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in the fourth dimension

Régis Pomèsa),b)
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A general method for computing excess chemical potentials is presented. The excess chemical
potential of a solute or ligand molecule is estimated from the potential of mean-force~PMF!
calculated along a nonphysical fourth spatial dimension,w, into which the molecule is gradually
inserted or from which it is gradually abstracted. According to this ‘‘4D-PMF’’~four dimensional!
scheme, the free energy difference between two limiting states defines the excess chemical potential:
At w56`, the molecule is not interacting with the rest of the system, whereas atw50, it is fully
interacting. Use of a fourth dimension avoids the numerical instability in the equations of motion
encountered upon growing or shrinking solute atoms in conventional free energy perturbation
simulations performed in three dimensions, while benefiting from the efficient sampling of
configurational space afforded by PMF calculations. The applicability and usefulness of the method
are illustrated with calculations of the hydration free energy of simple Lennard-Jones~LJ! solutes,
a water molecule, and camphor, using molecular dynamics simulations and umbrella sampling.
Physical insight into the nature of the PMF profiles is gained from a continuum treatment of short-
and long-range interactions. The short-range barrier for dissolution of a LJ solute in the added
dimension provides an apparent surface tension of the solute. An approximation to the long-range
behavior of the PMF profiles is made in terms of a continuum treatment of LJ dispersion and
electrostatic interactions. Such an analysis saves the need for configurational sampling in the
long-range limit of the fourth dimension. The 4D-PMF method of calculating excess chemical
potentials should be useful for neutral solute and ligand molecules with a wide range of sizes,
shapes, and polarities. ©1999 American Institute of Physics.@S0021-9606~99!51231-2#
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INTRODUCTION

Free energy calculations based on computer simulat
constitute a powerful tool to compute the excess chem
potential of small molecules in dense fluids1 and the binding
affinities of molecular ligands to biomolecules.2,3 In such
approaches, the relative free energy of two states of the
tem is obtained by calculating the reversible thermodyna
work from one state to the other. More specifically, t
Hamiltonian of the system is written asH(l)5(12l)H0

1lH1 , whereH0 andH1 are the Hamiltonians for the initia
and final thermodynamic states, respectively, andl is a cou-
pling parameter which yieldsH0 at l50 andH1 at l51. To
calculate the excess chemical potential of a molecule,H1 and
H0 may correspond to states where the molecule is, res
tively, coupled and uncoupled to the rest of the system.

a!Authors to whom correspondence should be addressed.
b!Telephone:11 505 665 9930; Fax:11 505 665 3493; Electronic mail

regis@lanl.gov
c!Telephone:11 514 343 7105; Fax:11 514 343 7586; Electronic mail
rouxb@plgcn.umontreal.ca
3380021-9606/99/111(8)/3387/9/$15.00
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Hamiltonian may then be rewritten asH(l)5H01lVvu ,
whereVvu is the potential energy for solvent–solute intera
tions. Sampling of the configurational space for discrete v
ues ofl ranging from zero to one~or one to zero! amounts to
gradually inserting~or removing! the molecule from the sys
tem while maintaining thermodynamic equilibrium. By inte
grating the expectation value of the derivative ofH(l) with
respect tol ~so-called ‘‘thermodynamic integration’’!, or by
computing the expectation value of exp(2lVvu) ~‘‘thermody-
namic perturbation’’!, one can compute the work require
for the insertion into~or abstraction from! the system of in-
terest.

