hosts a single

file chain of water molecules traversing the membrane,

thereby creating a pathway for cation permeation and

a hydrogen-bonded wire for the conduction of protons.

Many computational studies have been performed on gA

(7,10). Solvation and hydrogen bonding play an important

role in modulating the conduction of protons along water

chains. Hydrogen bonding between lumen water molecules

and backbone carbonyl groups is thought to play a role in

organizing the water wire within the channel by providing

surrogate solvation to the hydrated proton, thereby

catalyzing the Grotthuss mechanism of proton transport

(11–13). It has also been demonstrated that the backbone

modes of gA impact its ionic conduction properties (14), espe-

cially in comparison with linked analogs of the dimer (13).

The surrogate solvation of cations by carbonyl oxygens in

the gramicidin backbone has a long history of study.

A peptide-plane libration mechanism was first proposed on

the basis of experimental conductance measurements (15).

A normal mode analysis (NMA) study concluded that there

is a band of short-wavelength (high-frequency) modes

between 75 cm�1 and 175 cm�1 that represent librational

motions of the peptide planes (16). Early MD studies
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concluded that the mobility of the gA channel modulates its

conductivity, and suggested that picosecond librations of

the carbonyl moieties lining the pore were coupled to the fluc-

tuation of water molecules and of ions in the lumen (14). Tian

and Cross (17) reviewed the experimental evidence for

carbonyl tilting in gA. NMR studies have provided experi-

mental evidence of peptide plane librations (18,19).

Powder-pattern NMR revealed picosecond librations (19),

whereas 15N T1 relaxation measurements indicated a nano-

second timescale (18), although this slower result was inter-

preted as the effect of damping by slower correlated motions.

In recent MD studies, the amplitude of these librations was

computed (13), and significant agreement with the amplitudes

measured by NMR was found. The frequency of carbonyl

librations was also measured by far-infrared (far-IR) spectros-

copy (20,21) and found to be in general agreement with the

NMA results reported by Roux and Karplus (16).
Principal component analysis and protein
dynamics

Principal component analysis (PCA) is a well-established

technique (22,23) for extracting collective modes of displace-

ment from an atomistic MD trajectory by diagonalizing the

time average of the covariance matrix for any atomic subset

of interest. The application of PCA to protein dynamics was

pioneered by Garcı́a (24), who demonstrated that there are

multimodal distributions of PCs along a simulated protein

trajectory, and hence any harmonic approximation of protein

dynamics will fail to capture the essential features of their

collective dynamics. This is not to say that the harmonic

portions of the landscape are unimportant; indeed, much has

been learned from harmonic approximations around an equi-

librium structure through the use of NMA (16,25–28) and

related elastic network models (29–33). These approximations

can discern regions of enhanced flexibility in protein based on

the topology of interresidue contacts, which can be useful for

identifying ligand-binding sites (29) or understanding aniso-

tropic responses to external forces (31). However, although

such work can elucidate the potential energy landscape of an

equilibrium protein conformation, it is an approximation

based on a single structure, lacking the ‘‘essential’’anharmo-

nicity of an atomistic force field that allows for conformational

changes on a multimodal free-energy landscape. Furthermore,

there is no way to account for temperature or solvent in a static

approximation, the influence of which also necessitates the

generation of atomistic MD trajectories.

Since it is often the large-amplitude motions that are of

interest to biochemists, PCA can afford significant data

reduction by concentrating a large fraction of a system’s total

fluctuations into a small fraction of the collective motions.

To this end, many studies have examined the largest few

PCs of protein motion (24,26,34–37). Amadei et al. (34)

used PCA to extract what they termed the ‘‘essential

dynamics’’ of proteins, and argued that only the largest
non-Gaussian-distributed PCs are sufficient to account for

the functional dynamics of a protein. Large collective

displacements can be used to study conformational changes,

and these are often the best examples of functional motion in

proteins. Many proteins bind their ligands through very

specific conformational changes around the binding site.

