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Abstract

Nanoparticles are promising drug delivery systems whose selection and optimization can be gainfully conducted by theoretical methods.
This review is targeted to experimentalists who are interested in enhancing their time and cost efficiency through the incorporation of
theoretical approaches. This review thus begins with a brief overview of theoretical approaches available to the development of contem-
porary drug delivery systems. Approaches include solubility parameters, Flory-Huggins theory, analytical predictions of partition coeffi-
cients, and molecular simulations. These methods are then compared as they relate to the optimization of drug-material pairs using important
performance-related parameters including the size of the delivery particles, their surface properties, and the compatibility of the materials
with the drug to be sequestered. Next, this review explores contemporary efforts to optimize a selection of existing nanoparticle platforms,
including nanoemulsions, linear and star-shaped block co-polymer micelles, and dendrimers. The review concludes with an outlook on the
challenges remaining in the successful application of these theoretical methods to the development of new drug formulations.
© 2011 Elsevier Inc. All rights reserved.
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Nanoparticles for drug delivery

It is estimated that 40% of the small molecules that are
considered to be new drug candidates are hydrophobic in
nature.1 Full exploitation of the therapeutic potential of these
drugs relies on their solubilization in nontoxic, biocompatible,
and/or biodegradable formulations that protect the drugs during
transportation and release them at the target tissue.2
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The last few decades have produced an astounding number
of nanoparticles; systems comprising particles with at least one
dimension between 1 and 100 nm.2-6 Nanoparticles share this
size range with many biologically relevant molecules,3 and bio-
medical applications abound.5 Among these, nanoparticles com-
posed of organic molecules are capable of modifying the
apparent physicochemical properties of sequestered compounds.
For example, drugs encapsulated by some nanoparticles exhibit
enhanced aqueous solubility7,8 and can be targeted to diseased
tissue, improving the drug's therapeutic index.9

For a given application, the most appropriate nanoparticle
delivery platform is rarely obvious.10 Further, within each plat-
form, nanoparticles must be optimized to achieve the desired
properties.11 Some of these properties are predictable by theo-
retical approaches, which can be employed to accelerate
development efforts.12 Important performance-related physico-
chemical parameters of drug delivery systems include the com-
patibility between the drug and the materials of the delivery
system, and the surface properties and size of the particles.13,14

Optimization of the compatibility between the drug and the
al approaches to the rational design of nanoemulsions, polymeric micelles,
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Figure 1. Nanoparticle platforms that have been investigated using molecular simulations. (A) Nanoemulsions with an oily hydrophobic core and hydrophilic
surfactant corona. (B) Linear or star-shaped block co-polymer micelles composed of hydrophobic and hydrophilic blocks. The ends of the hydrophobic blocks
are covalently bonded for the star-shaped block co-polymer micelles. (C) Dendrimers with a hydrophobic core and hydrophilic peripheries. (D) Liposomes
(not covered in this review) have a lipid bilayer that forms a hydrophobic domain for solubilizing hydrophobic drugs, and an inner aqueous volume for
solubilizing hydrophilic drugs. Stealth liposomes are further coated with PEG. In the above platforms (A-D) the hydrophobic environment (pink) serves as cargo
space for lipophilic solutes, and the hydrophilic components (blue), often composed of PEG, protect the core from the external environment.
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solubilizing media can significantly improve drug loading, drug
retention, and thereby the chemical stability of the fomulation.7,8

Additionally, the surface properties of the delivery system
influence its stability during storage and following in vivo
administration.15

This review focuses predominantly on theoretical approaches
for predicting the physicochemical properties of a small group
of nanoparticles including nanoemulsions, polymeric micelles,
and dendrimers (Figure 1). In many cases, the techniques that
we review are equally applicable to other nanoparticle plat-
forms. We also briefly highlight the relationships between
the physicochemical properties of nanoparticles and their bio-
logical performance.
Theoretical approaches to developing nanoparticles

Theory has been used to complement experiment in the
development of effector molecules such as drugs.12,16,17

Although it remains viable to experimentally prepare and
separately evaluate a variety of drug formulations, this is costly
and time-consuming.10 Further, material optimization involves
significantly more possibilities, and the number of full factorial
combinations quickly becomes unfeasibly large for experimental
methods.18 More fundamentally, experimental studies of novel
drug formulations do not disclose the molecular basis for their
performance (e.g., the reason why the drug precipitates), and
hence do not indicate possible avenues by which they may be
improved. In contrast, theoretical methods are capable of
identifying the molecular basis of drug formulation
inadequacies,16,19 and systematic theoretical studies may suggest
fruitful avenues for material modification.12,16,20

A variety of computational methods exist to predict phy-
sicochemical properties including the solubility and lipophilicity
of small molecules21,22 and structural properties of formula-
tion materials.20,23-25 These theoretical approaches can be
broadly divided into two categories: analytical models and
molecular simulations.

Analytical models represent presumptive relationships in a
convenient mathematical form and are parameterized to reproduce
experimental data.26-28 There are, for example, a variety of
theories that apply a group contribution method to sum structure-
based molecular descriptors over predefined fragments of a
complex molecule. These methods are widely used because they
predict relevant physicochemical properties, such as
lipophilicity22 and solubility parameters (SPs)21,29,30 very quickly
(overnight for thousands of compounds using computerized
automation). Applications include predicting which drug-material
pairs will perform optimally as a formulation based on the theo-
retical cohesive energy of the compounds,21 or predicting the
loading and/or retention of drug in the formulation.22

Conversely, physics-based models generate predictions
from first principles, or approximations thereof.26-28,31 The
simplest of these are closed-form approximations that have
analytical solutions. These are, however, unavailable for
molecules of interest to pharmaceutical formulation because of
the complex nature of their conformational and chemical
properties. In their place, one may usemolecular simulations32,33

to solve n-body problems based on the application of statistical
mechanics to quantum- or molecular-mechanics force fields.
Molecular simulations may be conducted via Monte Carlo (MC)
or molecular dynamics (MD) approaches. MC simulations em-
ploy a stochastic algorithm to accept or reject arbitrary configu-
rational moves by evaluating the change in potential energy,
whereas MD simulations numerically integrate the differential
equations of motion to generate a time trajectory.32,33 These
simulations can provide quantitative measurements at the ato-
mistic level that are difficult to obtain experimentally.20,23,34 This
review discusses studies that apply MC35-37 and MD20,23,38-40

simulations to characterize the structural and dynamic properties
of nanoparticles and their cargo. For example, simulations can
estimate the loading by predicting the compatibility between the
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drug and delivery materials.20,21,35,41,42 Simulations can be applied
to correlate drug release19,38,43,44 with kinetic properties such as
diffusion,19,43 and thermodynamic properties such as composition,20

orientational preferences, and free volumes.37,39,45

Overall, the utility of analytical models and molecular simu-
lation will be discussed throughout this review. In general,
analytical models are excellent tools to rapidly eliminate material
combinations that are unlikely to be miscible and thus enrich the
probability of compatibility within the remaining materials
(library enrichment). These methods are often quantitatively
wrong, however, and are most useful as preliminary tools to
reduce the number of evaluations to be conducted with expe-
rimental or more time-consuming theoretical approaches, such as
molecular simulations.
Identifying optimal drug-material pairs

During formulation development, promising drug-material
pairs can be rapidly identified by predicting the strength of
drug-material interactions through the estimation of physico-
chemical parameters such as solubility, lipophilicity, and
chemical compatibility.

Solubility and solubility parameters

The aqueous solubility of a drug strongly influences its
biological activity and can be predicted using various
computational models.46 Solubility is a measure of the
maximum amount of solute that forms a homogeneous solution
with a specified solvent under equilibrium conditions.47 In
contrast, an SP31,48 is a scalar value that gives an indication of
the predicted miscibility of two components. Materials with
similar SPs are indicated to be miscible. SPs are useful for
rapidly ranking materials based on their predicted relative
abilities to solubilize a drug.

