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Abstract: Generalized-ensemble algorithms in temperature space have become popular tools
to enhance conformational sampling in biomolecular simulations. A random walk in temperature
leads to a corresponding random walk in potential energy, which can be used to cross over
energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce
two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica
exchange (VREX). These methods are designed to address the practical issues inherent in the
replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM)
algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function
efficiently when applied to complex systems. ST and SREM both have the drawback of requiring
extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential
energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations,
and for synchronization and extensive communication between replicas. Both methods are
therefore suitable for distributed or heterogeneous computing platforms. We perform an objective
comparison of all five algorithms in terms of both implementation issues and sampling efficiency.
We use disordered peptides in explicit water as test systems, for a total simulation time of over
42 us. Efficiency is defined in terms of both structural convergence and temperature diffusion,
and we show that these definitions of efficiency are in fact correlated. Importantly, we find that
ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence
of structural properties compared to RE-based methods. Within the RE-based methods, VREX
is superior to both SREM and RE. On the basis of our observations, we conclude that ST is
ideal for simple systems, while STDR is well-suited for complex systems.

Introduction

Achieving complete (or even adequate) conformational
sampling is one of the key challenges in biomolecular
simulations.! The energy landscape of most biomolecules is
“rugged”, and the source of this ruggedness is two-fold. The
energetic barriers separating accessible states are often larger
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than the available thermal energy, and there are typically a
large number of states to be sampled. The time scales of
many biomolecular processes, such as protein folding, are
still far beyond the reach of our current computational
capability, which is generally limited to the 1078 to 1077 s
time scale for continuous simulations. For example, even
the folding of small domains or secondary structure elements,
such as $-hairpins and mini-proteins, occur on the 1—10 us
time scale.! Consequently, conventional or “brute force”
molecular dynamics (MD) alone is often insufficient to
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Generalized-Ensemble Methods

achieve complete Boltzmann sampling of the important states
of many biologically relevant systems. For this reason,
generalized-ensemble algorithms have become popular tools
for conformational sampling.

A variety of generalized-ensemble algorithms have been
developed with the common intention of overcoming ener-
getic barriers in order to enhance sampling of conformational
space. These methods use a generalized Hamiltonian for the
purpose of achieving uniform sampling along a reaction
coordinate of interest. Practically, one is faced with choosing
the most appropriate method and reaction coordinate for a
particular application. While the optimal reaction coordinate
is not known a priori, it may be possible to make generaliza-
tions regarding the optimal methodology. To this end, we
consider the following important question: given limited
computational resources, which algorithm is most efficient
at sampling a complex energy landscape? Some generalized-
ensemble methods employ a random walk in potential
energy, while others use different parameters which are
relevant to the system of interest.” In this article, we compare
the efficiency of a set of algorithms which make use of a
random walk in temperature to enhance conformational
sampling of biomolecules. We focus on the following five
methods: simulated tempering (ST),>* replica exchange
(RE),”? the serial replica exchange method (SREM),'® and
two novel methods, virtual replica exchange (VREX) and
simulated tempering distributed replica sampling (STDR),
which is a combination of ST and distributed replica
sampling (DR)."' ™12

The generalized-ensemble algorithms compared in this
paper all rely on the fact that the free energy surface becomes
less rugged at high temperatures, increasing the frequency
of interconversion between conformational states.'* Simula-
tions performed at low temperatures often require a relatively
long time to cross the energetic barriers between states and
appear to be trapped. Transitions between regions separated
by barriers may not be observed over time scales accessible
to simulation. In this case, multiple simulations initiated in
different conformational basins may sample different subsets
of phase space. The result is that an ergodic system appears
nonergodic, a phenomenon known as quasi-nonergodicity.'
Utilizing generalized-ensemble algorithms that induce a
random walk in temperature may alleviate this source of
error.

The sampling enhancement of generalized-ensemble meth-
ods relative to canonical MD or Monte Carlo (MC) simula-
tions has been demonstrated for several systems,3 7,16,17
including peptides.®'*'872* Conversely, there have also been
studies that question the relative sampling efficiency of RE
compared to brute force MD,?* highlighting the importance
of a rigorous definition of efficiency which accounts for the
total computer time required for all temperatures.”®2® It is
important to note that data obtained at multiple temperatures
in generalized-ensemble simulations may be of interest in
some studies, such as protein folding.?"** In general,
however, the data at high temperatures are not useful.
Furthermore, the observed speedup also strongly depends
on the lowest temperature.?® It is essential to assess the
convergence of both the conventional MD simulations as
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well as the generalized-ensemble simulations in order to
perform a meaningful comparison, in addition to identifying
a meaningful quantity on which to base the comparison. Any
evaluation of sampling enhancement compared to single-
temperature MD is also likely to depend heavily on the
molecular system under study (depending on the number of
basins in the landscape and the heights of barriers). It is
therefore quite difficult to accurately quantify the sampling
enhancement due to the introduction of a random walk in
temperature.

We begin with a brief introduction of each of the
generalized-ensemble methods, including the presentation of
our two novel methods, STDR and VREX. We then perform
a thorough comparison of the algorithms in terms of both
practical implementation limitations and sampling efficiency
for a disordered octapeptide in explicit water, a molecular
system combining high relevance to protein folding and
moderate complexity. In addition to providing a comparison
between generalized-ensemble algorithms, we also provide
a comparison to conventional MD. We discuss efficiency in
terms of both convergence of structural properties and
temperature diffusion, and we show that these definitions of
efficiency are correlated. Finally, we compare the efficiency
of STDR and conventional MD for a 35-residue peptide with
a complex conformational landscape.

Theory and Methods

Simulated Tempering (ST). Simulated tempering was
originally introduced to enhance sampling of a random field
Ising model.? This system has a rough energy landscape for
which spin-flips from the state favored by the magnetic field
to the opposite state are statistically rare events. ST facilitates
exchanges between these states, whereas the MC algorithm
remains trapped.® ST has also been shown to be effective in
exploring the energy landscapes of biomolecules, which
similarly have multiple energy minima separated by barri-
ers.”

In the ST algorithm, temperature becomes a dynamic
variable®* that can take on discrete values labeled by an
index m (m = 1, ..., M). ST makes use of a generalized
Hamiltonian, H(X,m), which depends on all configurational
degrees of freedom (X), in addition to temperature:

HX,m) = ,HX) — a, e))

where 3, is the inverse temperature, H(X) is the system’s
original Hamiltonian, and a,, is a constant which depends
on temperature.” The generalized ensemble has a corre-
sponding generalized partition function, Z, given by:

7 = 2 f dX[e—H(X,m)] — z f dX[e—ﬁ,,,H(X)+am] —

Y7, e" (2)

where Z, is the partition function corresponding to the
temperature 7,,.°° The partition function of the generalized
ensemble, Z, is the weighted sum of the partition functions
of the canonical ensembles at each temperature, Z,. We
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therefore refer to the constants, a,,, as “weight factors”.>®

The probability of sampling a given temperature, 7, is’
P(T,) o< e "™ =7 e 3)

which depends on the generalized Hamiltonian, H, and
therefore depends on the weight factor, a,,. The goal in ST
is to perform a random walk in temperature such that all
temperatures are visited uniformly, that is, to choose weight
factors such that for any two temperatures (labeled i and j)

Ze"=2Z¢e" 4)

Since the partition function in the canonical ensemble, Z,,,
is related to the Helmholtz free energy, A,, the optimal
weight factors are dimensionless Helmholtz free energies (the
Helmholtz free energy multiplied by the inverse temperature,

ﬁ):30,31

7 = e*/J)mAm — e*ﬂm
" )

a,=—InZ,

The use of accurate dimensionless Helmholtz free energies
as weight factors leads to sampling all temperatures with
equal probability. In principle, the weight factors may take
any value without resulting in biased, non-Boltzmann
sampling at the individual temperatures. However, inaccuracy
in the weight factors leads to corresponding differences in
the probabilities of sampling at each temperature.*>?

An ST simulation consists of a short canonical MD (or
MC) simulation at temperature 7; followed by an exchange
attempt to a neighboring temperature, 7;. The probability of
this exchange occurring is given by:

. 1
T, —T) = mln{e—(ﬁf—ﬁi)E-O-(a,-—a,-) (6)

where E is the potential energy of the system at the end of
the previous simulation at temperature 7;, and f3; and f3; are
the inverse temperatures.” The weight factors need only be
accurate up to an additive constant, since only differences
in weight factors are required to determine the acceptance
probability.*® Through many repetitions of these alternating
simulation and exchange steps, a random walk in temperature
is realized, corresponding to a random walk in potential
energy and efficient exploration of the energy landscape.’’
In fact, ST has been shown to be as effective as the
multicanonical algorithm, which employs a random walk in
potential energy.*>

The underlying challenge in ST is accurately obtaining
the dimensionless Helmholtz free energies, a,,. There have
been two general approaches to their calculation. The first
method involves making use of the weighted histogram
analysis method (WHAM)*~3° to obtain the density of states
and the weight factors. The second method, which we utilize
in this paper, was recently proposed as a fast and efficient
scheme to obtain an accurate estimate of the weight factors
based on average energies.’’’ The average potential energy
at each temperature, (E), is obtained from initial simulations,
and the differences in weight factors are calculated as
follows:
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(E); + <E>,-+|)

Ay — a;= By — :81‘)( B (7

The weight factor for the lowest temperature can be set
to zero since only differences in weight factors are needed
in the exchange probability. The replica exchange simulated
tempering method (REST) may also be used to obtain weight
factors. In this method, an initial RE simulation is run for
the purpose of obtaining accurate weight factors, which are
then used in a ST simulation.*®*® REST may be used with
either WHAM or the method outlined in eq 7. Weight factors
may be updated throughout the ST simulation if required."*
Adaptive determination of weights using schemes like the
one developed by Zhang and Ma* based on the Wang—Landau
algorithm®® were shown to be useful for a square lattice Ising
model, a bead model of a protein and a Lennard-Jones fluid.*®
Biomolecular systems containing thousands of atoms rep-
resent a completely different level of complexity. Conver-
gence of weights is nontrivial'**%*!-** and can be slow even
with adaptive approaches.? Calculating weight factors has
been the main impediment to the widespread use of the
simulated tempering method.*°

The accuracy of the weight factors (that is, how close the
differences in weight factors are to accurate dimensionless
Helmbholtz free energy differences) can be assessed by
computing the deviation from sampling all temperatures
homogeneously in a sufficiently long ST simulation. In the
extreme case for which all weight factors are equal and all
differences in weight factors are zero, only the lowest
temperature is significantly sampled. This is because the first
term in the exponent of the exchange probability (eq 6)
depends on the potential energy, which is generally a large,
negative number for biomolecular systems. When multiplied
by the difference in inverse temperatures, the resulting
exchange probability dictates that moves to lower temper-
atures are accepted, while moves to higher temperatures are
rejected. Conversely, if the differences in weight factors are
equal to the differences in dimensionless Helmholtz free
energies, the temperatures in the ST simulation are sampled
uniformly, which is the optimal situation. In practice, weight
factors obtained for ST result in temperature sampling
inhomogeneity somewhere between these two extremes.
Calculating the dimensionless Helmholtz free energies for a
complex system such as a peptide in explicit water is
computationally expensive since it requires an accurate
estimate of the partition function. These calculations can
require tens of nanoseconds per temperature or more, and
the computational expense increases with both system size
and complexity.'*

Replica Exchange (RE). Replica exchange has been the
most widely used of the methods we discuss in this paper to
enhance sampling of biomolecular simulations. It can be
thought of as a parallel version of ST, and it is also known
as parallel tempering® or multiple Markov chains.® In fact,
parallel tempering was applied to proteins even before ST.*!
An RE simulation consists of M identical copies of the
system (replicas) which sample M canonical ensembles at
different temperatures. Exchanges are performed between
neighboring temperatures, 7; and 7;. The probability of
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making an exchange depends on the potential energies, E;
and Ej, and the inverse temperatures, 3; and f3;:

. 1
P(T, < T) = mln{e—(ﬂ,—ﬂi)(Ei_Ef) ®

RE is analogous to ST, but instead of using weight factors
in the exchange probability, the upward move of one replica
is coupled to the downward move of another. RE therefore
has the critical advantage of not requiring any initial
simulation for the calculation of weight factors. Importantly,
it also satisfies detailed balance.”