Global conformational changes may also exert mechanical

forces in the function of molecular motors, such as myosin

(38), or facilitate chemical catalysis in the modification of

chemical bonds, as in serine proteases (39). Since PCA can

be used to compute the root mean-square (RMS) fluctuations

along the protein backbone, it has been particularly success-

ful in identifying large collective motions that may be related

to functional changes in conformation, such as the hinge-

bending motion of thermolysin (40), regions of hydrogen

exchange in cytochrome c (35), and protein folding (41,42).

Large-scale global conformation changes are not the only

interesting feature of protein dynamics. Although the tertiary

and quaternary structural changes can span the size of an

entire protein, and we would expect the largest PCs to

capture these motions, individual residues also have

important collective motions at much smaller length scales,

and modification of hydrogen bonds within the secondary

structure occurs on even shorter scales. Biomolecular

processes also span at least 9 orders of magnitude in time,

from femtoseconds (bond vibrations) to milliseconds

(folding). The covariance eigenvalues of short and fast

collective motions are necessarily smaller than those of

long and slow motions. Hence, these motions may not be

represented in the largest set of PCs, and may even be found

among the small-covariance eigenvectors normally ascribed

to motions arising from thermal noise. Luckily, there is

nothing intrinsic to PCA that gives more meaning to large-

covariance motions than to small ones. In this study, we con-

ducted a comprehensive analysis of the entire set of PCs and

found non-Gaussian-distributed PCs with small-covariance

eigenvalues. We argue that these are also ‘‘essential’’ in

the same sense as the largest components (34), in that they

span the anharmonic portion of the free-energy landscape.

Although most NMA and elastic network studies have

focused on the longest wavelengths as in PCA studies, some

have studied the shorter wavelengths as well (16,26,28). For

example, the normal modes of the binding pocket of wild-

type a-lytic protease were found to have a symmetric char-

acter, vibrating in phase to maintain the size of the binding

pocket, whereas a nonbinding mutant had asymmetric modes

that resulted in contraction and expansion of the binding site

(28). Regarding the normal modes of gramicidin, it has been

argued that the frequency separation of collective modes span-

ning the whole protein (<50 cm�1) and modes describing

amide plane fluctuations (75–175 cm�1) rules out coherent

librations of many amide planes (16). The fact that functional

features have been found in the short-wavelength regime of

NMA justifies the examination of the same regime in PCA

of simulated MD trajectories, where the results include the
Biophysical Journal 98(3) 386–395
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influence of an anharmonic molecular force field as well as

temperature and solvent effects.
METHODS

Molecular dynamics

Simulations were carried out using the CHARMM 31.1 MD package (43)

with the TIP3P water model (44) and the CHARMM22 force field (45)

for all other atoms. The gA dimer was embedded in a membrane of 122

glycerol-1-monooleate (GMO) molecules and solvated by 3210 water

molecules. A periodic bilayer of GMO molecules was constructed in a cubic

box with 50 Å sides. After 100 ps of relaxation dynamics, a cylindrical hole

was created in the center of the membrane and a gA dimer whose structure

was obtained from simulations inside a phospholipid bilayer was inserted

(46). The entire system was then equilibrated for 2 ns before the production

runs described below were performed.

Two sets of simulations were carried out to probe the long- and short-

timescale dynamics of the gramicidin dimer. In one 64 ns production run,

longer-timescale dynamics were probed using a 2 fs time step and saving

coordinates every 200 fs, and the SHAKE algorithm (47) to constrain

stretching of covalent bonds involving hydrogen. In a 10 ns production

run, there were no bond constraints within the protein, and a 0.5 fs time

step (saving every 10 fs) was used to probe hydrogen dynamics at shorter

timescales and yield accurate PCA eigenvalues at the shortest length scales.