Linear scaling ofVvu , however, is fraught with a long
recognized statistical problem associated with the repuls
part of the Lennard-Jones~LJ! potential, namely, the numeri
cal instability resulting from the singularity due to the pre
ence of an infinitely small and infinitely repulsive body in
dense medium at small values ofl.4 Therefore, alternative
coupling schemes are required. Scaling by exponential p
ers of the coupling parameter,ln ~where n.1!, improves
the statistical accuracy of the calculation by increasing
7 © 1999 American Institute of Physics
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3388 J. Chem. Phys., Vol. 111, No. 8, 22 August 1999 Pomès et al.
relative amount of configurational sampling at small valu
of the coupling parameterl, but it does not remove the in
stability problem.5 Effective ways to bypass the proble
were reported by Zachariaset al.6 and by Beutleret al.5 The
first method consists of combining linear scaling of the
energy term with the translation of the effective distanc
separating the solute from the solvent atoms. In this so-ca
‘‘separation-shifted potential scaling’’~SSPS! approach, the
LJ potential-energy function for solvent–solute interactio

V~r !54eF S s

r D 12

2S s

r D 6G , ~1!

wheree ands are the LJ parameters, is replaced by

V~r ,l!54eH F s2

r 21d~12l!G
6

2F s2

r 21d~12l!G
3J , ~2!

whered(12l) is a parametric function varying from 0 for
fully interacting solute~at l51!, to a nonzero finite valued
in the decoupling limit (l50).6 The second method5 is
similar: In that approach, scaling is achieved with a powe
l, and (s/r ) is replaced by@ f (l)1(r /s)s#21/s, wheref (l)
is a quadratic function of the coupling parameterl, ands is
an integer greater than 1. The advantage of such proced
is to replace the infinitively repulsive ‘‘hard core’’ of the L
potential by a finite potential energy barrier, or ‘‘soft core
whose magnitude smoothly decreases to zero in the lim
complete decoupling. These approaches have been appli
calculations of the hydration free energy of neon a
ethanol,6 to an atomic fluid,7 and to the calculation of the
binding free energy of camphor in cytochrome P450.8

Furthermore, two methods for improving the efficien
of the coupling parameter approach in free energy calc
tions were proposed recently. The first one consists in add
an unphysical fourth dimension to the conformational sp
of the system. The technique was first proposed for effic
conformational sampling of proteins9 and extended to free
energy calculations with the application to an atomic liqui7

This approach effectively modifies the potential-energy s
face of the system and in particular, circumvents large
ergy barriers separating thermodynamic states, thereby
proving the efficiency of free energy calculations.

Concurrently, the ‘‘l-dynamics’’ free energy simulation
technique introduced by Kong and Brooks10 treats the cou-
pling parameterl as another degree of freedom of the syst
rather than as a preset parameter. The advantage o
l-dynamics technique is that free energy changes can be
tained from potential of mean-force~PMF! calculations in
which the dynamics of the system is governed by an
tended free energy surface and biasing potentials can be
to overcome free energy barriers. Recently the usefulnes
the method was demonstrated for competitive liga
binding.11,12

The general method that we propose combines key
pects of each of the three approaches reviewed above fo
calculation of excess chemical potentials. First, we note
the shifting of the effective interatomic separation in the
potential interactions of the molecule of interest with the r
of the system, Eq.~2!, is formally analogous to, and sug
gests, introducing an extra spatial dimension to the confi
Downloaded 06 Dec 2011 to 76.68.36.75. Redistribution subject to AIP lic
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rational space available to the molecule. Thus, this shift
parameter can be replaced by the extension of the mole
into an unphysical ‘‘fourth dimension,’’ in the spirit of Beut
ler and van Gunsteren’s work.7 By keeping the rest of the
system confined to the physical three-dimensional space
allowing the molecule of interest to evolve in the fou
dimensional space, one can compute the chemical pote
as the PMF or work for moving the molecule along t
fourth dimension into which the molecule is gradually i
serted, or from which it is gradually abstracted. In this 4
PMF scheme, the coupling of the molecule of interest to
solvent is treated dynamically, similar to thel-dynamics
approach.10

In the following sections, the theoretical foundations
the 4D-PMF method are outlined, and its implementation
molecular-dynamics simulations is summarized. Applic
tions to calculations of the hydration free energy of simp
LJ spheres, of water, and of camphor are presented to i
trate the tractability of the method. The PMF profiles a
analyzed in terms of surface area laws and solve
continuum approximations. The applicability and reliabili
of the method are discussed. Finally, further applications
the method are suggested.