One drawback of the RE method is its significant
computational requirements. There is a one-to-one cor-
respondence between the number of replicas (M) and the
number of temperatures (M). The number of replicas needed
for a RE simulation is related to the number of degrees of
freedom, N, as O(N'?).%7*?> Systems with many particles
therefore require many replicas. Although it is not a specific
requirement of the RE algorithm, in its typical implementa-
tion, each replica is run on a dedicated central processing
unit (CPU). This setup minimizes the amount of information
that must be passed between nodes.>' Thus, M CPUs are
running simultaneously throughout the course of the RE
simulation. The use of M CPUs in RE can be overcome by
running multiple replicas per CPU. However, using one CPU
for multiple replicas does not effectively take advantage of
the parallelization inherent in the RE method.

The RE algorithm requires the synchronization of at-
tempted moves, which results in wasted CPU time if any
replica waits for other replicas to perform exchanges.
Inhomogeneity of CPU speeds affects the amount of wasted
time, since the speed of the calculation depends on the speed
of the slowest processor. Modified versions of RE have been
developed in an effort to minimize wasted CPU time,
including the multiplexed replica exchange method
(MREM)> and asynchronous replica exchange.> MREM
makes use of multiplexed layers of replicas (n layers, each
with M temperatures), with exchanges occurring both within
and between layers.”> MREM is even more computationally
demanding than RE, using n times as many processors.
MREM does not offer a significant advantage if there is a
shortage of CPUs, but it does offer a way of using more
CPUs without adding more temperatures. In asynchronous
replica exchange, only the replicas undergoing exchange are
synchronized, therefore increasing efficiency on heteroge-
neous computing platforms.*> More complex replica man-
agement schemes have also been proposed to increase the
efficiency of RE.*** However, modified RE algorithms do
not completely alleviate the need for synchronization and
frequent communication between replicas.'* This is espe-
cially important to users of distributed computing, such as
the massively parallel Folding@Home project,*® who must
contend with inhomogeneity of processor speeds.'*

Serial Replica Exchange (SREM). The serial replica
exchange method'® was recently developed to address the
main practical limitations inherent in the RE method, namely,
the need for synchronization and a large number of proces-
sors. The exchange probability in SREM has an identical
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form to that of RE (eq 8) for a replica at temperature 7;
attempting to move to a neighboring temperature 7}:

‘ 1
PT—T) = mm{e—(/f;—/fi><Ei—Ef,pEDF> ®)

Unlike RE, the attempted move from 7; to 7; does not
simultaneously involve another replica moving from 7; to
T;. In SREM, the potential energy, E;pgpr, does not come
from another replica at temperature 7; but rather is selected
at random from a potential energy distribution function
(PEDF) for that temperature. The PEDFs are determined
through initial simulations at each temperature, which may
use either constant-temperature MD or RE. These initial
simulations can be very computationally demanding for
biomolecular systems. For example, to obtain converged
PEDFs for a small RNA hairpin, approximately 100 ns per
temperature was required.”’” PEDFs may also need to be
updated throughout the course of the SREM simulation.'**
SREM also cannot be applied to temperature-dependent force
fields.*®*°

In terms of practical implementation, SREM offers the
same advantages as ST. In both methods, there is absolutely
no communication required between independent simula-
tions. Neither method requires a fixed number of CPUs, and
there is no wasted CPU time in the synchronization of
attempted exchanges. In principle, both ST and SREM can
be run on a single CPU. SREM also presents the same critical
challenge as ST: an initial simulation is needed to determine
PEDFs, the length of which is highly dependent on system
complexity. The significant computational cost of calculating
accurate PEDFs is a key drawback of SREM, since an SREM
simulation is not strictly correct if unconverged or incorrect
PEDFs are used.'®'* In contrast, the weight factors of ST
can deviate from the accurate dimensionless Helmholtz free
energies and still yield correct results.>' 4

Virtual Replica Exchange (VREX). The first novel
method we propose, virtual replica exchange, is based on
the principles of both RE and SREM. A replica at temper-
ature T; attempts a move to temperature 7j, with the
probability of exchange given by the following equation:

. 1
T, —T)= mm{e—(ﬂj—ﬁ,v><E,-—E,-,vi.ml> (10)

Here, the potential energy, Ejyira, comes from a list of
stored energy values obtained at temperature 7;. This is
analogous to exchanging with a potential energy value
selected from a PEDF in SREM, or the current potential
energy of a replica at temperature 7; in RE. Like SREM,
only a move from temperature 7; to temperature 7; occurs,
with no simultaneous reverse move. In VREX, an energy
value that occurred at temperature 7; in the past is used, and
following the attempted exchange, the occurrence of this
energy value is removed from the potential energy list. This
constitutes a “virtual exchange”.

VREX is derived to obey detailed balance in a similar
manner to RE.*'* Consider a state A in which a replica with
configuration X is at temperature 7; and a virtual replica with
configuration Xy, is at temperature 7;. An exchange is



2644 J. Chem. Theory Comput., Vol. 5, No. 10, 2009

attempted to a state B in which the replica with configuration
X is at temperature 7; and the virtual replica is at temperature
T;. The detailed balance criterion is written

P(A) P(A — B) = P(B) P(B — A) (11

Transition probabilities that satisfy this criterion can then
be derived as follows:

e*ﬁjl‘l (X) e*ﬂiH (Xyir)

PA—B) _ % Zi BB E )
P(B—A) ¢ PHO) o BHO
Z, Z.

t J

(12)

This transition probability is satisfied by the Metropolis
criterion in eq 10. It also resembles the transition probability
for RE (eq 8). The VREX algorithm is completely analogous
to RE, except that one replica undergoes a virtual reverse
move. Similarly, SREM also involves a virtual reverse move,
in this case, by a replica whose energy distribution is
represented by the PEDF. In contrast, the RE algorithm
involves two real replicas undergoing temperature moves.

In practice, VREX requires very short initial simulations
in order to generate a preliminary list of energies for each
temperature. These lists are then updated as the simulation
progresses, with values being added from each short MD
simulation between exchange attempts and values being
removed as they are used in virtual exchanges. It is possible
to run out of potential energy values in the primary lists if
temperatures are sampled heterogeneously. In order to
address this possibility, implementations of VREX may
include the use of secondary lists, to which potential energies
from the primary lists are moved after a single use. Potential
energies from a secondary list may be used in the rare case
that the primary list for that temperature is completely used.
Further, recent values can be prioritized in the primary lists,
and relatively short and continually overwritten secondary
lists can be maintained in order to reduce the likelihood of
using pre-equilibration potential energies in post-equilibration
virtual exchanges.

The main advantage of VREX is that it avoids the need
to calculate converged PEDFs (like SREM) or weight factors
(like ST) and only requires a short list of potential energies
to begin sampling. It also addresses the main shortcoming
of RE because it completely eliminates the synchronization
between replicas, as well as the need for a fixed number of
replicas. It is theoretically very similar to RE, with the
addition of a variable time delay between the time when a
potential energy is produced and when it is used for an
exchange.

Distributed Replica Sampling (DR). Distributed replica
sampling'' is a general scheme for Boltzmann sampling of
conformational space in which multiple replicas undergo a
random walk in a reaction coordinate of interest. Individual
replicas are coupled through a generalized Hamiltonian
containing a potential energy term that depends on the
distribution of all replicas, which acts to enforce a desired
sampling distribution of the reaction coordinate. DR can
therefore be used to enforce uniform sampling along a
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reaction coordinate of interest. This may be, for instance, a
nonphysical spatial “fourth” dimension'? or a dihedral
angle.!> We briefly summarize the DR algorithm with
temperature as the coordinate.'' The implementation of DR
in other coordinates has also been previously outlined.'' ~'?

The generalized Hamiltonian of DR in temperature
contains a pseudoenergy term and depends on the current
inverse temperature and current configuration (g) of all
replicas:

M
H(q1 B1s s Bos woos s Br) = 2, B E(@,) +

m=1

DRPEB,, 5,, ..., By (13)

where E is the potential energy. There are M replicas in total,
each labeled by an index m = 1, ..., M. The distributed replica
potential energy (DRPE) can take any functional form that
depends on the distribution of replicas and fulfills the purpose
of enforcing homogeneous sampling of the temperature
coordinate. Importantly, although the DRPE is a pseudoen-
ergetic penalty, it is not a function of system complexity.''
The probability of a replica currently at temperature T7;
jumping to a temperature 7; is

) 1
PTG —T) = mm{ o—(6-PoEq)-ORPE-DRPE)  (14)

which depends on the difference between the DRPE with
the replica at temperature 7; (DRPE;) and that at temperature
T; (DRPE,)."" DR can be analogously used to achieve a
random walk in a parameter of the Hamiltonian, &, with an
exchange probability:

. 1
p&— &) = mm{e—ﬁl(H(q,éj)—H(q,E,-))Jr(DRPE,-—DRPEi)J

15)

DR was designed specifically to suit shared or distributed
computing platforms.'! In contrast to RE, in which pairwise
exchanges of replicas are attempted, DR considers stochastic
moves of individual replicas one at a time. The stochastic
move of one replica is coupled to the distribution of all other
replicas through the DRPE, and no direct communication
between replicas is required. In DR, synchronization of
exchange attempts is therefore completely eliminated, which
results in 100% CPU utilization."' The algorithm also readily
accommodates fluctuations in CPU availability."' DR in
combination with thermodynamic integration (TT) was shown
to sample conformational space more effectively than TI
alone in the calculation of the binding free energy of benzene
to T4 lysozyme, while simultaneously optimizing the use of
available computational resources.'? This approach was also
successfully employed to compute partial water occupancy
in the pathway of proton uptake in cytochrome ¢ oxidase.>
In addition, DR has been combined with umbrella sampling
(DRUS) to allow equilibrium exchange between different
umbrella biasing potentials.'*>° When applied to alanine
dipeptide, umbrella sampling alone exhibited quasi-noner-
godic behavior, while DRUS alleviated this systematic
error."?
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Application of the DRPE restores sampling homogeneity
of temperature only when the DRPE contribution is large
enough to balance the preference for sampling the lowest
temperature. When ST is conducted with all weight factors
equal, as outlined in eq 14, all replicas migrate with a strong
preference for the lowest temperature (as described above).
In this case, a very strong DRPE is required to achieve
sampling homogeneity. However, it has been demonstrated
that, as the energetic penalty of the DRPE becomes stronger,
replica mobility (as measured by acceptance ratio) de-
creases,'! and therefore some modification to the DR
exchange probability is necessary. This issue can be ad-
dressed by simply adding weight factors to the exchange
probability, analogous to the weight factors, f, in the DRUS
exchange probability:'?