The leapfrog Verlet algorithm was used to propagate dynamics with

constant surface tension and normal pressure on the membrane based on

the Parrinello-Rahman barostat as described previously (48), with a piston

mass of 500 amu and a 5 ps coupling constant. The surface tension was

set to zero, since the application of external pressure has been shown to

be unnecessary for GMO bilayers (49). The area per lipid was stable at

0.25 nm2, in quantitative agreement with a previous study (49), upon

equilibration of the membrane with gA inserted. The Nosé-Hoover

algorithm was used to control temperature at 300 K with a thermal piston

mass of 1000 kcal ps2 and 5 ps coupling constant. The simulations were

carried out with tetragonal periodic boundary conditions, and with the

crystal parameters for box length updated every 200 ps. We used the particle

mesh Ewald method of charge summation, with a width k ¼ 0.3 Å�1,

a switching function from 7 to 7.5 Å, a cutoff at 8 Å, and grid point spacing

of 1.0 Å. The Lennard-Jones interactions used a force switching function

from 10 to 12 Å, with a cutoff at 14 Å.

PCA

Consider a trajectory of N atoms in time F(Xi, Yi, Zi, t), where i ¼ 1,2,.N

and t ¼ 1,2,.T, with T equal to the duration of the trajectory. To study

only the internal dynamics of a protein, it is conventional to align each

snapshot in the trajectory before computing the average structure, thereby

eliminating the translation and rotation of the entire molecule from the

trajectory. The mass-weighted covariance matrix is

�
MijDRiDRij

�
; (1)

where Mij ¼ Mi
1/2 Mj

1/2, and DR ¼ R � <R>t is the change of position

from the time-averaged structure, for each spatial component Ri ¼ {Xi or

Yi or Zi } of all atoms i and j included in the analysis. Diagonalization of

this matrix yields a set of eigenvalues sk
2 and eigenvectors vk, where k ¼

1,2,.,3N�6.

Each eigenvector vk represents a PC of displacement and may be

visualized as a set of N three-dimensional vectors attached to the N atoms

analyzed within the molecule. Each of these three-dimensional vectors

describes the magnitude and direction of the RMS fluctuations at a given

atom, within a given PC. The MD trajectory can be projected onto each

eigenvector by forming the dot product of atomic displacements with each

eigenvector for all time steps. The resulting distribution of each projection
Biophysical Journal 98(3) 386–395
would have a variance sk
2 (and standard deviation sk); this is the physical

meaning of the eigenvalues, which measure the spatial amplitude of each

PC across the full trajectory.
RESULTS AND DISCUSSION

Convergence of PCA and conformational
sampling

To demonstrate the convergence of conformational sampling

for our MD simulations and the PCA results derived from

them, we calculate the eigenvalue-normalized overlap intro-

duced by Hess (50), which was adopted as a measure of

convergence in a number of studies (51–53). In the Support-

ing Material we present the overlap of independent PCA

results for consecutive trajectory segments of equal duration,

as well as the overlap of various subsets of a trajectory with

its full duration. These measures quantify the degree to

which the phase space of our simulation has ceased to

expand. For the NCaC main chain, the average overlap of

half the trajectory with its full length is >0.9 for both the

64 ns and 10 ns simulations. The average overlap of two

segments of equal duration is >0.8 for all timescales > 1 ns.

These values demonstrate that the backbone eigenvectors of

gA are well converged.

A similar analysis of the side chains shows that their PCs

are not converged, although this measure of overlap is domi-

nated by the convergence of the longest PCs; the shorter PCs,

which we discuss below, converge much faster. In addition to

the distributions shown in Figs. 2 and 3, in Fig. S4 a plot of

PC1 versus PC2 demonstrates multibasin dynamics with

limited sampling of each well. Infrequent jumps between

basins correspond to a 120� change in c1 of a single Trp

side chain (Trp 9 or 15 of one monomer, or Trp 11 of the other)

or of two side chains simultaneously (Trp 15 of one monomer

and Trp 11 of the other). MD studies in vacuo (54) and in

dimyristoylphosphatidylcholine (DMPC) (55) described six

rotameric states available to each Trp in gA, although only

Trp 9 showed a significant number of transitions (n ¼ 18)

among them in a 100 ns simulation in DMPC (55). Our results

are in general agreement with the latter study, indicating that

Trp rotameric basins are visited on the 10 ns timescale in the

GMO membrane, and therefore the longest side-chain PCs are

not be expected to converge within 64 ns.

