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Determination of a high-resolution 3D structure of voltage-gated
sodium channel NaVAb opens the way to elucidating the mecha-
nism of ion conductance and selectivity. To examine permeation of
Na+ through the selectivity filter of the channel, we performed
large-scale molecular dynamics simulations of NaVAb in an explicit,
hydrated lipid bilayer at 0 mV in 150 mM NaCl, for a total simula-
tion time of 21.6 μs. Although the cytoplasmic end of the pore is
closed, reversible influx and efflux of Na+ through the selectivity
filter occurred spontaneously during simulations, leading to equi-
librium movement of Na+ between the extracellular medium and
the central cavity of the channel. Analysis of Na+ dynamics reveals
a knock-on mechanism of ion permeation characterized by alter-
nating occupancy of the channel by 2 and 3 Na+ ions, with a com-
puted rate of translocation of (6 ± 1) × 106 ions·s−1 that is
consistent with expectations from electrophysiological studies.
The binding of Na+ is intimately coupled to conformational isom-
erization of the four E177 side chains lining the extracellular end
of the selectivity filter. The reciprocal coordination of variable
numbers of Na+ ions and carboxylate groups leads to their con-
densation into ionic clusters of variable charge and spatial arrange-
ment. Structural fluctuations of these ionic clusters result in a
myriad of ion binding modes and foster a highly degenerate, liquid-
like energy landscape propitious to Na+ diffusion. By stabilizing
multiple ionic occupancy states while helping Na+ ions diffuse
within the selectivity filter, the conformational flexibility of E177
side chains underpins the knock-on mechanism of Na+ permeation.

The rapid passage of cations in and out of excitable cells
through selective pathways underlies the generation and reg-

ulation of electrical signals in all living organisms (1–4). The
metazoan cell membrane is exposed to a high-Na+, low-K+

concentration on the extracellular (EC) side, and to a low-Na+,
high-K+ concentration on the intracellular (IC) side. Selective
voltage-gated Na+ and K+ channels control the response of the
cell to changes in the membrane potential. In particular, voltage-
gated Na+ channels (NaV) are responsible for the initiation and
propagation of action potentials in cardiac and skeletal myocytes,
neurons, and endocrine cells (1–4). Mutations in NaV channel
genes are responsible for a wide range of debilitating channe-
lopathies, including congenital epilepsy, paramyotonia, eryth-
romelalgia, familial hemiplegic migraine, paroxysmal extreme
pain disorder, and periodic paralyses (5, 6), underlining the im-
portance of deciphering the relationship between the structure
and function of NaV channels. Here, we use molecular simu-
lations to study the binding and permeation of Na+ in bacterial
sodium channel NaVAb.
Although several atomic structures of K+-selective channels

have been solved over the past decade (7–12), the atomic struc-
ture of an Na+-selective channel from the bacterium Arcobacter
butzleri, NaVAb, was reported only recently (13). In the preopen
state of NaVAb (13), the pore is closed at the IC gate, but the
selectivity filter (SF) appears to be in its open, functional state.
The molecular structure of the SF of NaVAb (TLESW) differs
significantly from that of potassium channels such as KcsA

(TVGYG), in that it is both wider and shorter. In KcsA, channel
coordination of permeating cations consists almost entirely of direct
interactions with backbone carbonyl oxygen atoms. In contrast, in
NaVAb, the SF is lined with amino acid side chains from S178 and
E177 in addition to backbone carbonyl groups from T175 and L176
(7, 8, 10, 13).Due to the tetrameric domain arrangement ofNaVAb,
the E177 site forms a ring of four glutamate side chains (EEEE) in
the same sequence positions as the characteristic DEKA ring of
eukaryotic sodium channels (14, 15). The presence of charged and
titratable carboxylate groups in the SF of Nav channels raises major
questions about the catalytic mechanism for ionic permeation and
the structural basis for ion selectivity.
As a first step toward elucidating the structural basis of ionic

permeation and selectivity, we examine the movement of Na+

ions in and out of the pore from equilibrium molecular dynamics
(MD) simulations of NaVAb in a hydrated lipid bilayer (Fig. S1).
Forty-seven time trajectories totaling 21.6 μs were generated at
300 K in the presence of 150 mM NaCl to mimic the physio-
logical environment of the periplasm. We analyzed Na+ diffusion
at a potential of 0 mV, similar to the peak of macroscopic Na+

current during an action potential or a voltage clamp experiment
in nerve or muscle cells. The analysis of hundreds of spontaneous
events of Na+ diffusion through the SF provides detailed insight
into a knock-on mechanism of Na+ permeation involving alter-
nating ion-occupancy states and resulting in an estimated
translocation rate of (6 ± 1) × 106 ions·s−1.

