
Enhancing the accuracy, the efficiency and the scope of free
energy simulations
Tomas Rodinger and Régis Pomès
Many different methods exist for computing free energy

changes from molecular simulations. Recent advances have

led to improvements in the theoretical framework underlying

these calculations, as well as in the accuracy and sampling

efficiency of the algorithms. Novel methods combining the

advantages afforded by various existing approaches offer

promising strategies and open up new perspectives to

help elucidate the physical basis of important biological

processes.
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Introduction
The calculation of free energy from molecular simula-

tions is an area of intense research activity. This is

because free energy is at once one of the most central

and one of the most difficult quantities to compute from

atomic-level simulations. It is of paramount importance in

efforts to relate microscopic details stemming from

atomic interactions to measurable macroscopic quantities,

and to understand the physical and structural basis of

biological phenomena. Desirable biophysical applications

of free energy calculations include screening for or char-

acterizing enzyme–ligand binding, elucidating protein

folding equilibria and determining free energy profiles

underlying transport processes.

The principal practical difficulty facing these calculations

arises from the complexity and the ruggedness of the

energy landscape underlying conformational fluctuations

of biological macromolecules. Many transformations of

biological interest involve conformational changes that

span time and/or length scales currently beyond the reach

of typical molecular dynamics simulations (i.e. longer

than 10�9 to 10�8 s). To work around this limitation,
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many different methods have been developed to calcu-

late free energy changes. These methods are, to some

extent, tailored to specific problems. They may be perfor-

med either under conditions approximating thermody-

namic reversibility (equilibrium) or not; the exploration of

phase/conformational space (sampling) may be either

restrained or unrestrained; the transformation may be

either local or non-local; and it may follow a physical or

an alchemical pathway — or no pathway at all. Recent

theoretical efforts have resulted in promising develop-

ments that combine some of the advantages afforded by

various approaches to widen the scope of the calculations,

and to reduce both systematic and statistical sampling

errors — that is, to improve both the accuracy and the

efficiency of the calculations. This review is an attempt to

highlight some of these promising developments.

Extensive reviews of free energy calculations can be

found elsewhere [1–6]. Here, we focus on some of the

theoretical and methodological advances that are likely to

affect the calculation of free energies from molecular

simulations of biological systems. Because of space con-

straints, we limit the scope of this survey to classical

simulations involving configurational averaging. It should

be noted that advances in relevant application fields, such

as free energy calculation of pKas, molecular recognition

and transport in membrane proteins, are reviewed else-

where is this issue.

In the following discussion, free energy simulation meth-

ods have been loosely grouped into three broad classes:

free energy perturbation (FEP) and other non-equili-

brium work (NEW) approaches based on exponential

averaging of the accumulated work; thermodynamic inte-

gration (TI); and replica exchange (RE) methods. These

categories are neither mutually exclusive nor exhaustive.

Free energy perturbation and non-equilibrium
work methods
In FEP [7], the relative free energy (DF) between two

distinct thermodynamic states labeled 0 and 1 is com-

puted from the expectation value of the Boltzmann-

weighted energy difference:

e�bDF ¼ he�bDU i0 (1)

where b = (kBT)�1 is the reciprocal temperature, with kB

the Boltzmann constant and T the absolute temperature,

DU = U1 � U0 is the potential energy of perturbed state 1

relative to reference state 0, and the angle brackets with

subscript 0 denote Boltzmann-weighted ensemble aver-

aging performed in the reference state.
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FEP methods have been widely used in biomolecular free

energy calculations. Recent analyses and developments

have stressed the relationship of FEP to NEW methods,

which rest on Jarzynski’s identity [8,9]:

e�bDF ¼ he�bW i0 (2)

where the averaging is performed over independent

measurements of the accumulated work (W) for transfor-

mations (or switching) starting from equilibrium state 0

[8,9]. Jarzynski’s identity (Equation 2) is remarkable in

light of the second law of thermodynamics, which states

that free energy is a lower bound of the average of the

accumulated work:

DF � hWi (3)

If the process is infinitely slow (i.e. if it follows a reversible

path), then W is the reversible work or potential of mean

force (PMF), and Equations 2 and 3 give DF = W
throughout the path. However, under non-equilibrium

conditions (whereby switching takes place over a finite

time), Equation (2) still holds, whereas Equation 3 is an

inequality. FEP (Equation 1) is another limiting case of

Equation 2, whereby the transformation takes place

instantly.