THEORY

A single molecular solute immersed in a bulk solvent
considered. While the solvent atoms evolve in the phys
three-dimensional space, the Hamiltonian of the system
extended such that the solute atoms evolve along an unph
cal fourth dimensionwu , in addition to the three physica
dimensions. We write the total Hamiltonian of the extend
system as

H5Tv1Tu1Vvv1Vuu1Vvu , ~3!

whereTv and Tu are the kinetic energy of the solvent an
solute atoms, respectively, andVvv ,Vuu ,Vuv are the
solvent–solvent, solute–solute, and solvent–solute pote
energy. Note that in applications to biomolecular studies,
‘‘solvent’’ degrees of freedom could include those of a pr
tein receptor or binding site. The coordinates of the solv
atoms are r v

(1) ,r v
(2) ,..., where each vector r v

( i )

[(xv
( i ) ,yv

( i ) ,zv
( i )) represents the three Cartesian degrees

freedom of solvent atomi. The four cartesian degrees o
freedom of atomi of the solute are represented by the vec
ru

( i )[(xu
( i ) ,yu

( i ) ,zu
( i ) ,wu). For the sake of simplicity, we sha

write $r v% and $ru% to represent all the solvent and solu
coordinates, respectively. The kinetic energy of the solut

Tu5(
i

1

2mu
~ i ! ~~pux

~ i !!21~puy
~ i !!21~puz

~ i !!2!1
1

2Mu
puw

2 ,

~4!

whereMu5( imu
( i ) is the total mass of the solute. Since ea

atom of the solvent interacts with the solute atoms throug
superposition of pairwise radially symmetric LJ and coulo
bic energy functions, the potential-energyVvu is easily ex-
tended to account for motion in the fourth dimension
writing any solvent–solute interatomic distance
A(xv

( i )2xu
( j ))21(yv

( i )2yu
( j ))21(zv

( i )2zu
( j ))21wu

2. Following
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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3389J. Chem. Phys., Vol. 111, No. 8, 22 August 1999 Calculating excess chemical potentials
this prescription, we note thatVvu goes to zero whenw
˜`, and that it is equal to the normal physical solven
solute interaction whenw50. Thus these two states corr
spond, respectively, to noninteracting solvent and solute,
to a fully interacting, physical three-dimensional syste
where the solute is completely immersed in the solvent.

The partition function of the extended system compri
a complete integration over the coordinates and moment
the solvent atoms evolving in the physical three-dimensio
space, as well as those of the solute, which is evolving
four dimensions. The equilibrium probability distribution o
the solute along the fourth dimension,^r(w)&, is given by

^r~w!&

^r~w0!&
5

*d$r v%d$ru%d~wu2w!e2b~Vv1Vvu!

*d$r v%d$ru%d~wu2w0!e2b~Vv1Vvu! , ~5!

wherew0 is an arbitrary reference point andb215kBT is the
thermal energy at temperatureT ~note that all integrals ove
the cartesian momenta of the solute and solvent cance
from such configurational averages, including that of
fourth dimensionpuw!. According to the reversible work
theorem

W~w!2W~w0!52kBT lnF ^r~w!&

^r~w0!&G , ~6!

whereW(w) is the PMF along the coordinatew,

dW~w!

dw
5 K S ]Vvu

]wu
D L

~wu5w!

. ~7!

Integrating from` to 0 yields the excess chemical potent
of the solute,Dmex ,

Dmex5 È0

dwK S ]Vvu

]wu
D L

~wu5w!

5W~0!2W~`!. ~8!

In practice,W(`) will be approximated from sufficiently
large values ofw, for which the interaction energy of th
solute with the rest of the system becomes negligible. In
Appendices, we shall show how, in homogeneous syste
the large-w tail of the PMF can be obtained analytically fro
a continuum approximation and how the short-range PMF
LJ particles relates to the solvent-exposed area.