) 1
P& &) =:n“n{e—maﬂ%§r4ﬂ¢&»—m—ﬁH«DRPa—DRP&H

(16)

This form of the exchange probability results in good
replica mobility and nearly perfect sampling homogeneity
of the reaction coordinate.'® The efficiency and practical
advantages of DR in other coordinates have been well
established."' '3 It is therefore a central objective of this
study to develop and test an implementation of DR which
functions optimally in temperature space.

Simulated Tempering Distributed Replica Sampling
(STDR). Building on the success of the both the ST
method** and DR sampling,'' ~'** we have developed a
new algorithm, STDR, which combines the two approaches.
STDR is essentially DR implemented rigorously in temper-
ature. The combination of these two methods was originally
suggested when DR was developed.'' In STDR, approxi-
mately homogeneous sampling of a set of temperatures is
enforced. The probability of accepting a move from a
temperature 7; to a neighboring temperature 7; is

) 1
p(T,—T) = mln{e—(/i_,v—ﬁ,v)E+(a,-—a,-)—(DRPE,-—DRPE,)

7)

This is the same as the exchange probability from ST, with
the addition of the difference in DRPE between the states
for which the replica is at temperature 7; (DRPE;) and
temperature 7; (DRPE;). The calculation of the DRPE is
straightforward. Its functional form depends upon the current
temperatures of all replicas as follows:'?

M M
DRPE = Cl Z 2 [(lm,linear - in,linear) - w(m - n)]z +

m=1 n=1
M M 2
) Z j’m,linear - w z m (18)
m=1 m=1

Replicas are labeled by indices m and n, where M is the
number of replicas. The values of A, jimear refer to a linearly
spaced temperature coordinate. In this coordinate, the lowest
temperature has A, jinear = 1, and the highest temperature has
Amlinear €qual to the number of temperatures. This procedure
transforms the exponentially spaced temperatures into a
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uniformly spaced coordinate. The factor w, which we
introduce to the DRPE in this work, is the ratio of the number
of temperatures to the number of replicas. This factor allows
DR to be used with an arbitrary number of replicas. The
first term in eq 18 introduces an energetic penalty for two
replicas sampling the same temperature, while the second
term introduces a penalty for an overall drift of the replicas
toward high or low temperatures. The second term is not
essential when using DR in temperature. The constants c)
and ¢, control the influence of the DRPE and can be tuned
to enforce homogeneous temperature sampling as required."’
In the case of accurate weight factors, the influence of the
DRPE only needs to be small such that values of ¢; and c;
near zero can be used. With increasingly inaccurate weight
factors, larger DRPE values are required to maintain
homogeneous temperature sampling, and this reduces the
acceptance ratio to some degree. An example calculation of
the DRPE using the temperature as the reaction coordinate
is provided as Supporting Information.

If the weight factors, a,, are inaccurate, ST results in
uneven sampling of the temperature coordinate. As we will
demonstrate, introducing the DRPE recovers homogeneous
sampling. The STDR method is therefore more generally
applicable than ST because it can make use of a poor estimate
of the dimensionless Helmholtz free energies and still yield
uniform sampling of the canonical ensembles at each
temperature. STDR is equivalent to ST in the limit of one
replica and is compatible with adaptive schemes for comput-
ing weight factors. Below, we show that STDR is the
preferred method for systems with a complex energy
landscape for which limitations on computational resources
preclude obtaining sufficiently accurate estimates of Helm-
holtz free energies for a ST simulation.

Test System. For the purpose of comparing different
generalized-ensemble methods, we use two related test
systems, the peptides GVGVPGVG and (GVPGV);. These
peptides are both based on the pentapeptide GVPGV, which
is found as a repeat motif in the protein elastin.>' In our
previous study of (GVPGV); and other related elastin-like
peptides, we observed that this peptide is intrinsically
disordered, having many conformations and no extended
secondary structure in the form of a-helices or S-sheets.>
Understanding the structural heterogeneity of elastin-like
peptides is required to elucidate the structure—function
relationship of elastin, for which experimental characteriza-
tion is notoriously difficult due to its flexibility and insolubil-
ity. The peptide GVGVPGVG has also been studied previ-
ously and was suggested to exhibit an “inverse temperature
transition” with an increased probability of “closed” con-
formations (in which the N and C termini are closer than 8
A) at higher temperatures.>® On the basis of this work, the
octamer is a simple yet appropriate peptide to study in the
aim of understanding the temperature-dependent behavior
of elastin. Because the main focus of this paper is the
thorough comparison of generalized-ensemble methods using
these peptides as test systems, we do not elaborate fully on
the structural details of either the octapeptide or the 35-
residue peptide in this paper. A full characterization of the
conformational landscape of these peptides will be the subject
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Figure 1. Conformational landscape and hydrogen-bonding
contact map of GVGVPGVG. (A) A selection of 35 random
conformations from the STDR simulation at 280 K, with glycine
in red, valine in yellow, and proline in blue. (B) Hydrogen-
bonding contact map at 280 K, with corresponding snapshots
showing the presence of significantly populated contacts. N—H
groups are on the horizontal axis, and C=0O groups are on
the vertical axis. Each square in the matrix (i,j) corresponds
to a contact between the N—H group of residue jand the C=0
group of residue j. The color scheme of the legend indicates
the relationship between color and probability of contact
formation.

of future work. Both GVGVPGVG and (GVPGV), are
valuable test systems because of their structural complexity
and the fact that they represent a real scientific problem in
the sense that they are not well understood or characterized
a priori. Simple test systems are often used for comparison
purposes, such as alanine dipeptide,'*'? although general-
ized-ensemble methods are typically applied to systems
which are much larger and more complex. While simple test
systems are useful for the sake of demonstration and for the
elucidation of major problems, they are less likely to detect
the subtleties and practical issues experienced when studying
systems of biologically relevant complexity.

The conformational landscape of the octapeptide is
complex, with many energetically accessible states that must
be sampled in order to accurately compute free energies. A
representative selection of these conformations is shown in
Figure 1A, with “closed” states in which the N and C termini
are in close proximity, “hairpin”-like states, and extended
structures. Although it is a short peptide, GVGVPGVG
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represents a challenging sampling problem due to the large
number of thermally accessible conformations. In Figure 1B,
we show the hydrogen-bonding contact map for this peptide
obtained using STDR. The only secondary structure consists
of hydrogen-bonded turns, with no o-helix or $-sheet. The
most populated turn is the VPGV f turn, with a hydrogen
bond between the C=0 group of valine 4 and the N—H
group of valine 7. Several other turns form with lower
populations. As we will show, single-temperature MD, if run
for a sufficiently long time, provides a converged description
of the conformational landscape. This makes it an ideal test
system because we can verify that the generalized-ensemble
algorithms, given sufficient sampling, lead to correct Boltz-
mann-weighted sampling of conformational space, in addition
to an assessment of their relative efficiency.

The 35-residue peptide, (GVPGV),, is used as a more
complex test system to demonstrate the sampling enhance-
ment provided by STDR for a landscape which not only has
many populated states but also has significant energetic
barriers between those states. The larger system is only
simulated using constant temperature MD, ST, and STDR
because of the extensive amount of computational resources
required. Of the methods we consider, STDR is better suited
to this particular application on the basis of its performance
for the octapeptide. It is as efficient and accurate as the other
methods, while offering the most practical advantages for a
large and complex system (see below).

Simulation Details. For all five methods (ST, STDR,
SREM, RE, and VREX), the same exponentially spaced
temperature list was used. This list is provided as Supporting
Information Table S1. The simulation system consists of the
GVGVPGVG octapeptide, capped with an acetyl group at
the N terminus and an NH, group at the C terminus, in a 3
x 3 x 3 nm3 box with 872 water molecules. The same fully
extended starting structure was used for all temperatures and
all methods. Simulations were performed using the GRO-
MACS MD simulation package, version 3.3.1,>*°> with the
OPLS-AA/L force field*>”’ for the solute and the TIP3P
model for water.’® Periodic boundary conditions were
applied. The switch function of GROMACS was used for
Lennard-Jones interactions, which corresponds to the usual
Lennard-Jones function until 1.3 nm is reached, after which
it is switched to reach zero at 1.4 nm. Covalent bonds
involving hydrogen atoms were constrained with the SHAKE
algorithm.>® Calculations of electrostatic forces utilized the
particle mesh Ewald summation method®*®' with a Fourier
spacing of 0.15 nm and a fourth-order interpolation. The real-
space Coulombic cutoff was 1.49 nm. All MD simulations
were performed in the canonical ensemble. Peptide and
solvent were coupled to the same reference temperature bath
with a time constant of 2 ps using the Nosé—Hoover
method.®*®* An integration step size of 2 fs was used, and
coordinates were stored every 1 ps.

In order to compare the generalized-ensemble methods,
the simulations were conducted as similarly as possible.
To this end, the same total amount of simulation time
(summed over all replicas) was performed. This amount
was 4.75 us, with an average of approximately 144 ns
per replica. This time was used because it was sufficient
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for all methods to achieve statistical convergence, as
shown in the results. Stochastic exchanges using the
Metropolis Monte Carlo algorithm® were attempted every
25 ps. Exchange probabilities were calculated using eqs
6, 8,9, 10, and 17, as appropriate for the method. Details
of the calculation of weight factors and PEDFs are
discussed below. The constants ¢; and ¢, for the DRPE
in eq 18 were both 0.005. These values were found to
achieve an appropriate balance between homogeneity of
temperature sampling and replica mobility.'' The value
of the factor w was 1.0, since the number of replicas
equaled the number of temperatures. The generalized-
ensemble algorithms were implemented using an in-house
bash script. Software for distributed replica sampling is
also available online at www.pomeslab.com.