Jarzynski’s identity (Equation 2) establishes the rele-

vance of non-equilibrium processes to the calculation

of equilibrium properties [8–10], and provides a rigorous

theoretical foundation for calculating free energy changes

from single-molecule experiments [11–13] and from

simulations deliberately driven out of equilibrium. Sev-

eral research groups have seized this opportunity to

explore applications of the approach to the calculation,

using Equation 2, of free energy changes from series of

simulations in which the accumulated work is computed

over a finite time (switching); these efforts have been

accompanied by further theoretical developments aimed

at clarifying and minimizing both systematic and statis-

tical errors in FEP and NEW calculations [14,15��,16–

19,29��,21�–23�]).

Because of the non-linear nature of the Boltzmann factor

in Equations 1 and 2, under non-equilibrium conditions,

only a subset of important (thermally accessible) config-

urations contribute significantly to exponential averaging.

This introduces a systematic sampling bias that can lead

to substantial inaccuracies (reproducible errors) in both

computational and experimental determinations of free

energy changes. Thus, obtaining accurate estimates from

Equation 1 requires that all important configurations of

the target state are also important to the reference state, in

other words, that perturbed state 1 forms a subset of

reference state 0 [20��]. Because this condition is realized

trivially in the limit of infinitely small perturbations

(identical distributions), it is common practice to break

down or stage FEP calculations over a sequence of
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intermediate states that differ from their neighbors by

small perturbations; however, this approach is inefficient

and does not directly address the systematic bias problem,

it only lessens it.

A common practice in FEP and NEW calculations is to

perform simulations in both forward and reverse direc-

tions (i.e. 0!1 and 1!0, respectively). This is often

achieved with double-wide sampling, whereby forward

and reverse perturbations are performed simultaneously

at intermediate stages between 0 and 1 [24]. Because the

subset requirement cannot be satisfied simultaneously by

both states of interest, simple averaging of forward and

reverse simulations from Equation 1 does not lead to the

cancellation of systematic errors. Instead, it was recently

shown by Lu et al. [20��] that sampling inaccuracies can be

eliminated by combining the results of forward and

reverse FEP calculations as follows:

e�bDF ¼ hwðDUÞe�bDU=2i0=hwðDUÞeþbDU=2i1 (4)

where w(DU) is a weighting function. Equation 4 is

termed overlap sampling because it introduces a virtual

intermediate state in which only overlapping configura-

tions of importance to both state 0 and state 1 are

important. The choice of w(DU) = 1 provides a simple

and effective prescription to combine forward and reverse

calculations. Optimal results in terms of both systematic

and statistical errors are obtained with a different choice

of w(DU); this amounts to an older method, Bennett’s

acceptance ratio [20��,25]. The overlap sampling

approach has been generalized for NEW methods and

tested with model systems [21�,22�]. Another interesting

approach for improving the accuracy and efficiency of free

energy calculations combines the NEW approach with

transition path sampling [26��,27]. Transition path sam-

pling ([28,29] and references therein) is a powerful tech-

nique for generating ensembles of plausible pathways

between initial and final states of interest. A different way

of using transition path sampling in free energy calcula-

tions has also been reported recently [30�].

An important and natural application of Jarzynski’s iden-

tity (Equation 2) is the calculation of the PMF or free

energy profile along a predetermined reaction coordinate.

Recent work [15��,31] has shown that this can rigorously

be achieved using steered molecular dynamics (SMD)

simulations, in which the system is pulled by an artificial

constraint, such as a harmonic spring, along a prescribed

path in configuration space [32]. The approach has been

applied to glycerol conduction through the aquaglycer-

oporin GlpF ([33]; see also the review by de Groot and

Grubmüller in this issue), ammonia conduction through

HisF [34] and the helix-coil transition of deca-alanine

[31]. However, although Equation 2 is valid for arbitrary

pulling rates, several studies comparing NEW methods

with other approaches [15��,21�,23�] point out that the
Current Opinion in Structural Biology 2005, 15:164–170
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approach works best when the system remains close to

equilibrium.