In conclusion, by sampling the four-dimensional spa
one can follow a reversible pathway for the abstraction of
solute from the solvent—or inversely, its incorporation in
the solvent. Such a process amounts to calculating the P
of the solute in the fourth dimension, betweenw50 andw
5`. In this 4D-PMF approach, the traditional thermod
namic coupling parameterl used in free energy perturbatio
is replaced by allowing dynamical motions along a sing
nonphysical degree of freedomw accessible to the solut
only and perpendicular to the other cartesian degrees of f
dom defining the physical three dimensions of the system

APPLICATIONS

The PMF for abstraction of LJ particles and of wat
from bulk water into the fourth dimension, as well as that
insertion of a larger polyatomic solute, camphor, were cal
lated using Langevin molecular-dynamics simulations w
Downloaded 06 Dec 2011 to 76.68.36.75. Redistribution subject to AIP lic
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umbrella sampling. TheCHARMM program13 was modified to
include the following options. The molecular system w
separated in two groups: The solvent, which is evolving
the physical three-dimensional~3D! space, and the solute
which can evolve in four dimensions. The potential ener
for the nonbonded interactions of the solute with the solv
was calculated in four dimensions, as indicated in the pre
ous section. The velocity, acceleration, and force vectors
the solute atoms were augmented to include a fo
dimensional component. The trajectories were generated
Langevin dynamics at 300 K. In the case of polyatomic s
utes, a holonomic constraint was used to impose a sin
value ofw for each atom of the solute at a given time. In t
integration of the equations of motion, the acceleration
each solute atom i in the fourth dimension,
mi

21(2]Vvu /]w( i )), was replaced by the sum of the force
acting on all the atoms in the fourth dimensio
S j (2]Vvu /]w( j )) divided by the total mass of the solute
Mu5S jmj . This procedure ensured energy conservation

The first system studied consisted of a spherical dro
of 151 water molecules with an argon atom in its center. T
TIP3P water potential-energy parameters14 were used, while
the potential-energy interaction of Ar with water was mo
eled with a LJ potential (e50.190 226 kcal/mol, s
53.280 29 Å) derived from Berthelot mixing rules13 from
TIP3P14 and Ar15 LJ parameters. The spherical solve
boundary potential~SSBP! was imposed to mimic the influ
ence of bulk solvent.16 A quadratic restraining potentia
V(r u)5 1

2k(xu
21yu

21zu
2) ~with k510 kcal/mol/Å2! was ap-

plied to the center-of-mass of the solute to keep it near
center of the hydration droplet in the physical three dime
sions. After equilibration in 3D, a series of 21 calculatio
~windows! was performed. In each window, the solute w
subjected to a harmonic~‘‘umbrella’’ ! potential Ui(w)
5 1

2ki(w2wi)
2 acting in the fourth dimension alone, whe

ki is a force constant andwi is the reference value ofw for
window i. The force constant of this biasing potential w
ki55.0 kcal/mol/Å2. The reference value varied fromwi

50.0 to 10.0 Å in increments of 0.5 Å. The time step f
integration of the equations of motion was 2 fs. In a fi
series of simulations, the different windows were equ
brated for 5 ps and run for a further 20 ps. In that init
series of simulations, the last configuration of the previo
window was used as the starting configuration for the n
window. Each window was then extended by a further 80
for a total of 100 ps of production per window~grand total of
2.1 ns!, from which the 4D~fourth-dimensional! value of Ar,
wAr , was recorded at every time step. The resulting proba
ity distribution of Ar in the fourth dimension was then com
puted and debiased using the weighted histogram ana
method~WHAM !.17,18This yielded the PMF for the abstrac
tion of Ar from water. The same procedure was used wit
larger LJ sphere (e50.190 226 kcal/mol;s54.613 25 Å).