The same simulation protocol was used for the simulation
of (GVPGV),, which was simulated in a 4.5 x 4.5 x 4.5
nm® box with 2856 water molecules using both ST and
STDR. Starting conformations and weight factors for each
temperature were generated using canonical MD for 15 ns
per temperature (storing 250 energy values per picosecond).
A total of 70 temperatures were used for each generalized-
ensemble simulation. The list of temperatures is provided
in Supporting Information Table S1. Temperatures were
spaced more closely than those of the octapeptide. This is
because it is a larger system, resulting in less overlap between
potential energy distributions of adjacent temperatures for a
given temperature separation. This system was simulated for
a total of 8.2 us (117.6 ns per replica on average) using the
STDR algorithm. An ST simulation using the same weight
factors was also performed for 420 ns (6 ns per replica
on average). ST and STDR simulations were also per-
formed using weight factors calculated using the first 500
ps of continuous MD at each temperature for a total of
280 ns.

A conventional MD simulation of the 35-residue peptide
system in the isothermal—isobaric ensemble was also
performed using GROMACS, version 4.0.2.%° In this simula-
tion, a 4 fs time step was used, and constraints on bonds
and angles involving hydrogen were imposed using the
LINCS algorithm.®® This simulation was run for 200 ns at
261 K, which corresponds to the lowest temperature in the
STDR simulation. The pressure was kept constant at 1.0 bar
using the Parrinello—Rahman algorithm.®”

The analysis of the data accumulated in the trajectories
was performed using an in-house script based on a modified
version of the Dictionary of Secondary Structure in Proteins
(DSSP).® For each snapshot, possible backbone hydrogen
bonds were evaluated using both (a) the energetic criterion
of DSSP and (b) the following geometric criteria: (i)
donor—acceptor and hydrogen-acceptor distances are less
than 3.5 and 2.5 A, respectively, and (ii) the value of the
acceptor—donor-hydrogen angle is less than 60°. Definitions
of turns and bends are the same as those in DSSP.®® End-
to-end distance (EED) is calculated as the distance between
the o carbons of the first and last residue. Root mean square
deviation (rmsd) was calculated using the g_rms program
in GROMACS.® All molecular visualizations in the manu-
script were produced using VMD.%
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Calculations of Weight Factors for ST and STDR,
PEDFs for SREM, and Potential Energy Lists for
VREX. The calculation of weight factors for eqs 6 and 17
required initial simulations of the octapeptide in the canonical
ensemble for each of the temperatures listed in Supporting
Information Table S1. These simulations were performed
using conventional MD for 19.5 ns (for a total simulation
time of 643.5 ns). Although obtaining these accurate weight
factors was resource-intensive, it involved a straightforward
procedure. The weight factors were computed using the
average potential energy at each temperature according to
eq 7.>° The accuracy of these weight factors was assessed
by using them in an ST simulation and observing the
temperature sampling uniformity, as shown in the results.
Since all temperatures were sampled with nearly equal
probability, as expected from eqs 3 and 5 for accurate
dimensionless Helmholtz free energies, these weight factors
were deemed to be sufficiently converged and correct.

Using the same data from the conventional MD simula-
tions, PEDFs were computed as described in the original
SREM paper.'® The convergence of the PEDFs was assessed
by calculating the x> measure suggested by Hagen et al.:'”

Nbins

Xz(t) = 2 (Pz(t) - Pi,reference)2 (19)

n=1

This measure computes the deviation of each bin in the
current distribution, P,(f), from a reference distribution,
P reference- The current distribution is cumulative, using the
data up to time f. For the reference distributions, we used
PEDFs computed using all of the data at each temperature.
By this assessment, the PEDFs appeared to be stationary, as
shown in Figure 2A. When x? was plotted individually for
each temperature, we also observed that each PEDF was
stationary. However, an initial SREM simulation using these
PEDFs resulted in nonuniform sampling of temperatures. We
therefore proceeded to calculate the PEDFs using a different
data set. We used the first 25 ns at each temperature of the
RE simulation (for a total time of 825 ns), and these were
the PEDFs used for the SREM simulation. While this
procedure is similar to what would likely be done in practice
with SREM, we emphasize that making this selection of
PEDFs gave SREM somewhat of an advantage over ST,
since more data were used in the initial simulation. The use
of RE in the calculation of PEDFs is similar to REST.?***
Although REST results in faster convergence of the weight
factors compared to conventional MD, it may be difficult or
impossible to obtain access to the required number of
homogeneous and dedicated CPUs for the initial RE simula-
tion. Thus, we did not use REST to obtain the weight factors
for ST to better represent the general case where it may not
be convenient to do so. In contrast, it was necessary to use
RE to obtain PEDFs for SREM in a reasonable amount of
time.

Figure 2B shows the error in the exchange probability for
both SREM and ST using the data from 19.5 ns of
conventional MD at each temperature. The method for
computing the error in exchange probabilities is provided in
Appendix 1. The weight factors of ST produce an average
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Figure 2. Assessing convergence of weight factors and PEDFs. (A) The convergence of the PEDFs for SREM is quantified
using the ¥ measure defined in eq 19. Using this measure, the PEDFs obtained using 19.5 ns of conventional MD at each
temperature appear to be stationary. (B) Convergence of the PEDFs and weight factors using data from 19.5 ns of conventional
MD per temperature, using the data from the complete RE simulation as a reference. (C) Similarly, data from the RE simulation,
using only the first 25 ns per temperature, with the data from the complete RE simulation as a reference. (D) Similarly, using all
of the data from the RE simulation (4.75 us). Error in the acceptance ratio is shown in B, C, and D for both ST in yellow (computed
using eqgs 25 and 29) and SREM in purple (computed using eqgs 24 and 27).

error in the exchange probability of less than 2% after 19.5
ns per temperature. Using the same amount of data, the
PEDFs produce a significantly higher error in the exchange
probability (more than 5%), which is why the weight factors
used in ST from conventional MD produced more homo-
geneous sampling than the PEDFs. In Figure 2C, the error
in the exchange probability for both ST and SREM is shown
using the data from the first 25 ns at each temperature of
RE. This data set was used to calculate the PEDFs for the
SREM simulation, producing an error in the exchange
probability of less than 4%. The convergence of the PEDFs
estimated using all of the data from RE is shown in Figure
2D. The error in the exchange probability had only decreased
to less than 2% after approximately 60 ns per temperature.
That is, SREM would have required preliminary simulations
which were half as computationally expensive as the entire
RE simulation in order to produce error in the exchange
probability equivalent to that of ST. The slow convergence
of PEDFs is likely why they have been updated throughout

the course of the simulation in other studies.'%!'**’ However,
an SREM simulation is strictly correct only with accurate
PEDFs.'*

Figure 2 demonstrates that the error in the weight factors
of ST leads to smaller error in the exchange probability than
the error in the average energy of PEDFs. This finding is in
qualitative agreement with a previous study comparing
SREM and ST for a helical peptide.'* The PEDFs of SREM
were observed to converge more slowly than the weight
factors of ST when starting from a coil conformation, but
not when both ST and SREM were started with a helical
conformation.'* In the original SREM paper, it was hypoth-
esized, but not shown, that the calculation of PEDFs should
be significantly easier than the calculation of weight factors
for ST.'® In fact, we observe that the opposite is true for
this system. The weight factors converge significantly faster
than PEDFs and lead to more homogeneous sampling of the
temperature. The difference in errors is likely because the
exchange probability in ST uses a difference in dimensionless
free energies, whereas the absolute value of the potential


http://pubs.acs.org/action/showImage?doi=10.1021/ct900302n&iName=master.img-002.jpg&w=494&h=364

Generalized-Ensemble Methods

energy is used in the exchange probability of SREM.
Additionally, the method for computing the weight factors
uses only the average potential energy at each temperature.30
It is harder to converge a distribution of potential energies
than the average of the distribution. Since weight factors are
computed using average potential energies, they converge
more quickly than PEDFs. The accuracy of the potential
energy value selected from the discrete PEDF in SREM is
also affected by the number of bins and the bin width.'® The
accuracy is decreased by having too few bins, whereas the
convergence of the distribution is slower with a larger
number of bins. These errors must therefore be balanced.
Even if the PEDFs and weight factors converged at the same
rate, ST has the advantage of convenience, since it entails
storing a short list of weight factors rather than a distribution
of energy values for each temperature.

We also tested the effects of using a poor estimate of the
weight factors in ST. In order to generate suboptimal weight
factors, we used the data from the first 750 ps of the RE
simulation. This required a total of 24.75 ns summed over
all temperatures, compared to 643.5 ns used to generate
accurate weight factors. These weight factors produced
inhomogeneous sampling of the temperature, confirming that
they were inaccurate estimates of the dimensionless Helm-
holtz free energies (as is demonstrated in the results below).
The purpose of this exercise was to emulate the more general
case of a complex system for which one may not be able to
accurately calculate weight factors due to the prohibitive
computational cost. ST and STDR simulations carried out
with these inaccurate weight factors will hereafter be referred
to as STb and STDRD, respectively.

Potential energy lists for the VREX simulation were also
generated using the RE data. A list of 1000 energy values
from the first 1 ns was used for each temperature. We did
not run out of potential energy values in the primary lists
and therefore no secondary lists were used. However,
secondary potential energy lists may be necessary in the
application of this method to other systems. In summary,
we highlight the varying costs of the initial simulations for
each of the methods in terms of the simulations times: RE
(0 ns), VREX (33 ns), SREM (825 ns), STDR (643.5 ns),
STDRD (24.75 ns), ST (643.5 ns), and STb (24.75 ns).

Results and Discussion

Practical Implementation Issues. Before we begin a
detailed comparison of the efficiency of the temperature-
based generalized-ensemble methods, we briefly compare
them with regard to the practical issues encountered in their
implementation. A summary of this comparative discussion
is provided in Table 1. Prior to beginning an enhanced
sampling simulation, it is necessary to assess the available
computational resources, including the number of processors
available, the heterogeneity of their speeds, and their failure
rate (frequency of “crashes”).

In terms of the number of CPUs required, the RE algorithm
specifies that the number of replicas equal the number of
temperatures, which grows with system size. In the typical
implementation of RE, the number of processors equals the
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Table 1. Practical Advantages and Disadvantages of
Generalized-Ensemble Algorithms®

Implementation Issue RE SREM | VREX | STDR | ST

Scalable to any number of CPU's (even one
cPU)?

Algorithm readily accommodates a fluctuating
number of CPU's?

Efficiency impaired by inhomogeneity of CPU's?

Performance severely affected by CPU failure?

Initial calculation of weight factors, potential
energy distribution functions or potential
energy lists required?