Results and Discussion
Na+ Movement. In the NaVAb structure (Fig. 1A), permeating ions
movefirst into anopenECvestibule, through thenarrowSF linedby
S178, E177, L176, and T175, and into a central cavity (CC) before
exiting through the activation gate. Although the activation gate at
the IC end of the channel is closed,Na+ ions spontaneously traveled
in and out of the pore during the course of the simulations (Fig. 1 B
and C). The movement of Na+ along the pore axis is shown in two
representative 500-ns trajectories and Na+ binding modes (Fig. 1 B
andC, Fig. S2A andB).When bound to the channel, Na+ ions were
at least partly solvated by one or more carboxylate groups of E177
(Fig. 1B, Fig. S2A). Using this criterion to define the SF leads
to approximate axial SF boundaries of −0.53 ≤ z ≤ 0.3 nm, where
z = 0 at the L176 carbonyl.
In the example depicted in Fig. 1, the first ion (red) permeated

through the SF and into the CC and remained trapped in the
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pore, occasionally returning to the SF. A second (green) ion
entered the SF at t ∼21 ns and remained there for the rest of the
simulation. Ionic replacement in the SF occurred at t ∼150 ns,
when the entry of a third (blue) ion forced the expulsion of the
red ion to the CC, where it rapidly “bounced” up and down as
it was no longer directly coordinated to the channel. This “knock
on” event was followed by a reverse “knock off” process at
t ∼332 ns, when reentry of the red ion into the SF expelled the
blue ion to the EC. Subsequent reentry of a blue ion at t ∼426 ns
did not lead to the expulsion of the red ion from the SF; instead,
all three ions resided in the SF for the rest of the trajectory (Fig.
1D). Na+ movements are accompanied by movements of the side
chains of E177 residues, which change their conformation from
an outward orientation to an inward “dunked” orientation (Fig.
1 E and F).
Although the pore was initially devoid of Na+, two ions pen-

etrated into the channel sequentially within 40 ns in all 47 tra-
jectories. Based on the time trajectories for a combined 17 μs of
simulation time, the number of sodium ions present in the pore
following this initial equilibration period fluctuated between 2, 3,
and 4, respectively, 36% ± 4%, 63% ± 4%, and 2% ± 1% of the
time; in the SF, double occupancy (66% ± 3%) prevailed over
single (11% ± 2%) and triple (23% ± 3%) occupancy (Fig. 1G).
The average SF occupancy was 2.09 ± 0.05. Note that the sta-
tistical uncertainties reported in this work are the SEM.

Solvation, Binding, and Energetics of Na+ in the Selectivity Filter. The
movement of Na+ in and out of the pore involves changes in the
ionic occupancy of the SF. To uncover the relationship between
ionic binding and mobility, we first decomposed the axial dis-
tribution of Na+ according to coordination by water and channel
groups (Fig. 2). The axial distribution of channel O atoms in the
lumen of the pore is shown in Fig. 2A. When in the SF region,
Na+ is bound to carboxylate O atoms of E177 only (Fig. 2B,
green) or to carboxylates of E177 and carbonyls of L176 together
(Fig. 2B, yellow). Accordingly, we define binding to the SF by
carboxylate coordination of Na+. The bimodal distribution of
Na+ in the SF peaks at z = −0.3 and 0 nm, which nearly matches
the average positions of E177 carboxyl and L176 carbonyl O
atoms, corresponds to two distinct binding modes (E- and EL-
bound, respectively).
The number of carboxyl O atoms in the first solvation of shell

of Na+ varies from 1 to 5 throughout the SF, with 2–4 and 1–2
dominating in the E and EL peaks, respectively (Fig. 2C). Direct
coordination by the channel induces partial dehydration of Na+,
with the number of water molecules in the first solvation shell of
Na+ dropping from 6 or 7 outside of the SF to a range of 1–4 in
the SF for nearly all ions (Fig. 2D). In addition, each Na+ is
coordinated by one or occasionally two carbonyl O atoms of
L176 in the EL binding site (Fig. 2E). Variations within the SF
reflect the presence of multiple, highly degenerate ionic binding
modes, as discussed below.
The analysis of Na+ coordination leads to four distinct mac-