From thermodynamic integration to
extended ensembles
In TI methods, the free energy is obtained from the

expectation value of the derivative of the energy with

respect to a coupling parameter (l) [35]:

@ðDFÞ=@l ¼ h@U=@lil (5)

The dependence of U on l defines the path of the

transformation between two states of interest. Integrating

Equation (5) over this path yields the free energy differ-

ence (DF). The transformation can be performed in two

different ways. One is to change l continuously between

reference and target states [36]. This method, which may

be called ‘slow growth’ or ‘fast growth’ depending on the

rate of the transformation, falls into the category of NEW

approaches because the system constantly lags behind the

Hamiltonian [14]. The other way to integrate Equation 5,

sometimes called finite-difference TI, is to perform a

series of equilibrium simulations at discrete intermediate

values of l and combine the results by interpolation. In

NEW, TI and staged FEP approaches, l may be either an

abstract parameter devised to couple or transform the

system along an artificial pathway in so-called ‘alchem-

ical’ transformations (e.g. of one chemical group into

another) [37] or a physical degree of freedom, such as

interatomic separation or another conformational vari-

able. In the latter case, the calculation yields the rever-

sible work or PMF and the right-hand side of Equation 5

is the mean force acting along the predefined variable l

in the average of all other conformational degrees of

freedom.

To obtain converged statistics in free energy simulations,

adequate sampling of conformational space is required.

Free energy barriers dotting the rugged conformational

space of biological macromolecules commonly make this

difficult to achieve. Several approaches that treat l as a

dynamic reaction coordinate exist to overcome this pro-

blem. What these methods have in common is the

emphasis on choosing effective pathways between ther-

modynamic states of interest on free energy surfaces and

improving statistical sampling efficiency along these

pathways. The non-equilibrium methods highlighted in

the preceding section offer this possibility. Other, widely

used approaches make use of umbrella sampling [38],

which consists of imposing a potential energy bias to

enforce uniform sampling along the reaction coordinate.

Two unconstrained methods utilizing the formalism of

TI, adaptive force sampling [39] and generalized ensem-

ble methods [40��], have recently been proposed. The

advantage of these unconstrained methods, as indeed of

RE methods (see below), is that they allow self-optimiza-

tion of sampling.
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Adaptive force sampling consists of using Equation 5

without restrictions on the values taken by the reaction

coordinate l, in such a way that sampling along the

selected degree(s) of freedom of l (which may be mono-

or multi-dimensional) becomes diffusive [39]. Two recent

studies illustrate the effectiveness of the adaptive force

approach in improving convergence rates for several

molecular problems and provide critical discussions

[23�,41�].

In so-called l dynamics methods [42], the coupling

parameter is replaced by a non-physical dynamic variable

in an effort to improve sampling efficiency. Free energy

changes can be obtained as a PMF in this extended

system. Such an approach was used for competitive

binding calculations [43]. Likewise, the addition of an

extra non-physical (‘fourth’) spatial dimension was shown

to provide a simple and low-barrier route to computing

the free energy of inserting or extracting a molecule of

interest into or out of a dense phase [44]. In a recent

extension of l dynamics, free energy differences are

obtained from TI in a generalized ensemble [40��]. In

this scheme, two separate systems whose respective l

values are coupled to each other are simulated at once.

The procedure effectively introduces temperature scal-

ing, which further enhances barrier crossing and results in

significant improvements in statistical efficiency. Some of

these traits are shared with RE methods.

Replica exchange methods
RE algorithms provide very effective ways to sample

rugged energy surfaces. In this scheme, simulations of

many copies or replicas of the system are performed in

parallel, each with discrete values covering a range of

temperatures and pressures, or with different Hamilto-

nians, and are periodically allowed to swap their coordi-

nates according to a Metropolis algorithm (see [45] and

references therein). Exhaustive phase space sampling

makes it possible to compute relative free energies

directly, without presuming a reaction coordinate, or

delineating initial and final states of the system a priori.

The application of RE algorithms to protein folding has

enabled a quantum leap in the size of peptide, up to small

proteins, for which the folding-unfolding equilibrium can

be sampled exhaustively. This approach has been

exploited most actively by Garcia and co-workers (see

[46] and references therein). Recent applications have

extended the method to a 46 amino acid protein domain

[47�] and into the realm of pressure as well as temperature

sampling [48]. These achievements are all the more

significant, from the perspective of free energy simula-

tions, because conformational sampling is not artificially

driven but instead takes place without any restraints. This

makes it possible to re-examine the nature of adequate

descriptors of conformational states and folding equilibria

[49].
www.sciencedirect.com
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In a promising development, RE approaches were re-

cently combined with FEP and TI techniques [50��].
Improved precision due to efficient sampling is demon-

strated for the calculation of the relative hydration free

energy of water and methane [50��], and of the relative

affinity of halide ions for a molecular host [51].

Other developments
In the calculation of equilibrium ensemble averages (e.g.