Hildebrand31 and Hansen49 approaches have been used to
calculate SPs, as shown in Eqs 1a and 1b, respectively, in
Table 1, and reviewed elsewhere.50 The Hildebrand SP is
related to molecular self-interaction energies and is defined as
the square root of the energy of vaporization of a compound per
unit volume in the amorphous state (i.e., in the absence of
crystallization) (Eq 1a).31,48 The Hansen SP is based on partial
energies of cohesion, dissected into a sum of dispersion,
dipolar, and hydrogen-bonding components (Eq 1b).49

Two compounds with similar patterns of polar and
hydrogen-bonding interactions are predicted to be compatible
when the difference in Hildebrand SPs is b1.8 cal1/2·cm-3/2 (or
3.7 MPa).49 However, for compounds with dissimilar patterns
of polar and hydrogen-bonding interactions, the difference in
Hildebrand SPs below which two compounds are predicted to
be compatible can be 1.5- or 2-fold larger,21,50,51 especially in
solid dispersions.52 Although the Hildebrand SP is useful for
predicting the miscibility of nonpolar materials and materials
with sufficiently similar coulombic interactions,31 it often
performs poorly as an indicator of miscibility for compounds
capable of forming hydrogen bonds or salt bridges because
these orientation-dependent interactions are not necessarily
conserved in different solvents.53 In these cases, one can apply
the Hansen SP, which, although it requires more data and is
thus harder to determine than the Hildebrand SP,49 is useful
for predicting the miscibility of polar materials with the
potential to engage in hydrogen-bonding interactions.49 Com-
pounds are predicted to be compatible when the difference in
Hansen SPs is less than or equal to the Hansen SP sphere
radius (Eq 1c, Table 1).49

As an alternative to the direct evaluation of SPs using cutoffs,
as outlined above, both Hansen and Hildebrand SPs have been
used to predict enthalpies of mixing by accounting for
the volume fractions of components within a mixture.29,53,54

Hansen SPs and Hansen SP-based enthalpies of mixing have
been used to estimate the compatibility of materials for
polymer-lipid hybrid nanoparticles. Specifically, enthalpies
were predicted for mixing a drug-polymer complex (verapamil
HCl in dextran-sulfate-sodium) with 15 different lipids
including fatty acids, triglycerides, glycerol esters, and mixtures
of glycerol esters.51 Based on these calculations, dodecanoic
acid and monoglyceryl behenate were identified as the most
suitable components to solubilize the drug-polymer complex.51

Nine lipids were selected for experimental evaluation, and of
these, the apparent partition coefficient of the drug-polymer
complex between lipidlike substrates and the aqueous phase
was greatest for dodecanoic acid. However, the drug-polymer
complex had poor relative affinity for Compritol ATO 888
(Gattefossé Corp.), which is a mixture of glycerol esters with
15% of monoglyceryl behenate. Of the materials evaluated
experimentally, the top three predictions were reproduced in
rank order, although several of the materials predicted to be
more suitable (e.g., pure monoglyceryl behenate) were not
evaluated.51 Unfortunately, the relative utilities of SPs and
theoretical enthalpies of mixing for rank-ordering materials
remain unclear. Determination of the optimal theoretical
treatment requires that these methods be systematically
compared over a wide range of compounds.

In comparison to molecular simulation or experimental ap-
proaches, calculations of Hildebrand and Hansen SPs using
group contribution methods53 are fast, because they avoid
evaluation of different materials as a mixture (e.g., drug A in oil
B), as would be necessary in a direct evaluation of solubilities.
They are therefore well suited to rapidly eliminate materials that
are likely to be incompatible, thereby enriching the library of
materials under consideration in the early stages of formulation
development before application of more computationally and/or
experimentally expensive methods.22,29 SPs are, however,
based on the assumptions of regular solution theory for liquids
and do not take into account the effects of entropy and the free
volume of amorphous solids.50 Further, SPs do not account for
any dependencies on concentration, conformation, or unique
interactions between molecules that may be present in binary
mixtures. SPs are therefore sometimes inaccurate. Indeed,
studies have shown that SPs calculated based on group con-
tribution methods only provide accurate predictions when com-
paring materials that have similar chemical structures.21

Similarly, Lipinski postulated that prediction of the aqueous
solubility of druglike compounds is more successful with
neutral compounds and within a series of compounds with
similar chemical structures.1
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Flory-Huggins interaction parameter

The Flory-Huggins (FH) theory55-57 was established with the
intent to describe the thermodynamic behavior of nonidealized
polymer-solvent solutions. The FH interaction parameter, χFH,
is a dimensionless quantity that represents the interactions that
contribute to the enthalpy of mixing of a polymer and a solvent.
Compounds are predicted to be miscible when χFH is b0.5 (or
phase separated when χFH N0.5).55 Experimentally, χFH can be
determined from the enthalpy change associated with creation
of a binary mixture as shown in Eq 2a (Table 1).55 Theo-
retically, χFH can be obtained from MC58 and MD59 simulation,
as outlined in Eq 2b (Table 1), or using group contribution
implementations of Hildebrand and Hansen SPs, as outlined in
Eq 2c (Table 1),31,49,55 although the inaccuracies of these con-
centration (and possibly conformation and hetero-interaction)-
independent SPs are, in this case, propagated to χFH.

60 These
inaccuracies are important because many studies have shown
that the χFH varies as a function of the volume fraction of the
solute and solvent components in the mixtures.21,55,61 Impor-
tantly, the FH theory has recently been extended to predict the
miscibility of drugs and carrier materials.21,30,62

Recently, Dwan'Isa et al calculated χFH values from Hansen
SPs for drug-polymer pairs. This was a systematic study of 19
drugs and segments of two polymers: hydrophilic monomethoxy
PEG (MePEG), and a hydrophobic co-polymer of equimolar
randomly distributed poly(ɛ-caprolactone) and trimethylene
carbonate (PCL-co-TMC).30 The linear diblock co-polymer
MePEG-b-(PCL-co-TMC) can form micelles with an inner
hydrophobic PCL-co-TMC core and an outer hydrophilic
MePEG shell. To predict drug loading in these micelles, χFH

was separately evaluated for the drug with the hydrophobic PCL-
co-TMC and the hydrophilic MePEG. Rank order was then
determined based on the root-sum-squared value of these two
χFH values. Drug loading was evaluated experimentally for eight
hydrophobic drugs in MePEG-b-(PCL-co-TMC) micelles. The
aqueous solubilities of these drugs ranged from 0.01 mg/mL to
1 mg/mL. Rank-order agreement between theoretical predictions
and experimental results was obtained for the top three pre-
dictions of drug-loading capacity (3.7, 10.5, and 19.6 mg/mL for
indomethacin, cimetidine, and ketoprofen, respectively). These
three drugs were not the most hydrophobic drugs, indicating that
the χFH predictions were more useful than a simple hydropho-
bicity scale. Incorrect rank-ordering of the other five drugs can
be attributed to several factors including the ad hoc combined
theoretical score, conditions of the experimental study, and
limitations of the theory related to both drug rigidity and the
interfacial tension between molecules.30 Nevertheless, this
method appears to be a good initial step for library design and
material acquisition.

In another study, Mahmud et al calculated χFH values from
Hansen SPs for the anticancer drug cucurbitacin I and various
hydrophobic core-forming polymers including PCL, poly(α-
benzylcarboxylate-ɛ-caprolactone) (PBCL), and poly(α-choles-
teryl carboxylate-ɛ-caprolactone) (PChCL).62 Based on the
calculated χFH values, PChCL and PCL were identified as the
most and least suitable core-forming polymers, respectively.
This finding agreed well with the experimental molar loading
ratios of drug to core-forming repeat unit in the micelles,
which were 3%, 8%, and 15% in MePEO-b-PCL, MePEO-b-
PBCL, and MePEO-b-PChCL micelles, respectively.62 Never-
theless, MePEO-b-PBCL exhibited the best controlled release
of cucurbitacin I.62 Mahmud et al interpreted this in light of
the fact that more negative χFH values represent stronger
interactions and better compatibility between the drug and
material.62 Nevertheless, the release rate is a kinetic quantity,
and there is no a priori reason to assume that the release rate is
related to χFH, a thermodynamic indicator. Importantly, rates
of drug uptake and release can be rigorously derived from
molecular simulations.63

Although the FH model is useful, it is founded on some
assumptions that may lead to discrepancies between experi-
mental data and theoretical predictions of drug-material interac-
tion based on χFH.

55 Specifically, FH theory assumes that there
is a random distribution of polymer segments and that the
attraction between polymer and solvent is negligible, and thus
the volume of mixing will be unchanged upon mixing of
polymer and solvent.55 Further, FH theory does not account
for the molecular weight (MW) of polymers.55 There is thus a
need to improve and extend FH theory so as to more accurately
predict drug-material interactions.