It is important to note that the spatial shapes of eigenvec-

tors converge much faster than their dynamics: the former

requires a quarter oscillation in time, whereas the latter

requires many cycles to adequately converge the distribution

of states. We address the convergence of dynamics in our

treatment of PC distributions below.

Scaling of PCA eigenvalues

The complete PCA eigenvalue spectra for various atomic

subsets of gA are shown in Fig. 1. These results are taken

from the 10 ns simulation without constraints on hydrogen



FIGURE 1 Log10-log10 plots of the complete PCA eigenvalue spectrum

of gA as a function of eigenvalue index i. (A) Spectra for the backbone,

side chains, and whole protein without hydrogen atoms (gray: Ca,NCaC,

SIDE, ALL) and with them (black: NHCaCO, SIDEH, ALLH). The data

have been thinned toward the high indices for clarity. (B) The complete

PC set for heavy atoms, with linear regressions in regions of different

power-law scaling. The ALL curve has been translated upward for clarity

(þci). Bold lines indicate the range included in the fit, and the thin lines

are guides for the eye. The bold numbers above each line indicate the slope

of the fit (i.e., the power a), and the R2 value for the linear fit is italicized in

brackets below the slope.
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atoms, and with a 0.5 fs time step. Simulations with SHAKE

(47) do not yield the correct eigenvalues at the short-PC end of

the spectrum because they freeze the covalent H-bond vibra-

tions. This in turn limits the number of collective degrees of

freedom to <3N–6 and yields artificially small eigenvalues

for degrees of freedom involving hydrogen atoms. On the

other hand, the long PCs in the 10 ns simulation (without holo-

nomic constraints) differ very little from those of the 64 ns

simulation used for comparison, with an overlap of 0.88.

Each curve in Fig. 1 A shows the variance of all PCs for

a different atomic subset of the molecular structure: a single

atom per residue (Ca), backbone atoms (NCaC and

NHCaCO), side-chain atoms (SIDE and SIDEH), and the

combined atom set (ALL and ALLH). Whereas the SIDEH

and ALLH sets include all hydrogen atoms, the NHCaCO

curve includes only the amide hydrogen to emphasize the

dynamics within the secondary structure involving hydrogen
bonds, and to explicitly capture the amide plane motions.

Although the long-PC spectra for the whole protein (ALL)

and the side chains (SIDE) are almost identical, the scaling

of their short PCs is significantly different. This suggests

that the small eigenvalues and eigenvectors may encode

real physical information about the behavior of our system

and are not just noise to be ignored, as was commonly

done in previous PCA studies of protein motion.

There are generally two scaling transitions in the spectra:

one at ~25 PCs and one at ~100 PCs. Fig. 1 B shows three

distinct power-law scaling regimes in the heavy-atom PCA

eigenvalues sk ¼ k�a, with all linear regressions on the log-

log scale scoring R2 > 0.98. Although the largest PCs follow

a power of a ~ 1, there are significant differences in scaling of

the shorter PCs for different parts of the protein. The midsize

regime of the backbone scales with a ¼ 2, whereas for side

chains it is distinctly more shallow, with a ~ 1.5. The whole

protein (ALL) lacks a clear scaling in this midscale regime,

and makes a smooth transition toward steeper scaling at the

shortest end of the PC spectrum. In this short-PC regime,

the backbone scales with roughly a ~ 2, the side chains scale

much more steeply with a ¼ 4, and the whole protein (ALL)

approaches an average between the two, with a¼ 3. Different

numbers of PCs span the same scaling features in these spectra

for different atomic inclusions (e.g., Ca versus NCaC), sug-

gesting that blocks of PCs span statistically distinct regimes

of motion. Hence, the scaling shown in Fig. 1 may be used

as a guide to search for components of motion with interesting

statistical features and determine the boundaries between

distinct regimes of PCs.
Non-Gaussian PC distributions

Gaussian distributions are indicative of motion on a harmonic

free-energy landscape, whereas non-Gaussian distributions

are the result of anharmonicity on this landscape. This

follows from the definition of free energy F ¼ �kBTlog(P),

where a Gaussian probability P ¼ exp[�ax2] yields the

harmonic function F ¼ Kx2 with spring constant K ¼ akBT.