Initial simulation times (ns) o 825 i3 543-5] ‘:ﬂi
[STDR;
24.75 ‘2435
o) S

21f a method is not affected by an implementation issue, the
corresponding square is colored in green. Yellow indicates that the
issue is somewhat of a concern, and red indicates that it is
potentially a major pitfall. The only major issues for SREM and ST
are the calculation of PEDFs and weight factors, respectively.
STDR and VREX are not severely affected by any implementation
issue. However, they do require very short initial simulations to
obtain weight factors and potential energy lists and, ideally, would
not be run with only one replica. RE, in its typical implementation
in which each replica is run on a dedicated CPU, is hindered by all
of the issues listed, except that it does not require any initial
simulation.

number of replicas. If it is not possible to obtain access to
the required number of processors, an alternative method or
a more advanced RE implementation must be sought.
Another possible scenario is that extra processors are
available, which could be utilized to speed up the calculation,
but the RE algorithm does not allow the possibility of having
more replicas than temperatures. This particular issue is
addressed by the MREM algorithm, which utilizes multiple
layers of replicas.”> However, there is no general mechanism
to adapt RE to use available resources most efficiently. In
contrast, both ST and SREM completely eliminate the need
for a specific number of replicas. Multiple ST or SREM
simulations can be run independently to take advantage of a
computing cluster or distributed computing. The benefit of
utilizing several processors simultaneously, each running an
independent ST or SREM simulation, is simply reaching
convergence more quickly in terms of wall clock time.
Similarly, STDR and VREX algorithms do not require a fixed
number of replicas. However, the aim of the DRPE is to
enforce homogeneous sampling of temperatures for multiple
replicas. Using only one replica is therefore not optimal, and
ideally one would use a number of replicas comparable to
the number of temperatures, though there is no specific
requirement. A VREX simulation can in principle have any
number of replicas. However, there is likely some benefit to
having multiple replicas sampling different regions of
conformational space in the updating of the potential energy
lists (that is, running more than one replica at a time).

Of the generalized-ensemble methods we consider, only RE
prevents the number of replicas from fluctuating during the
course of the simulation. This may be a drawback in distributed
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computing platforms and shared computing clusters, for which
there is no way to predict the number of available processors
in advance. Furthermore, the efficiency of RE is significantly
affected by inhomogeneity of CPU speeds. Each exchange step
can only occur when all of the replicas have completed their
MD calculation. Any inhomogeneity in the computing environ-
ment results in a waste of computational resources, as some
replicas must wait for the replica with the slowest processor to
finish its calculation. This issue has been partly addressed by
the asynchronous replica exchange method, although some
degree of synchronization is still required for the replicas
undergoing exchange.*® Since none of the other methods require
any direct communication between replicas, they do not suffer
from this inefficiency. Another key drawback of the typical
implementation of RE is its sensitivity to CPU failure.'*'" If
one of the replicas is running on a processor that crashes, the
entire RE simulation is stalled until this replica can be restarted
on a functioning processor. The time wasted due to CPU failure
depends on the failure rate of the cluster and can be quite
significant. Failure rates also rise with the number of replicas,
and therefore the failure rate of RE is equal to the number of
replicas times the failure rate of either SREM or ST."°

In contrast to RE, the other four methods all have the
advantage of not requiring a fixed and synchronized cluster
of CPUs to function optimally. From a practical point of
view, these methods are all superior to RE, except in one
regard. Only RE does not require initial simulations at
multiple temperatures to obtain weight factors, PEDFs, or
potential energy lists. In particular, ST and SREM appear
to only be suited to systems for which accurate weight factors
or PEDFs can be calculated in a reasonable amount of
simulation time. For the test system in the present study,
accurate weight factors for ST were computed using single-
temperature MD, whereas SREM required more simulation
time and the use of RE in order to obtain sufficiently accurate
PEDFs (see methods section). We will demonstrate that
STDR can function with less accurate weight factors and
therefore requires less initial simulation time than ST. Finally,
VREX requires significantly less initial simulation than
SREM, STDR, or ST. Only short lists of potential energies
at each temperature are needed to begin a VREX simulation.

An ideal temperature-based generalized-ensemble method
would not require a significant initial simulation (as do ST
and SREM) but also would not involve the use of a large
cluster of homogeneous CPUs (as is common for RE). STDR
and VREX address both of these issues, and are the most
flexible algorithms in terms of practical concerns. These
issues are particularly important if one is using a distributed
computing platform with fluctuating numbers of heteroge-
neous CPUs in many different locations, or a shared
computing cluster, which may present similar limitations.

Diffusion in Temperature. We characterize the efficiency
of the temperature diffusion of each method using several
different metrics, which are summarized in Table 2. First,
we calculate the average acceptance ratio, which is a metric
commonly reported for RE simulations.”” The methods
separate into two categories based on their acceptance ratios:
the RE-based methods (RE, VREX, and SREM) and the ST-
based methods (ST, STb, STDR, and STDRb). ST has a
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Table 2. Evaluating Temperature Diffusion

Property RE VREX | SREM | STDR | STDRb 5T STh
Acceptance Ratio 0237 | 0241 | 0248 | 0378 | D376 | 0463 | 0408

7 6 5 3 a 1 2
Replica Speed 0058 | 0.050 | 0.051 | 0.058 | 0.059 | 0.065 | 0.065
(distance/time)

4 o 3 4 3 1 T
Mean Free Path D322 | 0245 | 0.255 | 0402 | D402 | D431 | 0445

5 T 6 3 3 2 %
Diffusion Coefficient 0208 | 0181 | 0156 | 0.195 | 0195 | 0.246 | 0249

3 L] i 5 & & 1
Average Deviation from ] 6.62 12.61 2.50 2.98 381 17.40
Sampling Homogeneity
(%) 1 5 6 2 3 4 7
Composite Score 0.79 0.70 0.68 0.87 D.88 0.98 0.94
{a normalized linear

5 6 7 4 3 1 2

combination)
.

The quality of the random walk in temperature for each
generalized-ensemble method is assessed using five criteria, and
an overall score is obtained by taking the normalized linear
combination. Normalization is performed by dividing each value by
the maximum value of that measure. The fifth measure was
included in the normalized linear combination as 1.0 — (average
deviation from sampling homogeneity)/100% for consistency with
the other measures of temperature diffusion. The overall scores
for each property are ranked from 1 to 7, representing decreasing
performance. Scores are colored as follows: 1 and 2 (green), 3—5
(yellow), and 6 and 7 (red).

higher acceptance ratio than RE for the same set of
temperatures, in agreement with a previous comparison
of the methods.*® Similarly, ST has a higher acceptance ratio
than SREM.'* Zhang and Ma also observed that the rate
of traversing temperatures is faster in ST, and that this effect
becomes especially apparent if separations between adjacent
temperatures are large, or if exchanges are attempted less
frequently.*” Park proved that this is generally true for a
given set of temperatures®’ and concluded with a question
as to whether the enhanced acceptance ratio affects the rate
of sampling different microstates, and therefore structural
convergence. We investigate whether the higher acceptance
ratios in serial tempering algorithms (both ST and STDR)
compared to those in parallel tempering (RE, VREX, and
SREM) do in fact lead to faster structural convergence in
the next section. It should be noted that the DRPE in STDR
decreases the acceptance ratio relative to ST, since it
increases the probability of rejecting moves that result in
inhomogeneous temperature sampling. The extent of this
effect depends on the constants ¢; and ¢, in eq 18."!

Next, we consider a quantity which we call “replica
speed”. Back exchanges can occur in which a replica accepts
a move to an adjacent temperature and at the next exchange
returns to its previous position. These back exchanges
contribute to the acceptance ratio, but they result in no net
change in temperature, and typically no crossing of signifi-
cant energetic barriers. In order to account for these
“unproductive” moves, we calculate the replica speed as the
average distance traveled after 50 exchange attempts. Values
of replica speed are reported in Table 2. All of the methods
have similar values for the replica speed, with SREM and
VREX being slightly slower. The higher acceptance ratios
of the ST-based methods do not correspond to significantly
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faster replica speeds. That is to say, the higher acceptance
ratios for the ST-based methods are partly due to an increased
frequency of unproductive moves.

Making an analogy with the replicas traveling in temper-
ature space as a type of diffusion in a one-dimensional
coordinate, we calculate the mean free path and diffusion
coefficient for each method. Mean free path is defined as
the average distance traveled between successive rejected
moves (“collisions”). The diffusion coefficient is defined as
the rate of change of the mean squared deviation of distance
over time. We notice that ST, both with accurate and
inaccurate weight factors, has the highest mean free path
and diffusion coefficient. Both STDR simulations behave
remarkably similarly and are slightly slower at diffusion in
temperature compared to ST. RE has a higher diffusion
coefficient than STDR, but a lower mean free path. It is also
slightly more efficient at temperature diffusion than VREX
or SREM.

Another important criterion is the deviation from sampling
homogeneity, which indicates the amount of deviation from
uniform sampling averaged over all of the temperatures:

— (NI
average deviation from homogeneity = 1 2 < Ny
m 1

(20)

where the number of samples at temperature m is N, the
average number of samples per temperature is (N,,), and M
is the number of temperatures. We report the deviation from
sampling homogeneity for each temperature in Supporting
Information Figure S1. The coupling of upward and down-
ward moves in the RE algorithm results in perfectly uniform
sampling of all temperatures. STDR produces nearly uniform
sampling, with deviations from uniformity of 2.50% and
2.98% for accurate (STDR) and inaccurate (STDRb) weight
factors, respectively. This is expected because the application
of the DRPE favors uniform sampling of the temperature
coordinate.'' Even with inaccurate weight factors, the
temperature sampling is still uniform, and the diffusion
coefficient is still approximately the same. This indicates that
STDR in the general case (i.e., with inaccurate weight
factors) still successfully produces uniform sampling and
good mobility in temperature. Our ST simulation also results
in nearly uniform sampling, confirming the accuracy of the
weight factors. ST with inaccurate weight factors (STb)
produces the least uniform sampling, by design (17.40%).
We intentionally selected weight factors to produce uneven
sampling to represent a more complex system for which
calculating weight factors accurately would be computation-
ally expensive. VREX produces relatively uniform sampling,
with an average deviation of 6.62%. Most of the inhomo-
geneous sampling in VREX occurs early in the simulation
when the potential energy lists were based on a small amount
of sampling, and the sampling is increasingly homogeneous
with time. In contrast, SREM does not produce uniform
sampling, with less sampling at the lowest temperatures and
an average deviation of 12.61%.

Temperature sampling efficiency is characterized by an
overall score. The five measures of efficiency defined in this
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Figure 3. Assessing the accuracy of the EED distribution.
The EED probability distribution is shown for each method
with colors indicated in the legend using data from 280 K.
The average distribution is computed as the average of all
seven methods and is shown in purple (dashed line). The error
of the distribution of each generalized-ensemble algorithm,
Oeeds 1S Shown next to the legend and was computed using
eq 21 with the average distribution as the reference.

section are combined by averaging their normalized values.
The overall score for each method is reported in the last row
of Table 2. ST with accurate weight factors performs the
best overall, and all of the ST-based methods perform better
than the RE-based methods (especially SREM, which has
the lowest overall temperature diffusion score).