Lipophilicity

Lipophilicity represents the affinity of a molecule for a lipidic
environment.64 Lipophilicity can be determined by measuring
the partition coefficient, P, which is the ratio of solute concen-
trations in binary phases of organic and aqueous solvents, such
as octanol and water, under equilibrium conditions.28 Because
the value P ranges widely, the lipophilicity of compounds is
represented as the logarithm of P, logP. In addition to the
aforementioned experimental evaluation, logP can be predicted
using a theoretical group contribution approach first intro-
duced by Rekker and Mannhold,28,65,66 which they termed the
fragmental method (Eq 3, Table 1). Detailed methods for
theoretical calculation of logP can be found in review articles by
Leo67 and Lipinski et al.26 Successful applications of Rekker
and Mannhold's equation for the theoretical calculation of logP
have been reported for various drugs65 and other small
molecules.68 Alternatively, logP can be predicted by summing
the single-atom contributions.69 Calculation of logP using an
atom contribution method is demonstrated in Table 2.

The value of logP is also related to hydrophobicity, a
phenomenon that drives the association of nonpolar groups or
molecules in an aqueous environment. The tendency of water to
exclude nonpolar molecules64 arises because nonpolar groups
cannot take part in hydrogen bonding with water. Although most
hydrophobic compounds are also lipophilic, there are com-
pounds such as fluorocarbons that are both hydrophobic (for the
aforementioned reasons) and lipophobic, because they cannot
take part in the strong dispersion forces among hydrocarbons.70

The weak dispersion forces associated with fluorocarbons are
attributed to the high electronegativity of fluorine, which reduces
the polarizability of the atom.70 Nevertheless, major components
of hydrophobicity and lipophilicity remain intertwined, and the
terms are often used interchangeably.



Table 1
Theoretical methods used for the calculation of physicochemical properties of compounds

Theoretical relations Component symbols Refs

Solubility parameter

dHIL =

ffiffiffiffiffiffiffiffiffi
Ecoh

V

r
=

ffiffiffiffiffiffiffiffiffiffi
CED

p
ð1aÞ

δHIL, Hildebrand solubility parameter 31,48

Ecoh, cohesive energy
V, total volume
CED, cohesive energy density

dHAN =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d + d2p + d2h

� �r
ð1bÞ

4 dd1−dd2ð Þ2 + dp1−dp2
� �2

+ dh1−dh2ð Þ2 V R2
o ð1cÞ

δHAN, Hansen solubility parameter
δd, partial dispersion component

49
δp, partial dipole-dipole component
δh, partial hydrogen-bonding component
Ro, radius of interaction sphere in Hansen space
1 or 2 – (subscript) indicates compound 1 or 2, respectively

d =

ffiffiffiffiffiffiffiffiffi
Ecoh

V

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Evac − Ebulkð ÞC

V

r
=

ffiffiffiffiffiffiffiffiffiffi
CED

p
ð1dÞ

δ, solubility parameter
Ecoh, cohesive energy
Evac, energy of molecule in vacuum state
Ebulk, energy of molecule in amorphous state 31

V, total volume
C, unit conversion factor
CED, cohesive energy density

Flory-Huggins interaction parameter

vFH =
DHmix

kTN1/2
ð2aÞ

χFH, Flory-Huggins interaction parameter
ΔHmix, enthalpy change upon creation of a binary mixture
k, Boltzmann constant.
T, absolute temperature 55

N1, number of molecules of solvent
ϕ2, volume fraction of polymer

vFH =
Vref /1CED1 + /2CED2 − CED12ð Þ

RT
ð2bÞ χFH – Flory-Huggins interaction parameter

Vref – molar volume of the smaller molecule in the binary mixture
ϕi – volume fraction of compound i in the binary mixture
CED – cohesive energy density 58,59

1 or 2 – (subscript) indicates compound 1 or 2, respectively

vFHc
VA12

RT
+ b ð2cÞ χFH – Flory-Huggins interaction parameter

A12 = (δ1 – δ2)
2 or A12 = (δd1 – δd2)

2 +
0.25(δp1 – δp2)

2 + 0.25(δh1 – δh2)
2

V – the molar volume of the solute

β = 0 or 0.34 when Hansen and Hildebrand
solubility parameters are used, respectively

R – gas constant
T – absolute temperature
δi – Hildebrand solubility parameter of compound i
δd – partial dispersion component (Hansen) 31,49,

55δp – partial dipole-dipole component (Hansen)
δh – partial hydrogen-bonding component (Hansen)
β – correction to the Flory combinatorial entropy
1 or 2 – (subscript) indicates compound 1 or 2, respectively

Enthalpy

DHmix = vFHRT/1/2

DHmix = H12 − n1H1 − n2H2
ð2dÞ

ΔHmix, enthalpy change upon creation of a binary mixture
χFH, Flory-Huggins interaction parameter
R, gas constant
T, absolute temperature
ϕ1, volume fraction of component i 53,

55-57n1, mole fraction of component i
H1, enthalpy of component i at pure-state
H12, enthalpy of mixture of component 1 and 2
1 or 2 – (subscript) indicates compound 1 or 2, respectively

Lipophilicity

log P =
Xn
i=1

aid fi +
XM
i=1

kid Cm ð3Þ
P, partition coefficient
n, functional groups of the molecule
fi, hydrophobic fragmental constant 28,65,66

ai, incidence of functional group
Cm, the Correction factor (CM = 0.219)
Ki, the frequency of Cm

Radius
Flory's theory:

Rg =
Rffiffiffi
6

p ; where : RcaNa ð4Þ

Rg, radius of gyration of linear polymer
R, end-to-end distance
a, bond length of monomer 55,79

N, degree of polymerization of polymer
α, swelling exponent

5L. Huynh et al / Nanomedicine: Nanotechnology, Biology, and Medicine xx (2011) xxx–xxx



Table 2
(A) Hildebrand and Hansen solubility parameters53 of tricaprylin and (B) logP calculation for tricaprylin with an atom contribution method69

(A) Calculation of Hildebrand and Hansen solubility parameters

dHIL =

ffiffiffiffiffiffiffiffiffiffiffiffiP
Ecoh

V

q

dHAN =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d + d2p + d2h

� �r

where dd =
P

F2
d

V ; dp =
ffiffiffiffiffiffiffiffiffiffiP

F2
pi

V

q
; dh =

ffiffiffiffiffiffiffiffiffiffiP
Eh

V

q

Fragments Frequency V (cm3 mol−1) Hansen solubility parameter53 Hildebrand solubility parameter53

Fd (J
1/2 cm3/2 mol−1) Fpi (J

1/2 cm3/2 mol−1) Eh (J mol−1) Ecoh (J mol−1)

CH3 3 100.5 1260 0 0 14,130
CH2 20 322 5400 0 0 98,800
CH 1 −1.0 80 0 0 3430
COO 3 54.0 1170 720,300 21,000 54,000

δp = 16.6351 δp = 1.78487 δh = 6.646 δHIL = 18.928 (J1/2 cm3/2 mol−1)
δHAN = 18.002 (J1/2 cm3/2 mol−1)

(B) Calculation of logP using atom contribution method

log P =
Pn
i

nian Where ni is number of atoms of type i, and ai is contribution of an atom of type i.

Type Description⁎ Frequency Hydrophobic contribution†

1 C in CH3-R 3 −1.8111
2 C in CH2-R2 18 −7.731
40 C in COO (R-C(= X)-X 3 0.0834
6 C in R-CH2-X 2 −1.6376
8 C in R2-CH-X 1 −0.5995
46 H attached to Csp3

0, having no × attached to next C‡ 39 16.5126
47 H attached to Csp3

1 5 1.805
51 H attached to α-C║ 6 1.1214
58 O in = O 3 −0.7419
60 O in Al-O-Ar, Ar2O, R…O…R, R-O-C = X 3 0.5814

logP = 7.5827

⁎ R represents any group linked through carbon; X represents any heteroatom (O, N, S, P, Se, and halogens); Al and Ar represent aliphatic and aromatic groups,
respectively; = represents double bond; represents triple bond; … represents aromatic single bonds.
† Atomic hydrophobicity in the unit of logPo/w.
‡ Subscripts represent hybridization, and superscripts represent formal oxidation numbers. The formal oxidation number of a carbon atom = sum of formal bond
orders with electronegative atoms.
║ An α-C can be defined as a C attached through a single bond with -C = X.
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Theoretical calculations of logP are valuable for rapid pre-
diction of lipophilicity. The fragmental65,66 or atom contribution69

approaches, however, may produce inaccurate logP values,
because they do not consider the conformation of the compound.67