To compare the acquired distribution Pk with a Gaussian,

we normalized each PC trajectory by its standard deviation

sk (the square root of the kth covariance eigenvalue sk
2).

We also rebinned the distributions into a common 100 bins

to align all distributions with each other for comparison.

The resulting normalized distributions Pk
N have sk ¼ 1,

and their shape can be compared against a Gaussian distribu-

tion of unit variance and height (2p)�1/2. Fig. 2 shows DPk
N,

the difference between the acquired PC distributions and

a unit Gaussian, for the gA backbone with and without

hydrogen-bonding atoms (NHCaCO, NCaC), and for the

heavy side chain atoms (SIDE). Each panel shows results

averaged over multiple windows of width 1 ns (64 samples)

to 64 ns (one sample), taken from the 64 ns simulation.

A single distribution for the entire 10 ns simulation without

holonomic restraints is also shown for comparison, since
Biophysical Journal 98(3) 386–395



FIGURE 2 Difference between

eigenvalue-normalized PC distributions

and a unit Gaussian, DP, for the longest

PC (left) and a representative short PC

(right) of the backbone and side chains

of gA. PCA was executed indepen-

dently for multiple windows at various

timescales from the 64 ns simulation

(with holonomic restraints), and PC

distributions were averaged for a given

timescale. Results for the 10 ns simula-

tion (without restraints) are also shown

for comparison.
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short PCs probe dynamics involving hydrogen atoms. PC1 is

shown on the left and a representative short PC is shown on

the right.

Although the multimodal distributions of side chains

(Fig. 2 E) are not surprising, the non-Gaussian features of

the longest backbone PCs (Fig. 2, A and C) exhibit a similar

profile at short timescales, though with smaller amplitude.

Although these backbone PCs have the appearance of super-

diffusive distributions (which undersample near the average

and oversample extremes) at short timescales, at long

timescales <DPk
N> approaches zero, indicating that the

longest PCs are actually harmonic (Gaussian). This time

dependence is an artifact of inadequate sampling, as the

distribution of an oscillation sampled over less than the order

of a wavelength appears asymmetric. This analysis suggests

that the dynamics of the gA backbone converge at ~10 ns. By

contrast, there is no dependence on timescale for the non-

Gaussian features of the short PCs (Fig. 2, B, D, and F),

indicating that these subdiffusive profiles (undersampling

extremes and oversampling the average) correspond to

persistent anharmonic aspects of backbone and side-chain

dynamics. The short PCs shown in Fig. 2 are representative

of groups of neighboring PCs that have similar distributions.

Fig. 3 shows DPk
N surfaces for all 270 PCs for NCaC

atoms, 470 PCs for NHCaCO, and 430 PCs for SIDE atoms

from the 10 ns simulation. Flat regions indicate PCs with

nearly perfect Gaussian distributions (DPk
N < 0.01),
Biophysical Journal 98(3) 386–395
whereas peaks and valleys indicate non-Gaussian

distributions and suggest anomalous diffusion of those PCs

in time. The landscapes show central peaks for short PCs

indicating subdiffusion. Although the subdiffusive features

at high PC are concentrated at a single length scale for

NCaC, this is not the case for the main-chain (NHCaCO)

or side-chain atoms. The NHCaCO results reveal clusters

of subdiffusive modes across a number of length scales at

a high PC index. This is also true of the heavy side-chain

atoms, where it is interesting to note that these features

ride on a superdiffusive envelope. Fig. 3 also shows the

RMS deviation between the acquired PC distribution and

a Gaussian curve for each atomic subset. These plots show

the distribution of anharmonic features across the short PC

spectrum and reveal distinct bands of subdiffusive compo-

nents.
Anomalous diffusion in the mean-square
displacement autocorrelation function