Equation 5), systematic errors arise if data from early,

‘equilibration’ stages of the simulation are included. The

universal practice of eliminating initial data from cumu-

lative averaging performed in the forward direction is

unreliable and inefficient. Yang et al. [52�] introduce a

commendable procedure for data analysis that is instead

based on cumulative averaging in the reverse direction.

Obtaining accurate quantitative estimates of solvation

free energies is essential for understanding biomolecular

association, as well as transfer and transport phenomena.

Improved sampling fosters the wider use of explicit

solvent. In recent years, it has become possible to com-

pute absolute hydration free energies with a statistical

precision comparable to that of experimental measure-

ments themselves. This makes it possible to evaluate the

accuracy of empirical force fields and simulation protocols

in many cases for which the free energy can be measured

experimentally, such as absolute hydration free energies

of amino acids [53�,54] and water-to-hexane transfer free

energies [55].

Full conformational sampling of peptides and small pro-

teins also allows a critical assessment of force fields [46].

Detailed comparisons of results obtained for the folding

of peptides from explicit solvent and from continuum

models of solvation, which are used extensively in folding

and binding studies, are provided by Nymeyer and Garcı́a

[56], and by Stultz [57] (also see the review by Feig and

Brooks [58]). Because of the acute sensitivity of the

folding equilibrium to hydration, these studies constitute

a particularly stringent test of solvation models.

Binding free energy and entropy calculations

Biomolecular association, like protein folding, is driven

by the near compensation of enthalpy and entropy. In

addition to enthalpic contributions arising from specific

interactions between ligand and receptor molecules, con-

tributions involving both enthalpic and entropic changes,

such as the desolvation of ligand and receptor binding site

and changes in conformational free energy upon binding,

also need to be addressed. The latter aspect constitutes an

outstanding challenge, especially if conformational reor-

ganization spans large length and time scales, which is

generally the case with proteins. To help alleviate this

problem, thermodynamic cycles [37] can be used advan-

tageously, for example, to calculate the relative affinities

of small compounds for proteins from alchemical simula-
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tions. This strategy has recently been exploited by Oos-

tenbrink et al. [59,60�] to compute the binding affinities of

multiple ligands from a single-step FEP simulation.

Methodological advances have recently been made in the

calculation of absolute binding affinities. Absolute bind-

ing free energies were first calculated by Hermans and

Shankar [61], and the theoretical basis underlying the

standard-state dependence of absolute binding affinities

was laid out in several studies [62–65]. More recently,

Boresch et al. [66�] and Swanson et al. [67�] presented

practical methods for the direct determination of contri-

butions to association free energies that arise from the loss

of translational and rotational freedom of the ligand upon

binding to a receptor at the standard-state concentration.

These advances make it possible to compare theoretical

predictions with experimental binding affinities.

Several recent studies examine the thermodynamic basis

for the hydration of protein cavities [68–70,71�,72�]. The

results of these studies underline the importance of

entropic contributions. Other efforts to obtain estimates

of entropy from molecular simulations have focused pri-

marily on the calculation of conformational entropy of

solute molecules (for selected internal degrees of free-

dom) [73,74,75�] and on the extension of free energy

simulation methods to the calculation of total entropy

changes, which include not only solute but also solvent

degrees of freedom. The latter has been discussed by Lu

et al. [76�] and by Peter et al. [77�] in the context of simple

solutions. Total enthalpy and entropy changes can also be

obtained directly from free energy calculations performed

at different temperatures, assuming that the free energy is

linear over the temperature range [47�].

Conclusions
The development of free energy simulation methods is an

area of continuing research activity. An outstanding diffi-

culty is dealing with rugged energy landscapes with

efficient algorithms. Many of the existing methods may

perform better along specific pathways or for specific

types of problems. However, the application domain of

the various approaches often remains poorly defined,

which underlines the need for extensive comparisons

using appropriate model systems. Although a general

method is not presently available, some converging

trends are emerging. Particularly promising strategies

are those that integrate various theoretical developments,

expanding their respective scope and blurring the tradi-

tional distinctions between them. Together with ever-

increasing computational power, advances in theoretical

foundations and creative combinations of methods

designed to enhance sampling efficiency have opened

up new perspectives to improve the accuracy and preci-

sion of free energy calculations, and to help elucidate the

physical basis of important biological processes, including

molecular recognition, permeation and protein folding.
Current Opinion in Structural Biology 2005, 15:164–170
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