Convergence of Structural Properties. The octamer
GVGVPGVG is a disordered peptide with many thermally
accessible conformations, as shown in Figure 1. A useful
descriptor of the conformation of such a short and flexible
peptide is the end-to-end distance, EED. The EED probability
distributions obtained using each of the generalized-ensemble
methods at 280 K (the lowest temperature) are shown in
Figure 3. Also shown is the average distribution, which is
obtained by taking the average of all of the methods. There
is no systematic bias of either ST-based or RE-based methods
toward sampling particular conformations. For example, for
the peak at 5 A, RE, STDRb, and SREM are above the
average while STDR, VREX, and STb are below. On the
basis of this observation and of the large amount of sampling
in the combined data set of all seven methods (nearly 35
us), we take the average to be the “gold standard” for
comparison throughout the analysis of structural convergence
(it is hereafter referred to as the “reference”). We quantify
the deviation 0.4, of the EED distribution of each method
P..q(n), from the reference EED distribution Peed reference(72),
by computing

Nbins

Oeed = 2, (Peg(m) —

n=1

Peed,reference(n))2 (2 1 )

where the index n labels bins, and there are Ny, in total.
The values of 0. are reported in Figure 3. STDR exhib-
its the best agreement with the average distribution. In
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Figure 4. EED distributions at different temperatures. The EED probability distributions are shown for the lowest 10 temperatures
for each generalized-ensemble method, as well as the average of all seven methods. The average error of the distributions of
each generalized-ensemble algorithm, o, is also shown. This was computed for each of the 10 temperatures using eq 21 with
the average distribution as the reference, and the average of these errors is shown on each plot. The RE-based methods are
shown in the top row and have larger errors than the ST-based methods, shown in the second and third rows. The average over

all methods is shown in the central plot.

general, the ST-based methods have lower values for Ogcq,
corresponding to more accurate EED distributions than the
RE-based methods.

In order to confirm that the ST-based methods produce
more accurate EED distributions when compared to the RE-
based methods, EED distributions for the lowest 10 tem-
peratures for each generalized-ensemble method are also
computed and compared to the reference using eq 21. The
EED distributions for each method and each temperature are
displayed in Figure 4, along with the 0.q value which is the
average of the 10 temperatures. The ST-based methods
produce EED distributions which are quantitatively more
accurate than the RE-based methods at all temperatures.
STDR shows the best overall agreement with the reference
data set, with an average O.q value of only 0.006, and
distributions which clearly show the same temperature trend
as the reference distributions.

For a systematic comparison of the generalized-ensemble
methods, the convergence of several structural properties in

addition to the EED distribution is considered. A useful
ergodic measure is the 1,4 pair distance metric,”""”* which
quantifies the convergence of the distance between 1,4
residue pairs (residues with indices i and i + 3) over time.
We extend this metric to include all residue pairs and
therefore quantify the convergence of the o-carbon distance
matrix as follows:

Nresidues Nresidues

_ - - 2
ddCamatrix(t) - (N z (7 ij([) - rij,reference)

— |
residues 1) =1 =1

1
(22)

where the indices i and j correspond to residue number and
the number of residues iS Nysiques: The difference between
each average pairwise distance r; and the same average
pairwise distance from the reference a-carbon distance matrix
(7jreference) 18 computed. In this equation, ¢ refers to simulation
time accumulated at the temperature considered, and r;(t) is
a cumulative average. As with EED, the average of all seven
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Figure 5. Assessing structural convergence using multiple criteria. The data for A, B, and C are from ST at 280 K. The trajectory
is separated into 50 time intervals, and the quantities reported are calculated cumulatively. Time intervals are used to compare
all methods fairly, since each method results in a different amount of sampling time at the lowest temperature. (A) Structural
convergence is assessed USing Oeed (€9 21), deontactmap (€9 23), and dycamatrix (€q 22, plotted on the secondary axis). (B) The
probability per residue of a y-turn, -turn, and a-turn are shown, as well as the population of the VPGV S-turn. The probability
of a hydrogen bond per residue and a bend per residue (plotted on the secondary axis) are also shown. (C) For each of the
structural properties shown in A and B, the time intervals at which they reached and remained within one and two standard
deviations of the reference data set are shown. The average of these times is also shown, corresponding to the average structural
convergence time, (t.). One standard deviation is calculated on the basis of the values of each of the seven generalized-
ensemble methods at the end of the simulation and their standard deviation from the reference value. (D) The average structural
convergence times for one and two standard deviations are shown for all seven methods at 280 K in yellow and purple,
respectively. These times are provided for temperatures 288, 296, 305, 314, 323, and 332 K in Supporting Information

Figure S2.

generalized-ensemble methods is used as the reference. We
compute an analogous measure of convergence for the
hydrogen-bonding contact map, depicted in Figure 1b:

Nresidues Nresidues

z (Plfi(t) - P zfi,referenv:e)2

residues =1 J=1

d 1

contaclmap(t ) = 2

(23)

where Pj; is the probability of a hydrogen bond forming
between the C=O0 group of residue i and the N—H group of
residue j, and Py(?) is a cumulative average of all of the data.
The elements of the reference contact map, P eferences are
computed using the data from all seven methods. We also
directly compute the probability of forming certain turns (y,
B, and a turns, defined by hydrogen bonds between residues
iand i + 2,7+ 3, and i + 4, respectively) as well as the
VPGV fS-turn (shown in Figure 1, the most probable turn).
In addition, the average probabilities of forming a hydrogen

bond and a “bend” (as defined in the DSSP algorithm®®) on
a per-residue basis are computed. The convergence of each
of these structural properties is considered individually and
compared to the reference data. Taken as a set, these
structural properties provide a detailed description of the
octapeptide’s complex conformational ensemble.

A representative example of how these structural properties
measure convergence is shown in Figure 5 for ST at 280 K.
The convergence of the o-carbon distance matrix, the
hydrogen-bonding contact map, and the EED distribution are
displayed in Figure 5A. The cumulative averages for the
different types of turns, as well as hydrogen bonds and bends,
are shown in Figure 5B. It is apparent from both of these
plots that selecting a particular time at which the simulation
has converged is ambiguous. Each structural property appears
converged at a slightly different time. This ambiguity
highlights the importance of considering multiple metrics
when discussing the convergence of a simulation. In order
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to define convergence quantitatively, we consider the time
taken to reach the reference value of the structural property
of interest and remain within both one and two standard
deviations, shown in Figure 5C. Taking the average of these
times provides a composite measure of when structural
convergence is reached, and this average is a “structural
convergence time”, t,.. By comparing to the reference data,
both convergence and accuracy are simultaneously assessed.
The time at which each structural metric reaches the reference
value is significantly different. For example, the EED
distribution reaches the reference distribution faster than any
of the other structural metrics, while the population of o-turns
requires nearly the entire ST simulation to reach the reference
value to within one standard deviation. The structural
convergence times are provided in Figure 5D for each of
the generalized-ensemble methods at 280 K. At this tem-
perature, STDR converges fastest to the reference data,
closely followed by ST and STDRb.

For a systematic ranking of the structural convergence
times, 7 is also calculated for the lowest seven temperatures.
These times are provided in Supporting Information Figure
S2. While STDR converges faster than the other methods at
280 K, this is not a general trend for all temperatures. Each
temperature has a different 7, for each method. The ranking
of the methods varies between temperatures. For example,
at 305 K, RE reaches convergence faster than STDR. This
highlights the importance of evaluating more than the lowest
temperature when comparing the performance of the meth-
ods, in addition to considering several structural metrics. It
also suggests a way of quantifying the error in the measure-
ment of #,.. An average structural convergence time, (f.),
for each method is obtained by averaging #,. for the lowest
seven temperatures, for both one and two standard deviations.
The error in () is then the standard error of these
measurements. Figure 6A shows a two-dimensional plot of
(t) to within two standard deviations versus {f,.) to within
one standard deviation. Lower values for (z..) indicate faster
structural convergence. A clear trend emerges: ST-based
methods reach structural convergence more quickly than RE-
based methods. The method that reaches convergence the
fastest is ST with accurate weight factors, while the method
slowest to converge is SREM. It is not possible to conclu-
sively rank the other methods due to error in {z,.). However,
it is important to note that both VREX and RE converge
faster than SREM. VREX is therefore not only a more
convenient method for removing the synchronization from
the RE algorithm than SREM, but is also faster at confor-
mational sampling.

We can now answer a key question: does faster diffusion
in temperature lead to a corresponding speedup in confor-
mational sampling? Figure 6B demonstrates that this is in
fact the case. The combined average structural convergence
time, obtained by taking the sum of (t.) for one and two
standard deviations, is plotted versus the composite temper-
ature diffusion score from Table 2. The ST-based methods,
which have higher acceptance ratios and diffusion coef-
ficients, also exhibit faster structural convergence. This key
observation indicates that, in general, it is preferable to use
a ST-based method because it provides enhanced efficiency
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Figure 6. Correlation between structural convergence and
temperature diffusion. (A) Average structural convergence
times, (fs), obtained using the lowest seven temperatures are
shown. The () to reach two standard deviations is plotted
against the (&) to reach one standard deviation for each
method. Error bars represent the standard error of () for
the seven temperatures. Another version of this plot is
provided as Supporting Information Figure S3, with the ()
for each temperature shown. (B) The (t) times for one and
two standard deviations from A are added together to create
a structural convergence score, which is plotted against the
temperature diffusion score from Table 2 for each method. A
correlation is observed between structural convergence and
temperature diffusion. ST-based methods (in yellow) have
superior temperature diffusion, which leads to faster structural
convergence compared to RE-based methods (in purple).

in terms of conformational sampling. ST with accurate weight
factors is clearly superior in both temperature diffusion and
structural convergence, while SREM is the least efficient
method in terms of both of these metrics. In the case of a
simple system for which weight factors can be obtained
accurately with relatively little computational expense, ST
is the method of choice. In the case of a more complex
system for which sufficiently accurate weight factors might
be expensive to obtain, the best choice would be to compute
an initial estimate for the weight factors and use ST or STDR
(corresponding to STb and STDRD here). Using the octapep-
tide as a test system, it is not possible to conclude which of
these options is preferable. Inaccurate weight factors for this
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system yield comparable temperature diffusion and structural
convergence for both STb and STDRb. To investigate this
issue further, a more complex system, (GVPGV),, is also
studied below.

Finally, another important question is whether inaccurate
weight factors or PEDFs still lead to accurate, Boltzmann-
weighted sampling at each temperature. It has been suggested
that simulations with incorrect weight factors still yield
correct statistics, only with suboptimal sampling of the
temperature.* Analysis of the effect of suboptimal Helmholtz
free energies on the accuracy of the data demonstrates that
the resulting conformational populations are not biased by
the use of inaccurate free energies (Figures 3 and 6a). Both
ST and STDR with inaccurate weight factors (STb and
STDRD) converge to the reference data set, which indicates
that they achieve accurate, Boltzmann-weighted conforma-
tional sampling. Figure 6A shows that, even with inaccurate
PEDFs, SREM still leads to Boltzmann-weighted sampling
of conformational space (within one standard deviation) for
this system. However, it converges more slowly than RE
and all of the other generalized-ensemble algorithms con-
sidered in this study.