All of the results presented above describe the spatial char-

acteristics of the system averaged over time. To make

proper contact with anomalous diffusivity, we now study

the time-ordered behavior of our system by computing the

mean-square displacement (MSD) of the cumulative PC

projection x(t) (see the Supporting Material for more

details):



FIGURE 3 Surfaces on the left show the difference

between the normalized PC distribution and a unit

Gaussian, DP, for all components in the PCA of heavy

backbone atoms (NCaC), main chain (NHCaCO), and

heavy side-chain atoms (SIDE) in gA. The RMS difference

between acquired distributions and a Gaussian distribution

is shown on the right.

FIGURE 4 MSD of every 11th PC for the NHCaCO and SIDE atomic

subsets. The curves are evenly spaced by a constant c at their origin. Linear

(b ¼ 1) and ballistic (b ¼ 2) values of slope b are shown in dotted gray as

a guide for the eye.

Anharmonic Features of Gramicidin A 391
MSDðtÞ ¼
�
ðxðt � t0Þ � xðt0ÞÞ2

�
: (2)

The term ‘‘anomalous diffusion’’ properly applies to systems

whose particles have an MSD that scales nonlinearly in time

(56). These are non-Brownian processes that obey a general-

ized Einstein relation:

MSDðtÞ ¼ 2dDbtb; (3)

where Db is the (anomalous) diffusion coefficient and d is the

dimensionality of the system. If b < 1, a process is

subdiffusive in the sense that it moves away from its average

more slowly than Brownian diffusion (‘‘sublinear’’).

A subdiffusive process has antipersistent correlations, where

consecutive steps are more likely to move in opposite

directions than they would in a random walk. If b > 1, a

process is superdiffusive in that it moves away more quickly

than Brownian diffusion (‘‘superlinear’’). A superdiffusive

process exhibits persistent correlations, where consecutive

steps are biased to continue in the same direction.

Fig. 4 shows the MSD for a representative subset spanning

all PCs of the NHCaCO and SIDE atomic subsets, across six

orders of magnitude in time, from the 10 ns simulation.
A careful examination of Fig. 4 reveals a number of interesting

features. First, there is a leveling of MSD(t) at long timescales

past ~1 ns (with the exception of the first PC). This leveling is

a result of the fact that we are analyzing a bounded system of

fixed volume: at some timescale, all PCs must cease moving

away from their average and return to it. Thus the rollover in
Biophysical Journal 98(3) 386–395
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the MSD may be considered an ‘‘edge effect’’, though it may

also contain interesting information about the timescales of

the collective motions in our system. For example, we would

expect covariant motions at smaller spatial scales in the protein

to be bounded at increasingly short timescales, and this is

evident in Fig. 4. A comparison of the MSD curves in Fig. 4

with the lines of slopes 1 and 2 (dotted gray lines) makes

some general trends apparent. The longest PCs scale with

b ¼ 2, indicating ballistic motion unimpeded by thermal

perturbation, whereas shorter PCs tend toward b ¼ 1.5 or

even b ¼ 1. Moreover, there is a nontrivial structure to the

groupings of trends (in time) among PCs in the backbone,

which is made evident by the changes in spacing between

groups of curves in the figure.

The most interesting feature in Fig. 4 is the observation of

pronounced oscillations among the shortest PCs at

timescales below ~1 ps. These oscillations are most visible

in the case of the side chains, although they are also present

in the backbone at lower frequencies. This suggests that the

subdiffusive features apparent in the non-Gaussian distribu-

tions of short PCs are a result of short-timescale oscillations

rather than longer-timescale subdiffusive sampling. The

superposition of locally subdiffusive PCs on a global

superdiffusive envelope in the side chains of Fig. 3 may also

be attributable to this interplay of short- and long-timescale

behaviors. Note that although oscillations are not ‘‘diffu-

sive’’, they meet the definition of subdiffusion in that

consecutive steps are anticorrelated at a particular timescale.