rostates, which we refer to as 1′, 2, 2′, and 3. In this notation, the
integer refers to the ionic occupancy of the SF, and primed and
unprimed states differ in the number of Na+ present in the
central cavity, respectively 1 and 0. The bimodal character of the
axial distribution of Na+ in the SF is retained in all four mac-
rostates (Fig. 2 F–I). The relative population of these two peaks
depends on the ionic occupancy of the CC, but not on that of the
SF. When no ion is present in the CC, the relative population of
E- and EL-bound peaks is ∼1:2 (35:65 for state 2 and 33:67 for
state 3). In contrast, when one ion is present in the CC, the two
binding sites are nearly equivalent, with E:EL-bound ratios of
45:55 and 50:50 in states 1′ and 2′, respectively. This moderate
shift in Na+ from the EL site to the E site is likely due in part to
repulsive coulombic interactions with the cation in the CC.
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Fig. 1. Sodium movement in the selectivity filter of NaVAb. (A) Crystallo-
graphic structure of NaVAb with a close up of the central ion permeation pore
in which the helices above and below the plane of the page have been
omitted for clarity. The constriction of the pore is formed by loops lined with
the TLES sequence (the selectivity filter). The only hydrophilic residue in the
central cavity (CC), T206, is also shown. The IC gate is occluded. (B) Represen-
tative snapshots of sodium ions (spheres) in the SF are shown at specified time
steps. The backbone carbonyl groups of T175 and L176 and the side chains of
E177 are shown, together with the water molecules involved in the co-
ordination (yellow lines) of permeating ions. (C) Movement of Na+ ions along
the pore axis. By convention, the ions are colored red, green, blue, and purple
from the innermost to the outermost position in the channel. Spontaneous
and reversible diffusion of Na+ ions along the channel axis occurred, with
visible knock-on and knock-off events at t = 145 and 330 ns, respectively, as the
blue and red ions displace each other out of the SF (z = 0 corresponds to the
mean axial position of the carbonyl C atom of L176). Segment 100-450 ns of
this trajectory is illustrated in Movie S1. (D) Time evolution of the number of
Na+ ions in the pore. (E) The five conformational states of the EEEE ring, with
E177 side-chains pointing either out toward the ECmouth or into the SF lumen
(ions not shown). (F) Time evolution of the number of E177 side-chains
pointing into the SF. (G) Distribution of ionic populations, and E177 side-chain
dunking, from 17 μs of combined MD trajectories. Ionic occupancy is shown
successively for the entire pore, from the EC funnel to the end of the CC (−0.8
nm ≤ z ≤ 1.6 nm) and for the SF (−0.53 nm ≤ z ≤ 0.3 nm). The pore contains 2, 3
or 4 Na+ ions 36% ± 4%, 63% ± 4%, and 2% ± 1% of the time, respectively
(Left). The probabilities of finding 1, 2, or 3 ions in the SF are 11% ± 2%, 66%
± 3%, and 23% ± 3%, respectively (Center). The probabilities of finding 0, 1, 2,
3 or 4 E177 side-chains in dunked conformations are 4% ± 1%,16% ± 2%, 38%
± 3%, and 8% ± 2%, respectively (Right).
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To gain insight into the energetics underlying Na+ movement,
we computed 2D free energy surfaces for ion pairs in the channel
(Figs. S3 and S4 A and B). Analysis reveals a relatively small
number of well-defined arrangements of ion pairs in the SF,
usually comprised of conformations in which adjacent ions are
either distributed in the E-only (z = −0.3 nm) and EL (z = 0)
sites, and conformations where two ions are in the EL site, with
both cases occurring at once in macrostate 3. The simultaneous
presence of two Na+ ions in the EL binding site is made possible
by the relative width of the channel and by coordination of the
ions by multiple carboxylate groups. Rearrangements include
either concerted (parallel to the diagonal) or sequential (parallel
to one axis) movement of Na+ to and from the above two states,
with small intervening barriers (<1 kcal/mol). These features are
relatively independent of ionic occupancy (Fig. S3), revealing the
surprising ability of the SF to approximately preserve the energy
landscape of Na+ ions.
Despite these overall similarities, the free energy landscape

governing the movement of Na+ between the SF and the CC
depends on both the occupancy and the placement of ions in the
SF: when two ions are in the pore, the expulsion of the innermost

(red) ion from the SF to the CC requires migration of the second
(green) ion from the E site to the EL site (Fig. S4C, Upper).
When 3 ions are in the pore, the EL site of the SF is usually
occupied by the second ion and there is no longer any barrier
impeding movement of the innermost Na+ ion between the SF
and the CC (Fig. S4C, Lower). These features support a knock-
on mechanism involving either 2 or 3 ions, driven at least in part
by coulombic repulsion between Na+ ions. However, in contrast
to the single-file, “Newton balls” mechanism of K+ permeation
in the narrow SF of K+ channels (16), Na+ conductance in
NaVAb does not require concerted cation movement, as two Na+

ions can come side-by-side and occasionally pass each other in
the relatively wide SF of NaVAb.

Mechanism and Kinetics of Ion Translocation. The analysis of tran-
sitions between macrostates 1′, 2, 2′, and 3 leads to the mecha-
nism depicted in Fig. 3. Because two-thirds of all conformations
correspond to states 2 and 2′, we consider that the resting state
of the SF holds two ions, at least in the present, “preopen” state
of the channel. Although a small number of apparently con-
certed transitions between states 2 and 2′ occurred within the
time resolution of this analysis (25 ps), most transitions occurred
sequentially, either via one-ion or three-ion intermediate states
1′ and 3, respectively, depending on whether entry into the SF
preceded exit from the SF, or the other way round (a time series
illustrating both of these pathways is shown in Fig. S2 E–H). The
rates of these transitions are comparable for the two pathways,
with the path via the one-ion intermediate being slightly faster.
The mean first passage times for 2→1′→2′ and 2→3→2′ trans-
location events (irrespective of direction) are 0.96 and 6.8 ns,
respectively.
Nearly equal numbers of forward and reverse transitions be-

tween the four macrostates depicted were achieved over the set of
simulations. A total of 201 spontaneous Na+ translocation events
through the SF occurred within 17 μs of simulation, 112 and 75 of
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which traveled through states 1′ and 3, respectively, and 14 of
which were direct exchanges. These ionic permeation events yield
an estimated rate of ion flow of 6± 1 μs−1 through the SF, which is
in the range of typical single ion channel permeation rates of 1–10
μs−1 (1).Although the IC gate is closed, this result suggests that the
SF is in its functional state and that the rates would not change
appreciably if the IC channel gate were open. The fact that the CC
is occupied 48%of the time indicates that the chemical potential of
Na+ in the CC is essentially identical to that in the EC solution at
this concentration. Therefore, the observed diffusion of Na+

through the SF is relevant to Na+ movement in the open state of
the channel at 0 mV under conditions of equilibrium (i.e., in the
absence of an electrochemical gradient).
Despite the high mobility of Na+ in the CC (Fig. 1C, Fig. S2),

our results suggest that the CC is a binding site for Na+. The
energetics of Na+ binding in the CC and the SF are coupled:
there is always one Na+ ion in the CC when a single ion is in the
SF (state 1′) and triple ionic occupancy of the SF occurs only
when the CC is empty (state 3). However, whether or not the CC
is part of the Na+ conduction mechanism may depend on Na+