It has been pointed out that SREM is not rigorously correct
when employing PEDFs that are not representative of the
potential energies sampled during the simulation.'®'* In other
words, SREM is correct only when stationary potential
energy distributions are used, which may in the general case
require adaptation of the PEDFs. In contrast, VREX is
inherently adaptive due to the update of the potential energy
lists. All RE-based methods, including VREX and SREM,
require an initial equilibration phase to reach stationary
potential energy distributions. Quasi-nonergodicity due to
finite run length is a potential issue for any of the generalized-
ensemble algorithms but is most significant for SREM.
Systematic error associated with selecting potential energies
from unrepresentative conformations can be minimized in
VREX by maintaining short, frequently updated potential
energy lists. Reducing the size of the potential energy list in
the VREX approach decreases the equilibration lag. Both
VREX and RE use recent potential energy values for
attempted moves. In addition, another inherent advantage of
VREX over SREM is that, in VREX, potential energy values
utilized in the virtual temperature transitions are drawn from
the same ensemble as those utilized in the evaluation of
actual transitions, albeit with a stochastic time delay.

Comparison of STDR and Conventional MD. The
relative sampling enhancement of RE compared to conven-
tional MD has been the subject of significant controversy.?’
For example, one study found that RE produced a speedup
of 71.5 times at 275 K for a 21-residue helical peptide with
implicit solvent, based on the autocorrelation function of
helicity.]9 In another work, an RE simulation of met-
enkephalin in explicit solvent sampled 5 times more con-
formational space than a conventional MD simulation of the
same duration.'® It has also been shown analytically that the
expected speedup of RE is directly related to the activation
enthalpy for two-state protein folding. The efficiency of RE
is optimal when the maximum temperature is chosen just
slightly above the temperature at which the folding activation
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enthalpy is zero.” There are several key issues that emerge
when reviewing comparative studies of RE and conventional
MD. First, the observed sampling enhancement, or lack
thereof, is heavily system-dependent, as well as dependent
on the structural or thermodynamic parameter on which the
comparison is based. Second, an evaluation of convergence
for either the RE simulation or the MD simulation is often
neglected. Comparisons of other generalized-ensemble meth-
ods, including ST and SREM, and conventional MD have
also been performed.'*

Here, we attempt to provide a rigorous comparison
between STDR and conventional MD for the octapeptide
(Figure 7). Figure 7A and B show a superposition of 200
structures obtained using STDR and MD, respectively, at
280 K. The amount of simulation time is the same for both
methods (144 ns for conventional MD and 144 ns in total
for all temperatures for STDR, corresponding to 4.4 ns at
280 K). The root-mean-square deviations (rmsd) of these two
collections of structures, 3.52 A for STDR and 3.88 A for
conventional MD, are comparable. By this measure, both
STDR and conventional MD produce a similar amount of
conformational sampling using the same amount of CPU
time.

We also show the convergence of the structural properties
described in the previous section for both STDR (in Figure
8C and E) and conventional MD (in Figure 7D and F). STDR
converges more quickly, approximately by a factor of 2—3
at 280 K. However, given that STDR requires sampling 33
temperatures for the same amount of time, it is much less
computationally efficient. Specifically, the STDR simulation
was 4.75 us, compared to 200 ns for conventional MD.
Overall, for this particular system, there is no computational
advantage in using STDR over conventional MD when the
total cost of simulating all temperatures is considered.

However, in the present case, we are interested in the
conformational ensemble at both low and high temperatures
because of the predicted temperature transition of the
octapeptide GVGVPGVG.>*"*"* It is therefore still beneficial
to use STDR because it enhances sampling at the individual
temperatures. It is of key importance to note that we only
know that conventional MD is able to satisfactorily reproduce
the conformational ensemble of the octamer by simulta-
neously using generalized-ensemble algorithms. It is only
by comparing to STDR, as well as the combined data set of
all the generalized-ensemble methods, that we are able to
verify the convergence of the conventional MD simulation.
Pseudoconvergence can be observed for a structural ensemble
generated by conventional MD which is energetically
trapped.'? In this way, it is possible to achieve convergence
without simultaneously achieving accuracy. Using a general-
ized-ensemble method and allowing a random walk in
temperature allows the system to overcome energetic barriers.
Without knowledge of the energy landscape of the system
of interest, it is hard to predict the expected sampling
enhancement of a generalized-ensemble method. Similarly,
it is hard to assess the accuracy of an apparently converged
value, which is also expected to depend on the topology of
the energy landscape.
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Figure 7. Comparing STDR and conventional MD for GVGVPGVG. (A) A total of 200 structures in ribbon representation obtained
using the first 4.4 ns at 280 K for STDR are shown, and (B) for 144 ns of conventional MD, along with the corresponding rmsd.
Glycine is in purple, proline is in yellow, and valine is in gray. C and D Show geeq (€9 21), Ocontactmap (€0 23), and dicomarix (€9 22,
plotted on the secondary axis) for STDR and conventional MD, respectively. The trajectories are separated into 50 time intervals,
and the quantities reported are calculated cumulatively, as in Figure 5. E and F show the probability per residue of a y-turn,
p-turn, and a-turn, as well as the population of the VPGV S-turn. The probabilities of observing an intramolecular hydrogen bond
per residue and a bend per residue (plotted on the secondary axis) are also shown.

Choosing Between ST and STDR. For relatively small
and simple systems, such as the octapeptide used in this study
or a short polyalanine peptide in water,’ the calculation of
dimensionless Helmholtz free energies is possible, although
computationally intensive. For these cases, ST is an ideal
method, since it alleviates the need for communication
between processors in parallel tempering and the subsequent
waste of computational resources. However, calculation of
the Helmholtz free energies increases in difficulty as system
size and complexity increase. When the system is sufficiently
large and complex, as is often the case for biomolecular
systems of interest, limited computational resources may
preclude the calculation of sufficiently accurate weight
factors. That is, it is only possible to obtain dimensionless
Helmbholtz free energies which result in an acceptable level

of sampling uniformity with very extensive initial simula-
tions. Even with near optimal weight factors updated
throughout the simulation, Park and Pande still observed an
average deviation from sampling homogeneity of 4.9% for
a short peptide (calculated on the basis of the data in Table
1 of ref 30).%° With very inaccurate weight factors, sampling
of temperatures may be far from uniform. That is, there may
be too little sampling at certain temperatures to obtain a
reasonable estimate of the weight factors to facilitate
adaptation. ST may therefore not be an appropriate method,
even with adaptation of the weight factors throughout the
simulation. This may be the case for many biomolecular
systems of interest, which are larger than the small peptides
or peptides in implicit solvent commonly used to test
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Figure 8. Deviation from sampling homogeneity for the ST
simulation of (GVPGV);. For each temperature, the devia-
tion from sampling homogeneity is computed as %deviation
from homogeneity = (N — (Np)/{Nm) x 100%, where N, is
the number of samples at temperature T, and (N, is the
average number of samples per temperature. The ST simula-
tion used the same weight factors as the STDR simulation,
with 6 ns of sampling per replica (each started at a different
temperature), for a total of 420 ns of simulation. A decrease
in sampling between 410 and 460 K results in poor mobility
of the replicas between high and low temperatures in the ST
simulation.

generalized-ensemble methods. We now describe a complex
system for which STDR is better suited than ST.

In addition to studying the octapeptide, GVGVPGVG, we
also studied a longer peptide based on the same motif,
(GVPGYV);. Accurate weight factors for this system could
not be obtained using a reasonable investment of computa-
tional resources (15 ns per temperature for 70 temperatures,
for a total of 1.05 us). Even with this large amount of data,
the sampling of temperature in a ST simulation using these
weight factors is heterogeneous. The average deviation from
sampling homogeneity is 21.3% (computed using eq 20). In
contrast, when STDR and the same weight factors are used,
the average deviation from sampling homogeneity is only
3.4%. In Figure 8, the deviation from sampling homogeneity
at each temperature is shown for both ST and STDR. In the
ST simulation, sampling in the middle of the temperature
range is less than that at both low and high temperatures,
deviating from homogeneity by more than 60%. Since it is
unfavorable in this case to sample intermediate temperatures,
diffusion from high to low temperatures is impeded. In
particular, the ST simulation using these weight factors
experiences 56% fewer transitions between 417 and 454 K
compared to the STDR simulation using the same weight
factors. The sampling barrier in the intermediate temperature
range impedes the random walk. The application of the
DRPE results in a slight decrease of the acceptance ratio
from 0.43 in the ST simulation to 0.38 in the STDR
simulation. Importantly, the average replica speed in STDR
is higher than that of the ST simulation (0.058 and 0.053
for STDR and ST, respectively). This indicates that replicas
are able to efficiently explore temperature in the STDR
simulation. In this case, the addition of the DRPE does not
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significantly impair replica mobility and allows nearly
uniform sampling of all temperatures. It is therefore a more
suitable method than ST for this particular system.

We performed another comparison between ST and STDR
using weight factors obtained with only 500 ps of canonical
MD at each temperature. These weight factors are more
inaccurate than those based on 15 ns of simulation at each
temperature, leading to an average sampling inhomogeneity
of 96.88% in a ST simulation. By applying the DRPE in a
STDR simulation, the average sampling inhomogeneity is
reduced to 8.84%. The acceptance ratio for the STDR
simulation with these inaccurate weight factors is 0.38. This
is exactly the same as the acceptance ratio of the STDR
simulation using the weight factors based on 15 ns at each
temperature. This observation is in agreement with the results
of the STDR and STDRb simulations of the octapeptide. As
shown in Table 2, both STDR and STDRb simulations
exhibit nearly identical temperature diffusion coefficients,
acceptance ratios, and mean free paths. Importantly, the
results for both the octapeptide and the 35-residue peptide
demonstrate that replica mobility in STDR simulations is
not significantly affected by inaccuracy of the weight factors.
Further, more accurate weight factors do not improve
temperature diffusion, or corresponding structural conver-
gence. Thus, we recommend that, when the STDR algorithm
is used, the computational investment for the initial calcula-
tion of weight factors should be minimized.

Performance of STDR for More Complex Systems. To
compare STDR with conventional MD, we also performed
a MD simulation at the lowest temperature of the STDR
simulation (261 K). A superposition of 200 structures,
obtained every 1 ns from a 200 ns trajectory generated using
conventional MD at 261 K, is shown in Figure 9A. These
structures have an average rmsd of 1.66 A, indicating that
the peptide is trapped in one conformational basin and
undergoes only small conformational changes. This set of
structures contrasts with the set of 200 randomly selected
structures from the complete STDR simulation at 261 K
(Figure 9B), which represents completely different confor-
mations with an average rmsd of 8.40 A. For clarity, we
also show six example structures in Figure 9D to demonstrate
the variety of conformations observed in the STDR simula-
tion. To make a more direct comparison between conven-
tional MD and STDR, Figure 9C shows 200 structures from
STDR using the same amount of simulation time as the
conventional MD simulation (200 ns summed over all of
the temperatures, corresponding to approximately 3 ns at 261
K). Finally, the radius of gyration distributions for conven-
tional MD, STDR, and the first 3 ns of STDR are shown in
Figure 9E. Both distributions from STDR show several
conformational states, while the conventional MD simulation
is trapped in one state. Even when using the same amount
of computational resources, STDR produces a more hetero-
geneous ensemble of conformations.