To amplify small changes in the scaling of the MSD, in

Fig. 5 we plot the instantaneous slope of the MSD as a func-

tion of time for long and short groups of PCs. These plots also
FIGURE 5 Instantaneous slope of the log10(MSD) functions shown in

Fig. 4 for the long (left) and short (right) PCs of the heavy-atom backbone

(top), main chain (middle), and heavy side-chain atoms (bottom).

Biophysical Journal 98(3) 386–395
highlight the fact that consistent power-law scaling is persis-

tent on all timescales up to ~100 ps for all PCs (and up to ~1 ns

for the longest PCs). These plots reveal a surprising array of

oscillations in the short PC regime, with consistent frequen-

cies across groups of PCs and transitions to higher frequen-

cies for shorter PCs. This figure also makes it clear that there

is a general transition at ~1 ps between very short timescale

behavior and longer timescale dynamics (100 ps–1 ns).

This is the expected ballistic (b¼ 2) to diffusive (b< 2) tran-

sition for the longest PCs, indicating the timescale at which

atomic motions become restrained by thermal perturbations

of their directions and velocities of motion. However, for

short PCs the opposite trend is also apparent in the backbone,

from slower subdiffusive scaling at short timescales to faster

diffusive scaling at long timescales.
Collective oscillations in the small-covariance
regime

To systematically investigate the frequencies of collective

motions revealed in the MSD, we computed the Fourier trans-

form of the curves depicted in Fig. 5 for the oscillatory regime

below 1 ps. In Fig. 6 we plot the square of the Fourier ampli-

tude for all PCs of our three atomic subsets, representing

power in the frequency domain. These results reveal the exis-

tence of two dominant collective oscillations in the backbone

of gA that can be compared with experimental results from IR

and Raman spectroscopy. The first is a broad peak centered at

~5 THz (165 cm�1), spanning PCs 90–120. The second is

a sharper peak centered at ~40 THz (1320 cm�1) near PC

250. There is good agreement between the results for the

two backbone atomic subsets, with the NHCaCO showing

the same dominant features at similar frequencies and PCs

as the NCaC set, but with higher-resolution and higher-

frequency components in the latter, as expected. The side-

chain spectra also show many sharply resolved modes at

high PC index, with a pair of dominant modes at 20 THz

(660 cm�1) and 40 THz (1330 cm�1), and other distinct

modes apparent both above and below these frequencies.

Although it is tempting to attribute these oscillations to

covalent bond vibrations, an analysis of the associated

eigenvectors reveals that this is not the case in general. In

fact, the lowest-frequency oscillations are associated with

motions that span many heavy atoms in both the backbone

and the side chains, and hence represent collective oscilla-

tions across functionally significant portions of our protein.

Here we focus on the structure of PC eigenvectors associated

with the lowest-frequency backbone oscillations to highlight

the possible functional significance of these motions, and the

utility of information in the previously ignored small-covari-

ance regime of PCA.

Fig. 7 depicts three sample eigenvectors from the broad

5 THz (165 cm�1) band near PC 100. We illustrate the

structure of displacements along each eigenvector by

superposition of the NHCaCO backbone projected away



FIGURE 6 Spectral power of the oscillatory regime for b (<1 ps, as

shown in Fig. 5).

FIGURE 7 Illustration of backbone eigenvectors for subdiffusive PC 100,

110, and 120 of the main-chain NHCaCO atomic subset. The front and back

of the helix are shown separately for clarity. The superimposed structures are

displaced 5 Å away from the average structure along the appropriate eigen-

vector, in the positive (red) and negative (blue) directions. Areas where

peptide plane motions result in large displacements of the carbonyl oxygen

are highlighted in circles.
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from the average structure along the positive and negative

directions of the PC eigenvector. A careful examination of

this figure reveals that in general the displacements are on

the scale of a single peptide plane, with tilting of the carbonyl

oxygens and amide hydrogens apparent at a number of amino
acids. This suggests amide plane librations, whose functional