occupancy at physiological conditions. Due to the much lower
concentration of free Na+ in the cytoplasm (5 mM in humans,
8 mM in Escherichia coli (17)) than in our simulations (150 mM),
the presence of a physiological electrochemical gradient across
the membrane is likely to lead to a decreased Na+ occupancy
of the CC in the open state of the channel, which could drop by
a factor of up to 150/5 = 30. In that limit, Na+ permeation may
occur primarily via alternating macrostates 2 and 3 (Fig. 3), with
a higher average occupancy of the SF.
Regardless of the actual ionic occupancy of the CC, the

present study indicates that the permeation mechanism at high
Na+ concentration involves the alternation of states in which
a total of 2 Na+ (states 2, 1′) and 3 Na+ (states 3, 2′) are present
in the pore. The similar population of states in which 2 and 3
Na+ ions occupy the channel pore suggests that their exchange
underpins an effective knock-on/knock-off process. Transitions
involving the exchange of Na+ between the EC vestibule and the
SF are the slowest observed between the four macrostates in Fig.
3, of the order of 50 μs−1, indicating that the rate-limiting step for
the translocation of Na+ through the SF is the migration of the
third (blue) ion between the EC and the SF. By contrast, the
movement of Na+ between the SF and the CC is faster by an order
of magnitude, a feature that is likely to persist upon directional
movement from the SF to the CC in the open state of the channel.

Coupling of Channel Structure and Dynamics to Na+ Permeation.Na+

coordination induced rapid and reversible conformational isom-
erization or “dunking” of E177 side chains, bringing their car-
boxylate group from out-facing to protruding into the lumen (Fig.
1 E and F). Coordination of Na+ by E177 occurred mostly in the
dunked conformation, which was much more likely in the presence
than in the absence of cations, with the equilibrium constant to
dunked vs. out-facing conformations of E177 increasing from
Kdunk = 0.04 ± 0.02 to 1.7 ± 0.2 upon addition of salt (Fig. 4 A and
B). Moreover, conformational isomerization of E177 occurred on
the same time scale as Na+ movement. Multiple exponential fit-
ting of the survival probabilities of Glu side-chain conformations
yields three conformational relaxation times in the order of 0.1, 1,
and 10 ns, respectively (Fig. S5A). The two longer relaxation times
are commensurate with the mean first-passage times of Na+ ex-
change through the SF, and the longest relaxation time of the
dunked state disappears in the absence of salt. Accordingly, the
axial displacement of the center of charge of the carboxylate
groups is statistically correlated (Pearson coefficient > 0.7) to that
of Na+ ions within the center of the SF region (Fig. S5B).
To uncover the mechanism coupling channel conformational

dynamics to ion binding and mobility, we examined the coordi-
nation of Na+ by channel O atoms throughout the simulations.

Each microstate (snapshot) was assigned a six-digit code describing
the number of E177 carboxylate and L176 carbonyl O atoms in
the first solvation shell of red, green, and blue ions, defining an
SF binding mode. A myriad of distinct ionic coordination states
were observed. A network representation combining the most
likely binding modes observed in the entire simulation data set is
shown in Fig. 5 together with representative snapshots (see Figs.
S6–S8 for more detail). Each of these binding modes belongs to
one of microstates 1′, 2, 2′, or 3 and is represented by a node
whose area is proportional to its relative population; transitions
observed between any two nodes are represented by an edge
whose thickness is proportional to flux. The nodes in the network
are highly connected. This analysis reveals the staggering mul-
tiplicity and degeneracy of ionic arrangements combining Na+

ions and COO− groups, whose complementary charges enable
their condensation into clusters—particularly in the EL binding
site, which often accommodates multiple Na+ ions in close prox-
imity. In these ionic clusters, Na+ ions are often bound to more
than one Glu side chain, and vice versa. Many individual tran-
sitions involve unitary changes in carboxylate O coordination and
occur within ∼100 ps, the faster timescale of Glu conformational
relaxation. These changes result in the rapid interconversion of
ionic arrangements in a fashion reminiscent of a highly disor-
dered, liquid-like state.
More often than not, the ionic clusters are not neutral. Although

there is an overall correlation, there is no simple correspondence
between ionic occupancy states and the number of dunked side
chains, nd, which fluctuated within all of the macrostates (Fig. 1F
and Fig. 5, Insets) and even between closely related microstates
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spectively. The presence of Na+ displaces the conformational equilibrium of
individual E177 side-chains toward the dunked state. (B) Representative
conformations of E177 and S178 side-chains (Left) with and (Right) without
150-mM NaCl salt; (Upper) side and (Lower) EC views of the SF. Conforma-
tional dunking allows direct coordination of Na+ ions (Left). In the out-facing
conformation, E177 side-chains make hydrogen bonds with the hydroxyl
groups of S178 (Right).
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(Figs. S6 andS7).Chargefluctuations in the ionic cluster result from
the impossibility of maximizing attractive interactions between op-
posite chargeswhile simultaneouslyminimizing repulsion between
like charges and satisfying the spatial constraints imposed by the
architecture of the SF. Together, these factors contribute to the
multiplicity and degeneracy of ionic binding modes. In turn, the
fluidity of ionic coordination underpins the high mobility of Na+ in
the SF.By guaranteeing that no single bindingmode is significantly
stabilized over any other one and that the barriers separating them
are low, the conformational flexibility of the EEEE ring shapes an
energy landscape conducive to ionic diffusion in the SF and, ulti-
mately, to Na+ permeation.