Figure 10 displays hydrogen-bonding contact maps at 261
K for STDR, STDR with 3 ns of sampling, and conventional
MD. STDR produces a conformational ensemble in which
many contacts are formed with low probability. In contrast,
conventional MD generates a contact map with only a few
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Figure 9. Comparing STDR and conventional MD for (GVPGV)7. A total of 200 structures in ribbon representation along with
their rmsd are shown for (A) the conventional MD simulation of length 200 ns at 261 K, (B) for the STDR simulation at 261 K
using all of the data (120 ns at this temperature), (C) and for the STDR simulation at 261 K using the first 3 ns (this is the same
simulation time summed over all replicas as A). Glycine is in purple, proline is in yellow, and valine is in gray. (D) A selection
of six example structures is shown from the structures in B to illustrate the structural diversity obtained using STDR. (E) Probability

distributions of the radius of gyration.

contacts, some of which are formed for nearly the entire
simulation. The contact maps are shown with two different
vertical scales to emphasize this point. If only the conven-
tional MD simulation had been performed, a completely
different understanding of the conformational landscape
would have emerged. Single-temperature MD severely
underestimates the heterogeneity of the conformational
landscape and exhibits both pseudoconvergence and quasi-
nonergodicity. Even when using the same amount of simula-
tion time as MD, the contact map from STDR has more
contacts, none of which has a probability of more than 30%.

It is not possible to quantitatively measure the speedup of
STDR versus conventional MD for this system because
limited computational resources preclude performing con-
ventional MD simulations for the time required to achieve
structural convergence. We observe that conventional MD
is trapped in one conformational basin for 200 ns. It is not
possible to accurately predict how long it would take to
sample all relevant states and reach convergence. Qualita-
tively, we observe a dramatic sampling enhancement due to
STDR. Using the same amount of computational resources,
STDR generates more unique conformations for this peptide.

This indicates that the random walk in temperature does in
fact lead to enhanced sampling, establishing the efficacy of
the STDR method for a complex polypeptide.

Before sampling the complete energy landscape of a
system of interest, there is no way to confidently predict the
height of the energy barriers, or the number of energetically
stable conformations (local minima of the energy surface).
By coupling to simulations at higher temperatures, high
energetic barriers can be overcome. However, if one is not
simultaneously interested in the behavior of the system at
multiple temperatures, it may be less computationally
expensive to run very long simulations, or a collection of
simulations, at a single temperature.”> In the present study,
conventional MD successfully produced the conformational
ensemble of the octapeptide but resulted in quasi-nonergod-
icity for the 35-residue peptide. In order to truly “enhance
sampling” relative to single-temperature MD simulations, an
enhanced sampling method must achieve convergence at a
rate which is greater than the product of the number of
replicas and the computer time for each replica.

The present study of (GVPGV); shows that it is possible
to observe pseudoconvergence using single-temperature MD
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Figure 10. Hydrogen-bonding contact maps from STDR and
conventional MD. Hydrogen-bonding contact maps are de-
picted as three-dimensional maps, where peak height repre-
sents the probability of contact formation. These plots are
shown on two scales. On the left, the scale has a maximum
of 0.8, and on the right, 0.01, for clarity in showing the contacts
formed with low probability. A and B, the STDR simulation at
261 K using all of the data (120 ns at this temperature). C
and D, the STDR simulation using the first 3 ns (this is the
same simulation time summed over all replicas as E and F).
E and F, 200 ns of conventional MD. Some contacts are
formed over 80% of the time.

(that is, to observe convergence of a quantity of interest
without observing the true value of that quantity, Boltzmann-
weighted by the populations of all possible conformations).
Long-time MD simulations do not yield the appropriate
conformational distribution, and the system remains trapped
in a local minimum of the energy landscape. In contrast, we
observe that conventional MD is able to satisfactorily
reproduce the conformational ensemble of the octapeptide
at a significantly reduced computational cost compared to
using a generalized-ensemble method. In light of this
apparent contradiction, how are the averages of quantities
obtained using MD simulations to be interpreted? On the
basis of this work, it appears that using generalized-ensemble
algorithms is a more prudent approach, even if in some cases
it may be less efficient overall to do so (for increased
confidence in the accuracy of the data). Several other
examples have shown that the enhanced sampling provided
by generalized-ensemble methods provides convergence that
would not be feasible with single-temperature MD.%!%!8724
These observations underscore not only the need for en-
hanced sampling methods but also the shortcomings of
techniques such as block averaging over simulations initiated
in a single conformational basin in estimating the conver-
gence of results. The challenge in simulating complex
systems is that a priori one does not know the efficiency of
the generalized-ensemble approach relative to the “brute
force” MD approach. It may be advisible to use a general-
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ized-ensemble algorithm, especially if conformational sam-
pling, and not dynamic information, is sought.

Conclusions

We now return to the original question: given limited
computational resources, which generalized-ensemble algo-
rithm is most efficient at sampling a complex conformational
landscape? The first important distinction between methods
is the separation between those based on ST and those based
on RE. In this paper, we demonstrate that ST-based methods
result in both faster temperature diffusion and faster structural
convergence. They are therefore preferable to RE-based
methods. This is the most general conclusion of the paper.

Within the family of RE-based methods, the computational
efficiencies of the various algorithms are not equivalent.
SREM should only be applied to systems for which PEDFs
can be accurately obtained. Therefore, due to limited
computational resources, SREM can only be applied to
simple systems. Like SREM, RE is not well-suited to
complex systems because of the need to synchronize simula-
tions of a large number of replicas (and typically, a large
number of processors). Although there is no theoretical limit
on the number of replicas that one can use for a RE
simulation, it is generally difficult in practice to obtain access
to a large, dedicated, and homogeneous computing cluster.
Even if one does have access to such a computational
resource, the wasted CPU time may also increase sharply
with the number of replicas due to both CPU failure and
inhomogeneity in CPU speeds.

VREX represents an attractive alternative to RE since it
completely eliminates synchronization and communication
between replicas. It produces more homogeneous sampling
of temperature compared to SREM, with much less initial
simulation time. It is therefore preferable to both SREM and
RE. Since RE-based methods suffer from slower structural
convergence and temperature diffusion compared to ST-
based methods, it is preferable to use a ST-based method in
temperature. This disadvantage may become less significant
for complex systems. VREX may also be a more suitable
method in another reaction coordinate other than temperature,
for which weight factors are much more difficult to obtain.
Moreover, initial simulations for weight factor calculations
may also benefit from the use of VREX.

In the case of relatively simple systems for which weight
factors can be accurately calculated using minimal compu-
tational resources, ST is the most appropriate method. We
have shown that ST with accurate weight factors exhibits
the fastest temperature diffusion and, correspondingly, the
fastest structural convergence. However, for more complex
systems, for which weight factors are costly to compute,
STDR becomes the preferred method. Even with infinite
resources, a long initial simulation to compute weight factors
accurate enough to yield homogeneous sampling in ST may
not be the most efficient use of computational resources. The
feasibility of a ST simulation is determined by the accuracy
of the weight factors, which can only be assessed by actually
performing a ST simulation. Importantly, we have demon-
strated that STDR can make use of inaccurate weight factors
to achieve homogeneous sampling of temperature and
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consequently structural convergence. Replica mobility is only
slightly impeded by the DRPE. By contrast, ST with
inaccurate weight factors produces heterogeneous sampling
of temperatures, which is also an impediment to the random
walk in temperature. STDR is suitable for any computing
cluster or distributed computing environment, since it
requires no fixed number of CPUs or synchronization of
exchanges. Complex systems can therefore benefit from the
STDR method, which is increasingly advantageous as system
size and complexity grow.

Frequently Used Abbreviations

CPU, central processing unit; DR, distributed replica sam-
pling; DRPE, distributed replica potential energy; EED, end-
to-end distance; MD, molecular dynamics; RE, replica
exchange; SREM, serial replica exchange method; ST,
simulated tempering; STDR, simulated tempering distributed
replica sampling; VREX, virtual replica exchange.
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Appendix 1. Computing Error in Exchange
Probabilities for ST and SREM

The PEDFs of the octapeptide are nearly perfect Gaussian
distributions, as expected due to the large number of degrees
of freedom of the system and the central limit theorem.'*
Assuming that the PEDFs are Gaussian is in general a valid
assumption for biomolecular systems.”® As an estimate of
the error in the PEDFs, we considered the average deviation
of the average energy of each PEDF, (E,), from the average
energy of a reference PEDF, (E,)ieference, as follows:

Nlem S
1 p

OPEDFs = N z |<En> - <En>reference| (24)
temps p=1

where Niemps is the number of temperatures. For the reference
PEDFs, we used potential energy distribution functions
calculated on the basis of all of the data from the RE
simulation (a total of 4.75 us for all temperatures). We
computed the average error in the differences of weight
factors in an analogous way, also using the RE simulation
as reference data:

1 N(empsil
Oweighlfacl()rs = N —1 2 I(an+l - an) - (an+l - an)referencel
temps n=1

(25)
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The selection of the RE simulation as a reference was
made because it was the only generalized-ensemble method
that we tested that did not make use of any initial simulation.

In order to make a fair comparison between the errors in
the weight factors used in ST and the PEDFs used in SREM,
it is important to consider the error in not only the potential
energy distribution functions and dimensionless Helmholtz
free energies but also the error in the resulting exchange
probabilities. The error in the exchange probability of SREM
(eq 9) was computed as follows:

_ apij : — ~—(B—B)E—E;pepr)
Or, = O-E,:PF_DF -¢ : (ﬂj - ﬁi)OE-

i an,PEDF 'j,PEDF

(26)

We estimate this error by using the estimate for the error
in the PEDFs obtained in eq 24 and the average acceptance
ratio and average difference in inverse temperatures:

—(B—BNE~E;
OPg,weStimate = (e ErhiX "‘PEDF)Xﬁj B ﬁi>0PEDFs (27

Similarly, the error in the exchange probability for ST
(given by eq 6) is

0P, 2

= j _ B PIE—(a-a)

o, = — o, =V 4 g

Py \/ [(8(ai —a)) @ (@)

(28)

and this error is estimated using the average error in the
weight factor differences from eq 25 and the average
acceptance ratio:

(ﬁj_ﬂi)E_(aj_a[)>O-

weightfactors

UP/./.,eslimate = <C (29)

Supporting Information Available: Supplementary
table (S1), supplementary figures (S1—S3), and an example
calculation of the DRPE are provided. This material is
available free of charge via the Internet at http://pubs.acs.org.
Distributed Replica Sampling software is available online
at www.pomeslab.com.
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