Further, the polarity of a compound is not additive.67 Neverthe-
less, theoretical calculations of logP may be used for rapid
screening before time-consuming and expensive experimental
studies. Lipophilicity and hydrophobicity can also be used to
predict drug retention in a formulation22 or drug permeability
through a membrane.26

Architectural and conformational contributions to
drug-material compatibility

The efficient and stable encapsulation of hydrophobic com-
pounds into nanoparticles is governed not only by the solubilities
of drugs and materials22,38,42 but also by other physical
properties. These properties include rigidity, conformation, and
the MW of the drug and the materials.34 As an alternative to
analytical methods, molecular simulations provide ensemble
representations of biomaterials from which one can extract
properties such as size, conformation,20 and the interfacial struc-
ture of drug-material or material-material pairs.45,71 Molecular
simulation can reveal the fundamental interactions governing
drug-polymer assembly, elucidating the physical and chemical
features that can be modified to influence drug loading or
release.35,38,43

Interestingly, Hildebrand SPs can be evaluated from simu-
lation (Eq 1d, Table 1).21,25,31 To our knowledge, the Hansen SP
has not been calculated from molecular simulations. A unique
aspect of molecular simulation is that it can explicitly evaluate
the conformations of the components, both individually and as
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a binary mixture. It is, then, not surprising that SPs based on
simulations have been more accurate than those obtained
analytically.21 A simulation study has shown that the relative
solubilities predicted from MD simulations of docetaxel, an
anticancer drug, in various excipients (triglycerides, vitamin E,
and β-caryophyllene) were in good agreement with experimen-
tally determined values.21 In that study, the intermolecular inter-
actions between drug and excipient were taken into account
explicitly for the calculation of χFH based on the energy of
mixing obtained from simulation as shown in Eq 2c (Table 1).
The deviations of the predicted and experimental solubilities of
docetaxel in good excipients (various triglycerides and vitamin
E) were between 2% and 15%. Although the simulation method
was unable to accurately predict the solubility of docetaxel in
the poor excipient β-caryophyllene, where the prediction was
quantitatively incorrect, the rank order of all solubility pre-
dictions was correct. The inaccuracy of the predicted solubility
of docetaxel in β-caryophyllene in this study is probably due to
the assumption that the mixing ratio of the drug and excipient
at χFH = 0.5 can be converted to the maximum solubility for
the solute.21 Nevertheless, the ability to rank-order candidate
materials is sufficient for library enrichment. Interestingly, the
disparity between the SP values obtained from simulation and
group contribution methods increases with MW, indicating that
the dependence of solubility on conformation and molecular
orientation increases with size.21

Recently, Pajula et al used MC simulations to predict the χFH

values for binary mixtures of 34 small drug molecules.72

Temperature-dependent χFH values were generated based on
potential energies calculated from many configurations of
interacting drug pairs. Drug pairs were predicted to be miscible
and immiscible for negative and positive χFH values, respec-
tively. Predictions for 27 drug pairs were validated by hot-stage
polarized light microscopy, assuming that a binary mixture is
thermodynamically miscible when it does not crystallize fol-
lowing heat-cool treatment.72 The immiscible predictions were
correct for all 16 selected pairs where 13 of these pairs are
strongly predicted to be immiscible (4.5 b χFH b 26.6) and
3 pairs are weakly predicted to be immiscible (χFH of 0.1 and
0.6). The predictions of miscibility were correct in only 8 of 11
selected pairs, where the 8 experimentally miscible drug pairs
have a predicted −6.5 b χFH b −0.4 and the 3 experimentally
immiscible drug pairs incorrectly predicted as miscible had
χFH values of −0.2, −0.4, and −2.2. Therefore, although this
method is imperfect, it remains an excellent method to accelerate
material development.

Generally, a realistic representation of drug delivery systems
based on polymer micelles is composed of millions of atoms,
including explicit solvent, and atomistic simulations may not be
feasible because of a lack of computer resources.

To overcome computational limitations, molecular simula-
tions have been applied to single-chain block co-polymers or
low-MW oligomeric unimers for the prediction of drug-
polymer compatibility. To this end, Patel et al reported an in
silico method for predicting the compatibility of poorly water-
soluble drugs and poly(ethylene oxide)-b-PCL (PEO-b-PCL) by
means of the χFH parameters of drug-polymer pairs.25 Patel
et al calculated concentration-dependent χFH values from en-
thalpies of mixing derived from MD simulations using Eq 2d
(Table 1).53,55-57 To circumvent limitations on the achievable
simulation time scales, the authors reduced computational
expense by using, in place of PEO-b-PCL micelles, a simulation
system containing a drug and a single unimer of PEO-b-PCL that
was allowed to interact with itself over periodic boundary
conditions. These studies revealed the interactions of binary
mixtures of a unimeric diblock co-polymer chain of PEO-b-PCL
with various concentrations of cucurbitacin B and I, which are
hydrophobic drugs with multiple hydrogen acceptor and donor
groups.25 At low drug concentration (≤40% wt/wt drug/
polymer), the simulation results agreed well with the experi-
mental solubilities of cucurbitacin in diblock co-polymer PEO-b-
PCL micelles.25,73 Generally, the influence of the MW of PEO
and PCL on the compatibility of drugs and PEO-b-PCL depends
on the tendency of a drug to associate with PEO and/or PCL
blocks.25 The enhanced compatibility of cucurbitacin drugs were
attributed to an increase in the number of hydrogen bonds and
polar interactions between the drugs and PCL when the ratio of
PCL/PEO was increased from 0.5 to 2.25

Using a similar simulation-based method, Patel et al also
predicted that hydrophobic drugs that contain only hydrogen
acceptor groups, such as fenofibrate and nimodipine, engage
better in hydrogen bonding with linear PEO-b-PCL than with the
branched co-polymer PEO-b-3PCL.41 In contrast, cucurbitacin
drugs were predicted to be more compatible with branched PEO-
b-3PCL than with linear PEO-b-PCL.41 Based on these findings,
Patel et al proposed that the increase in compatibility between
cucurbitacins and PEO-b-3PCL was due to the increase in
hydrogen bonding between the drug and branched PEO-b-
3PCL,41 although the experimental solubilities of the investigated
drugs in the PEO-b-3PCL are not available for validation.

Overall, these studies suggest that the compatibility between
drugs and core-forming materials can be enhanced by modifi-
cation of the MW, the architecture, or the hydrogen-bonding
capabilities of the delivery material. The discrepancy between
experimental data and predictions from the aforementioned
molecular simulation studies are probably due, in part, to the
absence of water and the simplification of polymer and drug
components in the simulation systems. As well, the absence of
evaluations of convergence in many simulation studies further
complicates the resolution of such discrepancies. The primary
drawback to molecular simulation is the large computational cost
associated with atomistic simulations in explicit solvent. It is
thus not possible to evaluate thousands of drug-material pairs
by molecular simulation. However, the method remains an ex-
cellent tool for the evaluation of candidate pairs that have been
prescreened by analytical models or the discerning eye of a
pharmaceutical scientist.

Covalent linkage of formulation-like moieties to drugs

Drug loading and retention can be significantly improved by
increasing the compatibility between the drug and the delivery
material.15,30,74 The retention of hydrophobic compounds in the
core of nanoparticles is in part governed by the partition
coefficient of the hydrophobic molecule between the core and
the aqueous environment.22 There are many ways to improve



Figure 2. Schematic representation of the difference in solubility parameters
(ΔSP) and Flory-Huggins interaction parameters (χFH) before and after
conjugating a formulation-like moiety (C12 acyl chain) to the lipophilic drug
geldanamycin. The core-forming material of polymeric micelles is repre-
sented by caprolactone (CL). The drug encapsulation was calculated based on
the ratio of drug to poly(ethylene-glycol)-b-poly(ɛ-caprolactone) micelles
(wt/wt %). Data obtained from Forrest et al.42
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drug-material compatibility, but one of the simplest and poten-
tially least costly is to chemically conjugate a formulation-like
moiety to the drug, thus generating a prodrug with enhanced
delivery material compatibility (Figure 2).22,42 To increase
efficiency, computational methods have been used to direct this
type of drug modification.22,42

Forrest et al used SPs to predict the loading of lipophilic
prodrugs of geldanamycin in polymeric micelles composed of
PEG-b-PCL. Geldanamycin is an anticancer agent that, unmo-
dified, is insoluble in the core of PEG-b-PCL micelles.42