Comparison with Recent Molecular Dynamics Studies. Several simu-
lation studies have recently examined the energetics and the
dynamics of Na+, Ca2+, and K+ in the SF of NaVAb (18–25). Con-
sistent with the above results, some of these studies described co-
ordination ofNa+ by the carboxyl group of E177 (18, 20, 21, 24) and
a two-ion knock-on mechanism (19, 20, 23, 24) involving low free
energy barriers (19, 22, 23). In addition, χ2 conformational isomeri-
zation of E177 was reported in a simulation of Ca2+ permeation
(24). These studies did not examine the coupling of E177 isom-
erization to Na+ binding and permeation, or the remarkable
degeneracy of states that catalyze rapid conduction of Na+. In
addition, in most of these studies (18–24), comparatively limited
sampling precluded the analysis of Na+ translocation kinetics.

Multistate Knock-On Mechanism for Na+ Permeation in NaVAb. Our
results reveal spontaneous permeation of Na+ through the selec-
tivity filter of NaVAb in a knock-on mechanism involving alter-
nating states in which 2 or 3Na+ ions are within the pore lumen. In
contrast to the direct solvation of K+ by backbone carbonyl groups
in the narrow SF of K+ channels (7, 26), binding of Na+ in the

shorter and wider SF of NaVAb involves both direct and water-
mediated interactions ofNa+with the carbonyl groups ofT175 and
L176 and with the carboxylate groups of E177. Furthermore, el-
ementary steps of Na+ diffusion in NaVAb do not occur via linear,
concerted movement of an ionic column as in the Newton balls
mechanism of K+ permeation in K+ channels (16), but instead
involve liquid-like rearrangements of ionic clusters resulting from
the condensation of variable numbers of Na+ ions and carboxylate
groups. Evidently, as early in evolution as bacteria, two fundamen-
tallydifferent structures andmechanismshadarisen for conductionof
Na+ versus K+ in ion channels.
In contrast to the classic “snug” or “induced fit” models of ion

permeation, it is becoming recognized that protein flexibility
plays a role in selective ion transport (27, 28). The mechanism
uncovered in the present study highlights the interplay of chan-
nel dynamics and ion movement. In the ionic clusters of Na+ and
E177 carboxylates in the SF of NaVAb, negative and positive
charges are nearly but not exactly compensated. Far from trap-
ping ions, the reciprocal coordination of permeating Na+ ions
and carboxylate groups creates a myriad of ionic binding modes
and a highly degenerate energy landscape propitious to the rapid
exchange and diffusion of ions through the SF. Dynamic cou-
pling of ionic coordination to conformational isomerization of
the E177 side chains guarantees at once the multivalency of the
SF for Na+ ions and the rapid exchange between alternating states
differing in the number of bound ions, resulting in an effective
knock-on rate of 6 × 106 s−1. This unique catalytic mechanism
takes advantage of the degeneracy of ionic interactions to ac-
celerate Na+ movement toward the limit of free diffusion.
In eukaryotes, voltage-gated Na+ channels are composed of

four covalently linked domains similar to one subunit of NaVAb
(1–4). This arrangement places the amino acid residues DEKA
in the positions of EEEE in homotetrameric NaVAb (15). The
mechanism of Na+ permeation described here would be sub-
stantially different if DEKA were present at the positions of the
four E177 residues in NaVAb. Further structural and computa-
tional studies will be required to understand the mechanistic
significance of this profound difference in structure of the SF of
bacterial and eukaryotic Na+ channels.

Methods
The simulation system consisted of the NaVAb I217C mutant based on the
crystallographic structure with the highest resolution (PDB code: 3RVY) (13),
embedded in a hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
(DMPC) bilayer, yielding a system comprising ∼219,000 atoms. The simulations
were performed with GROMACS 4.0.7 (29). The protein and ions were mod-
eled with the OPLS all-atom force field (30, 31), and the TIP3P model (32) was
used for water molecules. The lipid bilayer was modeled by the Berger
parameters (33) using the half-e double-pairlist method (34). Forty-seven un-
constrained simulations of 400 to 500 ns each yielded 21.6 μs of simulation
data. To check the dependency of our results on the force field, we generated
a 340 ns-long simulation with the CHARMM force field (35). Although this
control simulation is too short for a quantitative comparison, results confirm
multiple Na+ occupancy in two binding sites involving direct coordination to
E177 and L176, as well as conformational isomerization of the Glu side chain
and formation of ionic clusters, consistent with the mechanism described
above (Fig. S9). For additional details of system set up and equilibration,
simulation protocol, and analysis, see SI Methods.