To calculate the PMF for abstraction of a solute wa
molecule, the same methodology was used with a drople
151 TIP3P water molecules as a starting point. The simu
tion consisted of 22 umbrella runs, with referencewi varying
in increments of 0.5 Å from20.5 to 10 Å with a force
constant of 5 kcal/mol/Å2.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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3390 J. Chem. Phys., Vol. 111, No. 8, 22 August 1999 Pomès et al.
Finally, the PMF for insertion of a camphor molecu
into the water droplet was calculated from 22 windows w
ki55.0 kcal/mol/Å2, and successive reference values spa
by 0.5 Å betweenwi58.0 and 2.5 Å, and spaced by 0.25
between 2.5 and 0.0 Å. The smaller spacing between suc
sive windows at small values ofw was designed to increas
statistical sampling in the steep region of the PMF cor
sponding to insertion of the repulsive cores of the camp
atoms. Equilibration of each window consisted in sequen
runs of 10 ps. The production or data-collection part of
calculation consisted in simulations of 40 ps performed c
currently on four R-10 000 SGI processors. The total sim
lation time of 1.1 ns took a total of;40 h of CPU. The
equilibrium geometry and internal-energy parameters
camphor were as listed by Helms and Wade.19 The LJ pa-
rameters were taken from theCHARMM force field, version
22,20 by assigning the atom types C and O to the keto ato
and the types CT, CT1, CT2, and CT3 to the remaining
atoms bearing respectively 0, 1, 2, and 3 H atoms. The par-
tial charges of the keto group were 0.38e and20.38e for C
and O, respectively;19 the partial charges of all H atoms we
0.09e, and those of each of the nonketo C atoms were gi
by 2n30.09e, where n is the number of coordinating H
atoms.

RESULTS AND ANALYSIS

Simple Lennard-Jones solutes

The PMF for abstraction of Ar from bulk water into th
fourth dimensionw is plotted in Fig. 1. This profile has thre
distinct regions. In the short range (w,2 Å), the PMF as-
sumes the shape of a quadratic barrier centered at the or
The barrier arises because at small values ofw the PMF is
dominated by strongly repulsive forces~the LJ core! which
tend to expel the solute into the fourth dimension. This sh
range ~SR! part of the PMF profile can be fit well by
harmonic functionf SR(w)55.4520.99w2 kcal/mol ~see Fig.
1!. In Appendix A, it is seen that this quadratic dependen
can be interpreted in terms of a phenomenological solv

FIG. 1. ~——! PMF calculated for the abstraction of Ar from water alon
the fourth dimensionw (e50.190 226 kcal/mol,s53.2809 Å). The solute
is fully interacting at w50 and completely decoupled in the lim
w56`. ~----! short-range fitf SR520.99w215.45; ~– – –! long-range fit
f LR5281.4w2311.78.
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exposed area law by considering thew-dependence of the
three-dimensional distance of closest approach between
ute and water atoms. From Eq.~A5!, the above fit corre-
sponds to an apparent surface tensiong50.99/(4p)
50.0788 kcal/mol/Å2554.7 dyn/cm~see Appendix A!.

In the region 2.0,w,4.5 Å there is a balance betwee
attractive and repulsive terms of the solvent–solute LJ in
actions and atw53.02 Å the mean force acting on the solu
vanishes so that the PMF reaches a minimum. This sep
tion may be interpreted as the distance of contact betw
the Ar solute particle and the solvent O atoms, since it is
smallest absolute value ofw for which the mean force be
tween Ar and O atoms is not dominated by the repuls
from the LJ core. This corresponds to configurations wh
water molecules have just dislodged or expelled the so
from the three-dimensional space into the fourth dimensi

Beyondw54.5 Å, the PMF rises gradually with increas
ing w towards an asymptotic value. This rise results from
loss of long-range attractive~dispersion! interactions with
the water molecules as the LJ solute is pulled out into
fourth dimension. As shown in Fig. 1, the long-range~LR!
part of the PMF is found to be well fit by a function of th
type f LR(w)5aw231b. In Appendix B, we show thata can
be obtained analytically in the limit of largew by integrating
the dispersion interaction between the solute and a c
tinuum solvent. For the argon LJ solute, the total dispers
coefficient defined in Eq.~B4! ~see Appendix B! is BAr

5947.012320.05988.0 kcal/mol•Å.6 With rbulk

50.334 Å23, Eq.~B6! yieldsV(w)5281.42w23. Since the
PMF is defined within an arbitrary additional constant, t
long-range portion of the PMF is then approximated
f (w)5281.42/w31b, where the shift parameterb is ad-
justed to theW(w) profile obtained from the simulation. A
shown in Fig. 1, a reasonably good fit is obtained forb
51.78 kcal/mol.