Geldanamycin and PCL have Hansen SPs of 23.1 and 20.2,
respectively. A χFH value of 1.33, calculated from Hansen SPs,
was obtained for the geldanamycin-PCL pair by using Eq 2c
(Table 1). The conjugation of a fatty acid to geldanamycin resulted
in geldanamycin prodrugs with Hansen SPs between 20.4 and
21.6, and χFH values for the prodrug-PCL pairs that improved to
0.02 and 0.24 (Figure 2). The accuracy of these theoretical
predictions varied depending on the hydrocarbon chain length of
the conjugated fatty acids. Specifically, unexpectedly low drug
loading was obtained when encapsulating C6 acyl conjugates in
PEG-b-PCL micelles. Nevertheless, successful encapsulation of
C12 and C16 acyl conjugates in PEG-b-PCL micelles were
reported with experimental loading capacities up to 50-fold higher
than unmodified geldanamycin.42

Applying similar ideas to a nanoemulsion formulation, a
combination of analytically predicted SP and logP values
were used to rationally design a prodrug of the hydrophobic
anticancer agent docetaxel.22 Theoretical results suggested
that conjugation of fatty acids with chain lengths similar to
the core-forming materials of a triglyceride-based oil
emulsion would increase the lipophilicity of the drug, thus
decreasing the difference in the SP values of the drug and the
material, and enhancing the compatibility of the drug-material
pair. Experimentally, conjugation of dodecyl fatty acid to
docetaxel was found to increase the solubility of the drug in
triglyceride by 8-fold and its loading efficiency in the
nanoemulsion by 10-fold.22 Further, theoretical and experi-
mental logP values indicated that conjugates with multiple
conjugated fatty acids were even more lipophilic. Neverthe-
less, only the monosubstituted prodrug was hydrolyzed under
biologically relevant conditions to yield an activity similar to
that of the parent drug.22

In summary, group contribution methods that compute SPs
and predict the logP of drugs and drug derivatives appear to be
excellent approaches for the selection of formulation-like
moieties for chemical conjugation to drugs. These parameters
provide relatively accurate physicochemical predictions for com-
pounds with similar chemical structures. Nevertheless, kinetic
properties, such as hydrolysis to release the prodrug, must still be
evaluated experimentally.

Predicting drug loading and retention

Controlling drug release is one of the key requirements of a
successful drug formulation. Premature drug release from the
formulation may lead to systemic side effects due to the
distribution of drug to nontarget tissues and inefficient drug
accumulation at the target site.9,75
Recently, Costache et al used docking techniques to
determine an ensemble of poses of drugs interacting with core-
forming polymers of nanospheres and predicted the interaction
energy of hydrophobic drugs and tyrosine-derived oligomers.35

Before docking calculations, the aggregation state of the
hydrophobic oligomer was equilibrated by performing MD
simulations on hydrated single and multiple chains of ABA
triblock co-polymers followed by the removal of the PEG
blocks.35 Here, A is PEG and B is oligo(desaminotyrosyl-
tyrosine octyl ester suberate). In this study, Costache et al
reported a correlation between the experimental maximum drug
loading in the triblock co-polymer nanospheres and the
theoretically calculated polymer-drug binding energies, where
the model drugs were curcumin, paclitaxel, and vitamin D3.
Consistent with other theoretical studies,38,41 the binding
affinities of hydrophobic drugs to the core-forming polymers
were proportional to the number of hydrogen bonds, the number
of aromatic interactions between the drug-polymer pairs, and the
hydrophobicity of the drug. Other features such as size and
flexibility also influence binding affinities and location of the
drug within the delivery system. In particular, highly hydropho-
bic (predicted logP = 7.9) and flexible vitamin D3 was predicted
to penetrate into the hydrophobic core of the nanosphere delivery
system and have the most favorable docking energy, D (D =
−10.3 kcal/mol).35 This finding agreed well with experiment,
where vitamin D3 has the highest drug loading in the nano-
sphere. The less flexible and less hydrophobic curcumin
(predicted logP = 3.6) was similarly found to penetrate into the
hydrophobic core of the nanosphere. The predicted docking
energy of curcumin (D = −7.2 kcal/mol) to the nanosphere was
less favorable than vitamin D3 and, experimentally, curcumin
loaded less into the nanosphere than did vitamin D3. Finally, the



Figure 3. Hydrogen bonding between docetaxel (DTX) and small-molecule excipients fromMD simulations of a DTX-excipient binary mixture. The excipient is
represented in gray lines and DTX is represented in multicolored lines (carbon and hydrogen in black, oxygen in red, and nitrogen in blue). Lines are thickened to
emphasize functional groups involved in hydrogen bonds. The intra- and intermolecular hydrogen bonds are indicated by thin black and thick blue arrows,
respectively. Explicit solvent and excipients that do not form hydrogen bonds with DTX are omitted for clarity. Data obtained from Huynh et al.21
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more bulky and rigid paclitaxel (predicted logP = 3.2) was pre-
dicted to preferentially interact with the surface of the hydrophobic
core of the nanospheres and have an even less favorable docking
energy (D = −4.4 kcal/mol). In agreement with molecular
simulation, paclitaxel was found to have the lowest experimental
drug loading in the nanospheres.35

Current research suggests that hydrogen bonding enhances
drug loading and slows drug release,35,41 although rank-ordering
can be complicated by the influence of other factors, such as
lipophilicity.22 In this context, Sutton et al demonstrated that a
single molecule of doxorubicin forms five to six hydrogen bonds
with a hydrophobic aggregate of PCL and three to four hydrogen
bonds with a hydrophobic aggregate of PLA, although water
molecules were not present in this simulation.38 The authors
proposed that the increased number of hydrogen bonds formed by
doxorubicin in PEG-b-PCL micelles is responsible for the slower
drug release in this system as compared to PEG-b-PLAmicelles.38

Similarly, the MD simulation of docetaxel molecules solvated
by pharmaceutical excipients revealed that the experimental
solubility of docetaxel in small-molecule excipients, such as
triglycerides and vitamin E, increases with an increasing number
of predicted hydrogen bonds between the drug and the
excipients, as shown in Figure 3.21 However, the experimental
numbers of hydrogen bonds between the drug and excipients are
not available for validation. Nevertheless, better experimental
drug retention was observed with a highly hydrophobic excipient
that formed fewer hydrogen bonds with docetaxel.76 Similar
observations were also reported based on a combination of MD
simulation and molecular docking.35 Indeed, the lipophilicity
of materials has, in some cases, contributed to drug loading
and retention to a greater extent than hydrogen-bonding
capability,21,35 and the number of hydrogen bonds between the
drug and excipient does not always correlate with the rate of drug
release,21,75,77 especially at high drug loading where drug
aggregation may occur within the formulation.38

Generally, analytical models can be applied to the rapid
prediction of physicochemical properties that can be used to
assist formulation development. Analytical models for SP and
logP are more accurate when predicting compatibilities for
chemically similar materials, making these methods well suited
to rank-order chemical libraries during selection of a formula-
tion-like moiety for drug conjugation. Hansen SPs outperform
Hildebrand SPs for molecules that form hydrogen bonds, and FH
theory is more accurate for concentration-dependent interactions.
Overall, analytical models excel in the early elimination of
material possibilities during library enrichment. These simple
models are sometimes inaccurate, however, especially when
assessing the compatibility of materials with divergent chemical
properties. Thus, once analytical models have been used to
significantly reduce the number of materials to be evaluated,
molecular simulations can be used to obtain further insight at
greater computational expense. Given the large number of
physicochemical properties that are thought to influence drug-
material compatibility, the proper weighting of these many
competing factors is one of the great challenges to theoretical
methods. In this pursuit there is a strong need for systematic
methodological evaluations and comparisons, which are cur-
rently lacking in the literature.
Optimizing materials

Numerous theoretical models have been developed to predict
the conformation and size of polymers in various media.55,78-82

There is thus a wealth of theoretical insight into the aggregated
structures of formulation materials.20,35,39,44,83 Within this
domain, the application of analytical models is generally limited
to the study of biomolecules with simple structures, whereas
molecular simulations have been conducted for more complex
systems, where they are capable of revealing important
nanoparticle properties and their substructures (Figure 4).