Note Added in Proof. A study published after the submission of this paper for
review examined the conduction of Na+ and K+ in the open state of an
analog of NaVAb in the microsecond time scale (25). That study reports
different binding modes and a lower average Na+ occupancy of the SF than
the present analysis. These discrepancies may be due, at least in part, to the
presence of a large, negative internal voltage (23, 25), which could shift the
conformational equilibrium of E177 toward the outfacing rotamer and
perturb the catalytic mechanism reported in the present study.
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Fig. 5. Network representation highlighting the multiplicity and degeneracy
of Na+ binding modes. Each of the four macrostates (1′, 2, 2′, and 3) corre-
sponds to a large number of microstates (Na+ binding modes) differing in
the number of carboxylate O atoms of E177 and carbonyl O atoms of L176
directly coordinating Na+ ions. Out of a total of 1,233 microstates observed,
the 521 most populated binding modes, which account for 99% of the total
population, are depicted as disks whose surface area is proportional to their
population. Each line connecting two states, an edge, represents transitions
between these states, with edge thickness proportional to the number of
transitions. The network is clustered and colored using a modularity algo-
rithm that contains no information about the four macrostates, only edge
connectivity (see SI Methods). A representative snapshot and the distribution
of the number of dunked E177 side-chains are shown as Insets for each
macrostate. Further details of ionic coordination are provided in Figs. S6–S8.
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SI Methods
We performed 47 independent simulations of 400–500 ns with the
initial 40 ns of each simulation removed for equilibration as
shown in Fig. S1 C–E. The time trajectories were saved at 25-ps
intervals. Each simulation system consisted of a periodic simu-
lation box (16.7 × 16.7 × 9.8 nm3) containing the NaVAb I217C
mutant (PDB code: 3RVY) (1), a hydrated 1,2-dimyristoyl-
sn-glycero-3-phosphatidylcholine (DMPC) bilayer of 846 mole-
cules, and 54,957 water molecules, for a total of 218,883 atoms.
Both N- and C-terminal ends of the protein were modeled as
neutral moieties. The structure of wild-type NaVAb, which has re-
cently been solved (2), exhibits a greater asymmetry in the ar-
rangement of the four peptide chains in the selectivity filter.
Because the magnitude of these differences is smaller than the
fluctuations observed in the simulations of the Ile217Cys mutant
reported here, these changes are not significant to the present study.
Theproteinandionsweremodeledwiththeoptimizedpotentials

for liquid simulations (OPLS) all-atom force field (3, 4), and the
transferable intermolecular potential 3 point (TIP3P) model
(5) was used for water molecules. DMPC was modeled by the
Berger parameters (6) using the half-e double-pairlist method
(7). Lennard–Jones interactions were evaluated using a group-
based cutoff for separation distances less than 1.2 nm and other-
wise ignored. Coulomb interactions were calculated using the
smooth particle-mesh Ewald (PME) method (8, 9) with a real-
space cutoff of 1.2 nm and a Fourier grid spacing of 0.14 nm.
Simulation in the isothermal-isobaric (NpT) ensemble was ach-
ieved by semiisotropic coupling to Berendsen barostats (10) at 1
bar with coupling constants of 4 ps and temperature coupling using
velocity Langevin dynamics (11) at 300Kwith a collision frequency
of 1 ps−1. Covalent bonds were constrained with SETTLE (12)
and P-LINCS (13) for water and other molecules, respectively.
The integration time step was 2 fs. The nonbonded pair-list was
updated every 20 fs.
A preequilibrated DMPC bilayer (14) was taken, and protein

was inserted in it using the procedure of Kandt et al. (15).
Initially, the protein was inserted such that the Cα of residue
F207 matched the center of the bilayer. The bilayer was then
expanded within the xy plane by applying a scaling factor of 4
to translate each lipid. Lipid molecules with phosphorus atoms
within 1.4 nm of any protein Cα atom were deleted. This pro-
cedure was followed by 20 composite steps of compression (by a
factor 0.95) of the lipid bilayer and 500 steps of steepest descent
(SD) energy minimization of the protein–lipid system. The bi-
layer was then subjected to nine cycles of contraction by a factor
of 0.97 followed by 500 SD steps. At this stage, the system was
solvated with TIP3P water molecules (4), and eight Cl− counter
ions were added to neutralize the simulation cell. The system was
subjected to the following series of energy minimization and
molecular dynamics (MD) cycles for progressive relaxation of
the system: (i) 1,000 SD steps and 1 ns of MD with all lipid and
harmonic restraints (1,000 kJ·mol−1·nm−2) on protein heavy
atoms, (ii) 1,000 SD steps and 1 ns MD with harmonic restraints
on all protein heavy atoms, (iii) 1,000 SD steps and 1 ns MD with
only backbone of the protein restrained, (iv) addition of an extra
150 Na+ and 150 Cl− ions to mimic the physiological salt con-
centration of 150 mM, followed by 1,000 SD steps and 1 ns MD
with the protein backbone restrained, and finally (v) 1,000 SD
steps and 1 ns MD with only Cα atoms of the protein restrained.
Subsequent simulations were performed without any spatial re-
straint. In the initial random placement of ions, a minimum
distance of 0.6 nm between the ions was maintained, and the ions

were placed in bulk water. A typical simulation cell is shown in
Fig. S1 A and B.
To examine the coupling of the anionic side chains of E177

structure and dynamics to Na+ permeation through the selectivity
filter (SF),we also performed as a controlfive repeats of 200ns-long
MD simulations in the absence of excess salt. The simulation system
was obtained as explained above, except that stage iv was skipped.
Thedatawerecollected at the interval of 10 and25ps, in simulations
without and with salt, respectively. We computed the χ1 and χ2
torsion angles of the E177 side chain from 0.8 μs of simulations
withoutNa+ and 17 μs of simulationswithNa+ (Fig. 4A). Analysis of
the reversible thermodynamic work or potential of mean force
(PMF) for side chain isomerization shows two free energy basins
for out-facing (undunked) and dunked conformations at χ2 = 60°
and 300°, respectively (Fig. 4A).
All of the MD simulations described above were carried out