significance for cation transport was reviewed in the Introduc-

tion. There are ~30 PCs in this group, and an examination of

the eigenvectors in time makes it clear that the group as

a whole spans tilting motions of each amide plane in the

protein (note that there are 30 amide planes in gA). Far-IR

and Fourier transform IR spectroscopic measurements of gA

without cations have shown that carbonyl librations occupy

a band between 75 cm�1 and 175 cm�1, and there are other

IR-active modes up to 500 cm�1 (20,21). This is consistent

with the low-frequency features in Fig. 6 B, which span the

entire far-IR range from ~33 cm�1 to 500 cm�1. Moreover,

the same experiments measured broad absorption peaks

upon addition of Liþ (20), Kþ, Rbþ, and Csþ (21) cations to

the channel, with the frequencies of cation mobility similar

to those of the carbonyl libration band. This shared timescale

suggests that the librational modes of the amide planes may be

coupled to cation transport through the channel.

We also examined the eigenvectors associated with the

higher-frequency backbone mode near 40 THz (1320 cm�1).

These are motions within the amide plane associated with

stretching of the carbonyl oxygen and amide hydrogen bonds,

and are thus clearly visible in the NHCaCO eigenvectors. We

conclude that gA has coherent oscillations near 40 THz within

the hydrogen bonds that define the secondary structure.

Finally, an examination of the side-chain eigenvectors shows

that the dominant oscillation modes correspond to bending

and torsion of the Trp indole rings (peaks c1 and c2, respec-

tively, in Fig. 6 C), which carry a significant dipole moment

and form hydrogen bonds with the lipid headgroups in the

membrane (46). This suggests that all the MSD oscillations

of short PCs are associated with hydrogen bonding, which

also explains their subdiffusive distributions as well as their

anharmonicity.

The anharmonic character of the Fourier spectra in Fig. 6 is

also worthy of comment. The orthogonal decomposition of

collective modes in the implementation of atomistic MD
Biophysical Journal 98(3) 386–395
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clearly lumps many frequencies of motion together in modes at

different length scales. This indicates that collective modes in

a protein have complex dynamics with a nonlinear dispersion

relation. This finding underlines the need to exercise caution

when interpreting the spatial wavelengths from PCA using

quasiharmonic approximations that map one wavelength

onto one frequency. This is one of the central issues in the inter-

pretation of IR spectra, since this assumption is often used

when modes are assigned with the aid of NMA calculations.
CONCLUSION

PCA traditionally has been used in many disciplines to

characterize the degrees of freedom that span most of the fluc-

tuations in a system. PCA studies of protein dynamics are no

exception, and many have focused on the longest (slowest)

PCs, motivated by the need to predict long-timescale

dynamics beyond the reach of current simulations (57). In

an early and influential study, Amadei et al. (34) defined the

‘‘essential subspace’’ as ‘‘a few degrees of freedom in which

anharmonic motion occurs that comprises most of the posi-

tional fluctuations’’ in the system. Here, we have shown

that the anharmonic features of the long PCs may be artifacts

of insufficient sampling, whereas they are persistent for some

shorter PCs. Thus, anharmonicity extends beyond the

motions that comprise ‘‘most of the positional fluctuations’’,

and we suggest that these non-Gaussian-distributed modes are

potentially important for the description of function, regard-

less of their length scale. Although function is difficult to

define and quantify, anharmonicity is evidence of coupling

among modes, which is likely to be necessary in the complex

motions required for function.

A systematic examination of these measures led us to

explore features in the short PC regime that have not been

examined previously, and we identified collective oscillations

with functional implications for gA. A group of backbone

oscillations were identified at ~5 THz (165 cm�1) and can

be described as peptide plane librations, whose carbonyl

oxygens help solvate the lumen and cation in the channel.

Our results demonstrate that PCA can be used to isolate inter-

esting covariant motions on a number of different length

scales and timescales, in a part of the PCA spectrum that is

usually ignored, and highlight the need for an adequate struc-

tural and dynamical account of many more PCs than have

been conventionally examined in the analysis of protein

motion. This analysis is readily applicable to any protein

system for which MD simulations are available.
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