Linear polymers

In the 1950s, Flory55 put forth the random-flight model for
free linear polymers, in which polymer size depends on both
polymer length and solvent suitability. This model was derived



Figure 4. Performance-related properties of nanoparticles revealed by molecular simulation.
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from Debye theory78 and predicts the radius of gyration, Rg = R/
√6, where R is the root-mean-squared end-to-end distance of the
polymer. Here, R scales with the effective bond length of the
monomer, a, and the degree of polymerization of the polymer,
N, according to a power law such that R ≈ aNα, where α is
the swelling exponent (Eq 4, Table 1).55,79 In a good solvent, R
is known as the Flory radius, RF, and α is equal to 0.588.55 In a
mediocre solvent (theta solvent), the polymer behaves ideally
and exists as a Gaussian coil with an α value of 0.5. In a poor
solvent, the polymer collapses and has an α value of 1/3.84

Although such simplifications are useful, they are also imperfect.
When α values are back-calculated from experimental measures
of size, the α values of polymers in good solvents depend
somewhat on the polymer composition and MW. For example,
gel permeation chromatography and size exclusion techniques
provide an α value of 0.571 for aqueous solutions of linear PEO
with a MW of 25 kDa to 120 kDa.85 From the same study, α
values of 0.523 were obtained for linear PEG with a MW of
0.2 kDa to 7.5 kDa.85 Similarly, Lee et al reported an α value of
0.57 for 1.63 kDa b MWPEO b 7.0 kDa,37 based on a simulation
study of a series of hydrated PEO polymers with various degrees
of polymerization using a coarse-grained (CG) hydrodynamic
bead model.37 In a separate CG and all-atom MD simulation
study, the conformation of PEO was described as an ideal chain
with α = 0.515 for 0.44 kDa bMWPEO b 1.63 kDa.39 Here, MD
simulation outperformed the hydrodynamic bead model as a tool
for predicting the size of PEO molecules, yielding hydrodynamic
radii and diffusion constants of PEO in better agreement with
experimental results, which were obtained from three different
size exclusion chromatography techniques.39,85

Whereas Flory's random-flight model is limited to poly-
mers free in solution, the conformation of polymers attached to
a planar surface can be predicted by de Gennes theory.80,81
According to this theory, grafted polymers adopt so-called
mushroom and brush regimes in a good solvent at low and
high grafting density, respectively. In the mushroom regime,
named for the predicted mushroomlike shape of each polymer,
the grafted polymers are separated by a distance D N RF and
occupy a “half-sphere with a radius comparable to RF of a
Gaussian coil.”80,81 In the brush regime, named for the
predicted bristlelike appearance of the polymers extending
outward from the surface, D b RF and the grafted polymers
adopt a more extended configuration as they horizontally
occlude one another.81 Daoud and Cotton theory extends de
Gennes theory to star-shaped polymer models.86 This theory
predicts that the radius of a star-shaped polymer is smaller
than that of a linear polymer of the same MW.86 Significantly,
a similar prediction was obtained by molecular simulation
studies of amphiphilic PEG-b-PCL star-shaped co-polymers in
water.20 This prediction was confirmed by size exclusion
chromatography and by static and dynamic light scattering
measurements of free linear PEG blocks in water.85,87

Even though the theories of de Gennes, and Daoud and
Cotton are most often applied to curved surfaces, these theo-
retical models exclude the influence of the radius of the
sphere–an inauspicious assumption given that deviation from
planarity significantly influences the conformation of the outer
layers of a core-shell nanoparticle.82 Surface curvature may
influence the adsorption of hydrophilic polymers on hydro-
phobic surfaces.20 Indeed, the conformations of polymers
grafted to a curved surface are theoretically predicted to
depend not only on the chain length of the polymer but also
on the radius of curvature of the surface.82 Specifically, when
the ratio of the radius of curvature to the thickness of the
grafted polymer layer is much less than one, the Rg of grafted
polymers grows as a function of the degree of polymerization
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of the polymer with α equal to 3/5.82 Clearly there is a need
for extensions of available theoretical methods to explicitly
account for surface curvature.

Nanoemulsions

For a nanoemulsion formulation to include stable particles
of a desired size, the interactions between the core- and shell-
forming materials often require optimization.88 This can be done
experimentally by selecting compatible components and deter-
mining the appropriate mixing ratio,75,77 although this approach
is very time-consuming. Current theoretical efforts are directed at
understanding how nanoemulsions integrate components at the
atomistic level, thus collecting information that will be useful for
future rational design.

To this end, oil-in-water nanoemulsions were recently simu-
lated by Lee et al.45 and, separately, by Henneré et al.71 In these
studies the nanoemulsion systems were represented by a planar
model, which is layered as water, phospholipid, oil, phospho-
lipid, water.45 The oil phase was composed of trilino-
leylglycerol,71 or perfluorooctylbromide (PFOB),45 and the
phospholipid was palmitoyloleoylphosphatidylcholine
(POPC).45,71 In these simulations, the head group of POPC
was fully hydrated, and the hydrocarbon tails of POPC interacted
favorably with the hydrophobic triglyceride tails, as
expected.71,89 In contrast to triglycerides, perfluorocarbons are
lipophobic70 and are expected to be immiscible with POPC.
However, an experimental study by Yokoyama et al showed that
the miscibility of perfluorocarbons with hydrocarbons increases
when the chain length of the perfluorocarbons are significantly
shorter than that of the hydrocarbons.90 This PFOB/POPC
nanoemulsion model was used to investigate the quenching
mechanism of melittin tryptophan. In agreement with experi-
ment, the tryptophan side chain of melittin was located within the
POPC layer. Further, based on the radial distribution of the
bromine atoms of PFOB around trytophan residues, the bromine
was very close to direct contact with the trytophan. These results
are consistent with the known quenching mechanism of tryp-
tophan,91 which is due to the collision of the tryptophan with
bromine.45 Overall, this study demonstrated that atomistic
simulations can reproduce the interactions and the quenching
mechanism of tryptophan within the PFOB/POPC nanoemulsion
system at the molecular level.

To further quantitatively determine the importance of con-
stituent interactions, efficient generalized-ensemble simulation
algorithms can be used to construct the free-energy profiles that
govern these interactions.92

Micelles formed from linear block copolymers

Linear, amphiphilic diblock and triblock co-polymers have
emerged as the materials of choice for use in a wide range of
biomedical applications, including fabrication or coating of
biomedical devices, drug delivery, and tissue engineering.93-96

Polymeric micelles comprise a hydrophobic core, which can load
and store drugs as cargo, and a hydrophilic shell, which
surrounds and solubilizes the hydrophobic core and hinders
interactions with components of the host mononuclear phago-
cytic system.9,13 Molecular simulations have been employed to
investigate the structure, dynamics, and self-aggregation prop-
erties of polymeric micelles, with or without drugs.40,44,97

Kuramochi et al used all-atom MD simulations to study the
structure of a spherical micelle composed of 20 chains of the
linear diblock co-polymer PEG11-b-poly(γ-benzyl L-glutamate)9
(PEG11-b-PBLG9) in explicit water.40 In addition, Huang et al
investigated glycyrrhetinic acid-modified PEG-b-PBLGmicelles
as drug carriers for doxorubicin.98 According to Kuramochi et al,
a slightly elliptical micelle structure is formed after 7 nsec of
simulation, with a hydrophobic PBLG inner core and a
hydrophilic outer PEG shell. The core-forming polymer,
PBLG, is hydrophobic40 as a result of its benzyl group side
chains. Nevertheless, it has a backbone made of hydrophilic
esters and amide groups, and is capable of forming hydrogen
bonds with water. In agreement with nuclear magnetic resonance
(NMR) and other MD studies of free linear PEG, the PEG blocks
of the micelle presented in this study were highly hydrated and
adopted a helical conformation. Further, this study revealed that
the benzyl groups, which contribute significantly to hydrophobic
interactions, were preferentially located near the center of the
hydrophobic core. Based on the radial density distribution, some
water molecules dynamically penetrated into the hydrophobic
PBLG core and formed a hydrogen-bonded network with the
ester and amide groups in the backbone of the hydrophobic core.
Importantly, the transient presence of water molecules within the
hydrophobic core is unlikely to have been predicted by an
analytical group contribution method. Structurally, the PBLG
chain adopted an α-helix conformation that was stabilized by six
to eight hydrogen bonds within a PBLG block. Overall, the
micelle was stabilized by multiple hydrogen bonds between
water and the PEG blocks, and hydrophobic interactions within
the PBLG core.40