using GROMACS 4.0.7 (16). All molecular pictures were ren-
dered with VMD (17). Atomic positions, ionic coordination,
and dihedral angles of E177 side-chains were extracted using
MDAnalysis (18). All uncertainties mentioned in this text denote
the SE of mean calculated over all trajectories. Potentials of
mean force were computed from probability distributions such as
p(z1, z2) using the following relationship: W(z1, z2) = −kBT ln
p(z1, z2), where kB and T are the Boltzmann constant and the
absolute temperature, respectively.
The clustering and network analysis of states with varying co-

ordination of permeating cations to E177 carboxylate and L176
carbonyl oxygen atoms were performed with gephi (19) network
analysis and visualization software. A modularity algorithm with
resolution 2.0 and using edge weights (where weights were de-
fined as transition counts between states) was used to color the
network graph. For the full network analysis shown in Fig. S7,
only nodes with dwell time greater than 814 ps were shown.
For our control simulation using the CHARMM force field, the

NaVAb I217C mutant was submitted to the CHARMM-GUI
membrane builder (20) and aligned using the Orientation of
Proteins in Membranes (OPM) database (21). This simulation
system consisted of a periodic simulation box (16.3 × 16.3 ×
9.3 nm3) containing the NaVAb I217C mutant, a 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer, 48,663
water molecules and 150 mM NaCl salt for a total of 247,627
atoms. Both N- and C-terminal ends of the protein were mod-
eled as neutral moieties. Water molecules were not inserted into
the pore during system preparation, which may result in lower
hydration and ion occupation of the central cavity (CC) com-
pared with the OPLS simulations. The energy of the system was
minimized for 2,500 steps and subjected to 550 ps of simulation
following the CHARMM-GUI default equilibration protocol
of gradually reducing backbone and side-chain restraints. All
simulations were conducted in the NpT ensemble (T = 300 K;
P = 1 atm) with the Langevin–Piston algorithm with the NAMD
package (22). The CHARMM36 protein (23, 24) and lipid (25)
force fields were used. The TIP3P model (5) was used for water
molecules. We used the NBFIX parameters derived using os-
motic pressure calibration, successively for the Na:Cl pair (26)
and for the pairwise interaction of sodium ions with carboxylate
O atoms, as listed in the toppar file of the c36_aug12 version
of CHARMM (http://mackerell.umaryland.edu/CHARMM_ff_
params.html), namely, Emin = −0.075020 kcal/mol and Rmin =
0.319 nm; the latter parameters were developed using the same
osmotic pressure method (mentioned above) and are currently
the object of further refinement. For the sake of comparison,
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the pairwise Lennard–Jones parameters for OPLS/AA Na+

and carboxylate O atoms used in the rest of this study are:
Emin = −0.02411 kCal/mol and Rmin = 0.323 nm. PME was
used to calculate electrostatics. A single production trajectory of
length 340 ns was generated with a 2-fs time step, and bonds with
hydrogen were constrained using the SHAKE algorithm.
For protonation of E177 side chains at neutral pH, we per-

formed Poisson–Boltzmann continuum-electrostatic calculations
using the online server in CHARMM-GUI (27) to estimate the
pKa of E177. The protein, membrane, and bulk water were as-
signed dielectric constants of 4, 2, and 80, respectively. The pore
interior was assigned a dielectric constant of 80. A 3.6-nm-thick
membrane slab was centered at the central cavity. Calculations
were first performed with a grid spacing of 0.1 nm, followed by

a focusing calculation with a grid spacing of 0.05 nm. Five rep-
resentative conformations of the channel in the absence of salt
were chosen, and the pKa of each Glu side chain was computed,
first in the absence of salt and then with an assumed ionic
strength of 150 mM.
The average pKa of E177 was 6.4 ± 0.4 and 5.8 ± 0.4 in the