In another study, Mathias et al used a combination of
NMR and MD simulation to investigate the location of an
electron spin-labeled hydrophobic drug, chlorambucil-tempol
adduct, in fluoroalkyl-linker and fluoroalkyl-linker-PEG
micelles,44 in which the fluoroalkyl hydrophobic segment,
CF3(CF2)5CH2CH2-, is expected to form an inner core that
excludes water. To reduce computational expense during
simulations, explicit water was omitted in favor of a
restraining force on the CF3 groups to assist the formation
of fluoroalkyl-linker or fluoroalkyl-linker-PEG micelles.
Under this restraining force, the hydrophobic fluorocarbons
cluster together and form the inner core of the micelle,
whereas the relatively less hydrophobic linker, isophorone
diurethane, forms an interface between the inner core and the
hydrophilic PEG shell.44 In these simulations, the system
included a single drug initially placed outside the micelle or
in the inner fluoroalkyl core, or at the core-PEG interface,
each successively with and without distance restraints based
on NMR data. During unrestrained simulation, the drug was
shown to migrate to the isophorone diurethane interface
region of the micelle.44 Overall, this study provides a
simplified model to capture the preferred interactions and
localization of a drug among a variety of distinct chemical
environments within the micellar delivery system.44 These
results can be used to rationally design a new linker between
the hydrophobic and hydrophilic blocks.44
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Water molecules have a significant influence on the
conformation and aggregation morphology of many delivery
materials. In many cases, therefore, simulations must be
conducted in the presence of explicit molecular water so as to
obtain results that are comparable to experiment. The compu-
tational acceleration that is obtained via implicit water models
may result in inaccurate simulation results, as reviewed
elsewhere.99

Micelles formed from star-shaped block co-polymers

Unimolecular micelles are inherently stable to dilution and
may be prepared to be monodisperse and of a smaller size than
most multimolecular systems.100,101 Star-shaped block co-poly-
mers are an excellent material for making unimolecular micelles,
provided the molecules can be engineered to avoid self-
aggregation.20,101

Recently, MD simulations were employed to systematically
evaluate 13 star-shaped block co-polymers, each having six
identical arms of methoxyPEG-b-PCL that vary in terms of
total MW and ratio of hydrophobic to hydrophilic block length,
MePEGx-b-PCLy, where x and y are the repeated unit of the
hydrophobic and hydrophilic blocks, respectively.20 Following
200 nsec of atomistic MD simulations for each system, the radii
of the hydrophobic PCL core and the PEG blocks were found
to be independent of each other and predictable over a broad
MW range.20 This information can be used to rationally design
star-shaped block co-polymers of a specific size. Unique to this
study, a quantitative relationship related the water-accessible
surface area of the hydrophobic PCL core to the MW of PCL
and PEG moieties (Figure 5). Importantly, the hydration value
obtained for PEG moieties agrees well with the experimental
hydration value of PEG in water, indicating a valid simulation
model.20 From this study, all the star-shaped block co-polymers
investigated were predicted to self-aggregate and to form
multimolecular micelles in water. Significantly, dynamic and
static light scattering measurements of [PCL18-b-PEG113]6
indicated multimolecular aggregation, in agreement with
theoretical predictions (F. Li and C. Allen, unpublished results).
Further, star-shaped block co-polymers with a hydrophobic
PCL core ≤2 kDa per arm are predicted to be fully protected
from water when the hydrophilic PEG blocks are ≥14.6 kDa
per arm.20 The authors hypothesize that these new rationally
designed star-shaped block co-polymers can avoid PCL-
mediated aggregation and form thermodynamically stable
unimolecular micelles.

Other groups are working on blending star-shaped and linear
block co-polymers so as to control the morphology of micelles.
For example, Xin et al used dissipative particle dynamics
simulations to investigate the morphology of multicompartment
micelles formed by binary mixtures of star-shaped AaBbCc and
linear BbAaCc triblock co-polymers.102 In this study, polyethy-
lethylene, PEO, and poly(perfluoropropylene oxide) are poly-
mers Aa, Bb, and Cc, respectively, in which a, b, and c represent
the block lengths.102 Here, the dissipative particle dynamics
model reproduced the experimental morphology of diblock co-
polymers (spherical micelles), star-shaped triblock co-polymers
(wormlike micelles), and blends of diblock and star-shaped
triblock co-polymers (hamburger-shaped micelles). Further, the
morphologies of blended linear and star-shaped triblock co-
polymers were systematically investigated with various blending
ratios and procedures.102 Various new morphologies were ob-
tained, including toroidal multicompartment micelles with ring/
cogwheel cores and so-called sphere-on-onion micelles. Finally,
the mechanisms of formation of these morphologies were also
identified.102

Molecular simulations are the most suitable techniques for
quantitative measurement of interactions at the molecular level
and for the rational design of new drug delivery materials. The
influence of conformation, absent or incomplete in analytical
models, is simply too important.

Dendrimers

Dendrimers are branched macromolecules in which each
level of branching is classified as a generation. Generally, den-
drimeric polymers developed for drug delivery have a multi-
functional hydrophobic inner core that is conjugated to outer
hydrophilic moieties, such as PEG. Similar to star-shaped block
co-polymers, dendrimer micelles can be rationally designed to be
unimeric.103 Dendrimeric polymers are promising drug delivery
materials because they possess narrow polydispersity and can be
designed with many combinations of size, shape, and surface
chemistry.103

For the past decade, poly(amidoamine)-PEG conjugates
(PAMAM-PEG) have been investigated for biomedical
applications.103 Lee and Larson rationally designed stable
PAMAM dendrimer-PEG conjugates using CG simulations
based on the MARTINI parameterization.23 In this study, a
total of 11 dendrimers were simulated in CG water and
counterions.23 Systems included single dendrimers of genera-
tions 3 to 5 (G3 to G5) and dendrimers conjugated to 0.55-kDa or
5.0-kDa PEG blocks. The simulated Rg of dendrimer-PEG
conjugates with 30, 60, and 88 arms of 5.0-kDa PEG (G3P5000-
30, G4P5000-60, G5P5000-88) agreed well with the Rg values
obtained from neutron scattering for dendrimer conjugates with
similar MW. Next, binary aggregation was studied for G4
dendrimer-PEG conjugates with 60 arms of 0.55-kDa or 5-kDa
PEG (G4P5000-60, G4P550-60). Two identical dendrimer-PEG
conjugates were placed in contact and simulated for a total of
400 nsec. During these simulations, the dendrimers drifted apart.
Nevertheless, the G4P5000-60 simulation box was too small
to allow complete PEG disentanglement. The authors proposed
that 5-kDa PEG can act as a stabilizer for the PAMAM G4
dendrimer.23 This result contradicts the experimental study by
Yang et al, which suggests that interpenetration of the PEG arms
from two adjacent dendrimer conjugates may exist when the
MW of PEG increases from 2 to 5 kDa.104

Although CG methods are unable to provide information on
interactions at the atomistic level, such as hydrogen-bonding
interactions, they provide excellent insight into large systems
such as those investigating the aggregation of complex materials.

In summary, analytical models can provide insight into the
structural properties of drug delivery materials. These models
excel at rapidly predicting the gross morphology of weakly
interacting molecules and, in some cases, simple self-aggregated



Figure 5. Snapshot of the [MePEG38-b-PCL9]6 star-shapedblock co-polymer at (A)1 nsec and (B)200 nsec highlighting the conformations of PCL (yellow) andPEG
(blue) blocks, and water molecules within 3.5 Å of PCL. Bulk water and hydrogen atoms are omitted for clarity. Solvation properties of various star-shaped block co-
polymers, obtained by calculating the number of water molecules within 3.5 Å of the polymers. (C) Double-logarithmic scales of total surface area of PCL core
assuming zero protection by PEG versus the total number of PCL units. (D) Fraction of PCL at the core surface that is protected from water by PEG, fprotectedPCL,
versus a logarithmic scale of the total number of PEG units. Data are evaluated from the last 160 nsec of the molecular dynamics simulations. The dashed lines are the
linear fit functions. (Adapted from Huynh et al.20 Reproduced by permission of the Royal Society of Chemistry.)
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structures. In many cases, however, structures predicted from
these theoretical models are inaccurate, especially in the pres-
ence of other components. In comparison, molecular simulation
models can provide representations of the conformational
ensemble adopted by the investigated materials while explicitly
accounting for intermolecular interactions in heterogeneous
mixtures. The main drawback of molecular simulation is the
significant computational expense that it requires. To circum-
vent this limitation, many studies have attempted to predict the
properties of complex formulation systems based on simula-
tions of simplified systems, such as those using single-polymer
chains, implicit water, or CG models. Unfortunately, these
simplifications may reduce the accuracy of the predictions.
Most importantly, each type of simplification has its own
limitations that must be understood when selecting the
methodology to apply to a given system. For example, CG
simulations, similar to Hildebrand SPs, are not well suited to
the characterization of materials that form dense networks of
hydrogen bonds.
Predicting biological performance

Nanoparticle development has produced a variety of stable
and efficient drug delivery systems. Their application in vivo,
however, requires additional consideration of pharmacokinetics
and distribution including accumulation at the target site as
well as biocompatibility and toxicity. In this section we briefly
highlight relationships between the physicochemical properties
of nanoparticles and their biological performance both in vitro
and in vivo.

Nanoparticles can be tailored to undergo enhanced cell
uptake, bloodstream retention, and organ targeting based on their
size and surface properties.75,77,105 Importantly, theoretical
methods are capable of predicting the behavior of these particles
in biological systems. For example, the structural properties of
nanoparticles have been investigated using MD simulation and
related to their biological performance. These theoretical
evaluations are capable of providing guidance during the rational
design of drug delivery systems.

Cytotoxicity and biodistribution

The structural properties of polymers used in nanoparticle
drug delivery formulations can significantly influence their
cytotoxicity.24,106-108 Metullio et al used atomistic MD simulation
to predict the shape, size, Rg, and density of 18 PAMAM
dendritic molecules in explicit water.108 Because PAMAM can be
toxic,109 these properties were then compared to the cytotoxicity
of various generations of dendrimers. Based on simulation
analysis and experimental evaluation of cytotoxicity,110 nontoxic
dendrimers had low fractions of internal surface area and low
internal volumes (from 8% to 19% of the dendrimer).108 In
contrast, cytotoxic dendrimers had much higher internal surface
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areas and internal volumes (from 33% to 86% of dendrimer).108

Radii of gyration and surface fractal dimensions (i.e., the degree
of irregularity of a surface) were also related to the cytotoxicity of
the dendrimers. In agreement with other findings, nontoxic
dendrimers were those that had surface regularity and were
densely packed with a small Rg.

108

Numerous experimental studies have shown that the shape
and size of drug delivery systems can influence the access of the
drug to the target site.111,112 In a recent study, Peng et al
combined all-atom and CG simulations to systematically
investigate the size and shape of a polymer-drug conjugate: a
130-mer poly-γ-glutamyl-glutamate-paclitaxel conjugate
(PGG130-paclitaxel).

97 In this study, various fractions of pac-
litaxel were conjugated to six different positions of the PGG
backbone, making a total of 18 different PGG130-paclitaxel
conjugates. Due to limited computer resources, the MD simu-
lations of PGG130-paclitaxel conjugates were first carried out in
implicit water. Following 100 nsec of MD simulation under
these conditions, a CG model was used for the simulation of
PGG130-paclitaxel conjugates in explicit solvent for an
additional 800 nsec. From an initial linear conformation at
0 nsec, 89% of PGG130-paclitaxel conjugates adopted a coil
shape by 900 nsec, indicating that the drug-loading fraction and
the position of conjugation have only a minor influence on the
conformation of the conjugates.97 A previous study on the
delivery of paclitaxel using diblock co-polymer micelles
showed that wormlike and filamentous micelles exhibit
prolonged circulation half-lives in comparison to spherical
micelles.111 Further, discoidal particles seem to have relatively
greater tendency to accumulate at tumors in comparison to
spherical particles.112 Peng et al postulated that the PGG130-
paclitaxel conjugates with various coil subtypes are structurally
similar to the shapes of the wormlike and filamentous micelles,
and discoidal particles.97 Therefore, they proposed that the
investigated PGG130-PTX conjugates may have a relatively long
circulation half-life in vivo and result in significant accumula-
tion of the drug at the tumor site.97

Interaction with lipid bilayers

Computational techniques have been used to investigate
drugs and nanoparticles in biomimetic environments at the
atomistic level.19,113 Specifically, the application of MD simu-
lations to study drug- or nanoparticle-membrane interactions
provides significant insight into the thermodynamic and kinetic
processes that govern the permeability of lipid bilayers to drugs
or nanoparticles.19,113 Such information plays an important role
in the rational design of drugs and formulation materials.

Recently, gold nanoparticles (AuNPs) have been investigated
for the delivery of drugs and diagnostic agents. In many cases
nanoparticles must cross cell membranes so as to deliver the drug
to its target site within the cell. Understanding the mechanism of
AuNP uptake at the molecular level can therefore provide insight
that is useful for the rational design of AuNPs for biomedical
applications. In a study by Lin et al, a combination of atomistic
and CG MD simulations was employed to investigate the
interactions between a AuNP and a cell membrane mimetic.113

Hydrophobic (neutral), cationic, and anionic AuNPs were simu-
lated successively in the presence of an electronegative and of an
electroneutral bilayer. AuNPs were charged by functionalizing
alkyl thiol ligands with ammonium and carboxylate groups. The
negatively charged bilayer contained a mixture of dipalmitoyl-
phosphatidylcholine (DPPC) and dipalmitoylphosphatidylgly-
cerol (DPPG) in a ratio of 3:1 (PC/PG), whereas the neutral layer
contained only DPPC. Based on the free-energy profiles
obtained from CG simulations, adhesion of anionic and cationic
AuNPs onto the neutral DPPC bilayers was favorable.113 Sur-
prisingly, the anionic AuNPs showed strong affinity for the
negative PC/PG bilayers. In contrast, the neutral AuNPs repelled
the DPPC and PC/PG bilayers. Importantly, in agreement with
the experimental data, the cationic AuNPs penetrated into the
negative PC/PG bilayer with the free-energy minimum located
within the bilayer, indicating that the penetration of AuNPs into
the membrane is favorable.113 Overall, Lin et al revealed that the
surface charge of the AuNPs mainly contributed to the pene-
tration of the AuNP and disruption of the membrane.113

From these studies it is clear that structural properties of
nanoparticles, such as shape and internal structure, can influence
cytotoxicity. Importantly, the shape of nanoparticles also in-
fluences pharmacokinetics and tumor accumulation. Further, the
permeability of lipid bilayers to nanoparticles is theoretically
predictable. Overall, atomistic and CG simulations are excellent
methods for investigating nanoparticle structure, which can then
be correlated to experimentally determined biological responses.
Correlations between molecular or physicochemical properties
and biological behavior may also be conducted with group
contribution-based methods.
Conclusions and outlook

Analytical models are useful for fast prescreening during
the development of delivery systems and drug derivatives.
Available tools include group contribution methods for the
calculation of SPs and lipophilicity, and statistical methods such
as FH pairwise interactions. However, there are errors associated
with the theoretical calculation of SP, logP, and χFH, especially
when comparing compounds with different chemical properties.
Nevertheless, these theoretical models are suitable for guiding
early material design.

In contrast, molecular simulations produce more reliable
results. Molecular simulations are more computationally expen-
sive, however, and are thus more suitable for re-scoring materials
that were highly ranked by more rapid theoretical screening
methods. Molecular simulations are also capable of assessing
complex molecular structures found within nanoparticles. Further,
molecular simulations can be used to evaluate performance-related
properties of drug delivery systems, including the size and mor-
phology of nanoparticles.

This review discusses many publications that apply a range of
theoretical and experimental methods. In many cases, however,
systematic studies that evaluate and compare methodological
options are unavailable. Further, very few studies test the predictive
abilities of the models. As well, likely problems associated with
theoretical methods include overfitting and the under-reporting of
theoretical predictions that do not match experimental evaluations.
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In many studies, simulation systems were simplified by removing
explicit water or using an implicit water model so as to accelerate
the simulation. It is however unclear if these simulations are capable
of representing the correct equilibrium distribution of conforma-
tions as they would exist in aqueous solution. Here again,
systematic methodological evaluations are lacking.

In comparison to atomistic models, simulations with CG
models can sample much larger systems for much longer times
and are excellent methods for investigating aggregation mor-
phologies and other thermodynamic quantities that are slow to
converge. However, CG models fail to capture important ato-
mistic effects such as hydrogen-bonding interactions and may
therefore require re-parameterization for each system of interest.
Combinations of atomistic and CG simulation can be used for
guiding the design of new delivery materials such as dendrimers
and star-shaped block co-polymers. To further quantify the pro-
pensity toward aggregation, efficient generalized-ensemble
simulation algorithms can be used to construct the free-energy
profile governing the association of these materials.

The continuing advances in computer performance are
allowing atomistic simulations of macromolecules over ever-
growing time scales. Concurrently, analytical methods can be
applied to larger libraries of drugs and materials. This promises
a bright future for the role of theoretical methods in the deve-
lopment of drug delivery materials.
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