absence and presence of salt, respectively. The increased pKa
relative to the reference aqueous value of 4 reflects a signifi-
cant destabilization of the ionic form due to the proximity of
the four Glu side-chains to each other in the SF of NaVAb,
which is mitigated by the presence of salt. Nevertheless, these
estimates justify the neglect of Glu177 protonation in the present
study, where we assume that pH is neutral and all four side-
chains are charged.
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coordination pattern, and the selectivity filter are shown at time steps mentioned. (B and F) Time evolution of the position of Na+ along the channel axis.
Sodium ions are colored according to their position along channel axis: red, green, blue, and purple, from the innermost to the outermost position, re-
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Fig. S4. Free energy landscape of Na+ motion in NaVAb. (A) The 2D PMF of axial positions of first (red, z1) and second (green, z2) sodium ions in states where
two Na+ ions are the channel (macrostates 1′ and 2). The free energy basins are labeled a, c, d, e, and f in order of decreasing occupancy. Basins a and c are
related by concerted ionic motion. Basin a, the most populated conformation, corresponds to the green and red ions in the E and EL binding modes,
respectively (see representative conformations in the Insets, where the four-digit code corresponds to E and L coordination). In basin d, both ions are in the
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respond to total ionic occupancy of two and three Na+ in the channel lumen for (Left) e (Upper) and e′ (Lower) basins; (Right) f and f′ basins. When two ions are
in the channel, the expulsion of the innermost ion into the CC is conditional to the presence of a second ion in the EL binding site. When three ions are in the
channel, the presence of the second ion in the EL binding site further facilitates the movement of the innermost ion between the SF and the CC, which becomes
diffusive, as suggested by the flat free energy profile in basin f′.
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Fig. S5. Coupling of channel dynamics to ion movement. (A) Time evolution of the survival probability of the χ2 dihedral angle of E177 in dunked (Dunk) and
undunked (Undunk) states, shown with a fit to a multiple exponential function. The fits to the survival probability of the dunked and undunked states in
the presence of 150 mM NaCl are S(t) = 0.56 × exp(−t/0.049) + 0.27 × exp(−t/0.667) + 0.14 × exp(−t/8.180) and S(t) = 0.51 × exp(−t/0.068) + 0.29 × exp(−t/
0.788) + 0.16 × exp(−t/9.047), respectively, with time t expressed in ns. In the absence of salt, the exponential fits for dunked and undunked states are S(t) =
0.70 × exp(−t/0.012) + 0.11 × exp(−t/0.09) and S(t) = 0.77 × exp(−t/0.012) + 0.16 × exp(−t/0.325) + 0.05 × exp(−t/8.044), respectively. Correlation coefficients
for these fits were 0.997 or better. (B) Time evolution of the axial projection of centers of cationic charge (CCC) and of anionic charge (CAC) within the
channel lumen. (Black) Average axial position of Na+ ions located inside the SF (0.6 ≤ z ≤ −0.24nm, delineated by thick gray lines); (orange) average axial
position of carboxylate oxygen atoms of E177 side-chains. Initially (t ≤ 100 ns), the motions of the CAC and the CCC are uncorrelated (Pearson correlation
coefficient P = −0.12) whereas, in 100- to 300-ns and 300- to 500-ns time segments, they show significant correlation (P = 0.72 and 0.75). Based on this
analysis, we identify a tight-coupling region (TCR) within which cationic movement is coupled to the movement of E177 side chains.
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Fig. S6. Network representation highlighting the multiplicity, the connectivity, and the degeneracy of microstates involving double ionic occupancy of the
channel. Coordination states representing 93% of the population of double Na+ occupancy within the pore are shown together with example snapshots and
distribution of E177 dunking for each cluster. Each state, or node, represents a unique coordination of channel ligands (E177 carboxylate and L176 backbone
carbonyl oxygen atoms) identified by the four-digit label ELEL which corresponds to the number of coordinating ligands for the first (red) and second (green)
ion in the channel. For example, in state 1120, the digits 11 indicate that the first ion is coordinated by two ligands, one of two E177 carboxylate oxygen atoms
and one L176 backbone carbonyl oxygen atom, whereas the digits 20 indicate that the second ion is coordinated by two oxygen atoms from E177 and none
from L176. The size of each node is proportional to its population. Each line connecting two states, an edge, represents transitions between these states with
edge thickness proportional to number of transitions. Densely connected nodes form clusters of like color as determined by a modularity algorithm based only
on number of transitions. The distribution of the number of E177 side-chains protruding or dunked into the lumen space is shown beside each cluster.
Macrostates 1′ and 2 appear on the left- and right-hand-side of the figure, respectively. In general, as one moves from left to right, ions become more tightly
coordinated by dunked E177 side-chains. Our definition of microstates, which does not distinguish between the four Glu side chains, effectively corrects for the
fourfold symmetry of the channel sequence. In addition, coloring the cations according to their relative insertion depth corrects for ion-permutation symmetry.
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Fig. S7. Network representation of ion coordination states representing 70% of the population of triple ionic occupancy within the pore. Each state, or node,
represents a unique coordination of channel ligands (E177 carboxylate and L176 backbone carbonyl oxygen atoms) identified by the six-digit label ELELEL,
which corresponds to the number of coordinating ligands for the first (red), second (green), and third (blue) ion in the channel. The distribution of the number
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the network, respectively. In general, as one moves from left to right, ions become more tightly coordinated by dunked E177 side-chains.
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Fig. S8. Network representation of Na+ coordination states combining double and triple occupancy of the pore. The 243 most populated states, which to-
gether represent 95% of snapshots, are shown. The quadrants denoted 1′, 2, 2′, and 3 represent distinct ion occupancy macrostates as described in Fig. 3.
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Fig. S9. Control 340-ns simulation illustrating the dynamics of Na+ ions in the channel lumen using the CHARMM36 force field. (A) Snapshots of permeating
sodium ions with bound water molecules in the selectivity filter are shown at selected time steps. (B) Time evolution of the position of Na+ along the channel
axis. Sodium ions are colored red, green, and blue from the innermost to the outermost position, respectively. (C) Number of Na+ ions in the pore. (D) Number
of E177 side-chains protruding into the lumen (dunked). The average ionic occupancies in channel and SF are 2.2 and 1.61, respectively, and the average
number of dunked Glu177 side-chains is 3.04.

Movie S1. The movie represents the time series shown in Fig. 1 from 100 to 450 ns. The protein backbone of the SF is represented as cyan ribbons, and side-
chains lining the SF are shown in the VMD (17) graphical representation licorice. Sodium ions are shown as red, green, and blue spheres. The surrounding
protein is shown as gray background. Water molecules within the first solvation shell of the cations are also shown.

Movie S1
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