Following Eq.~8!, the hydration free energy of Argon i
calculated as the PMF difference between the fully intera
ing state (w50) and the noninteracting state (w5`),
which is given by the asymptotic value of the PMF. Bas
on the present calculation,mex5W(0)2W(`)55.421.8
53.6 kcal/mol.

The PMF obtained for a larger LJ sphere is shown
Fig. 2. This profile is similar qualitatively to that of the A
solute particle. The larger size of the particle is reflected b
in the larger magnitude of the free energy changes in
short-range and long-range parts ofW(w), and in the larger
value ofwmin for which W reaches a minimum. The analys
of the three regions of the PMF is as before. As shown
Fig. 2, the short-range (w,3 Å) is fit well by f SR(w)
514.621.08w2, which in the framework of a phenomeno
logical solvent-exposed area model~see Appendix A! corre-
sponds to a surface tension ofg50.0859 kcal/mol/Å2

559.7 dyn/cm, a value close to that obtained for Ar. T
minimum of the PMF occurs atw54.2560.08 Å. As before,
this separation is the effective distance of closest appro
between the solute and solvent O atoms. Finally, the lo
range~LR! tail of the PMF (w.5.5 Å) is approximated by
f LR(w)5a/w31b, wherea5604.5 kcal/mol•Å 3 was calcu-
lated from the total dispersion energy of the solute parti
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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with water ~see Appendix B! and the asymptotic valueb
55.75 kcal/mol was obtained by fit. From this analysis
extract the valueW(0)514.6 andW(`)55.75 kcal/mol to
get m5W(0)2W(`)58.9 kcal/mol.

Water molecule

The PMF for the abstraction of a water molecule fro
bulk water into the fourth dimension is depicted in Fig.
There are three distinct regions in the profile. Unlike the
particles, this solute is polar, which gives rise to a qual
tively different profile. Belowuwu51.9 Å, the PMF corre-
sponds to a well centered atw50. This is because at sho
intermolecular separations, the solvent–solute potential
ergy is dominated by attractive coulombic interactions,
that work is required to extract the water solute into t
fourth dimension. Besides this absolute minimum, there
secondary free energy well atw52.35 Å. Within the 0.1 Å
resolution of the histogram bins used to constructW(w), the
location of this minimum matches the distance of clos
approach, 2.4 Å, apparent in the O–O radial distribut
function for the TIP3P model.14

FIG. 2. ~——! PMF calculated for the abstraction of the larger Lenna
Jones solute (e50.190 226 kcal/mol,s54.613 25 Å) from water along the
fourth dimensionw; ~----! short-range fit f SR521.08w2114.6; ~– – –!
long-range fitf LR52604.5w2315.75.

FIG. 3. ~—! PMF calculated for the abstraction of a solute water molec
from TIP3P water along the fourth dimensionw; ~----! long-range fitf LR

5249.0w2315.63.
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Despite the presence of Coulombic solvent–solute in
actions, the long-range tail of the water PMF is well appro
mated by integrating the dispersion interactions assumin
solvent continuum~Appendix B!, similar to the analysis for
simple LJ particles. The resulting function isf LR(w)
5249.0w2315.6 kcal/mol. A derivation of the long-rang
contribution to the PMF arising from electrostatic intera
tions of the solute with water, presented in Appendix
indicates that at separationsw>4 Å, the Coulombic interac-
tions between the vanishing water molecule and bulk solv
are small~less than 3%! compared to dispersion interaction

Consequently, the asymptotic value ofW can be ap-
proximated from the long-range fit of the dispersion intera
tions ~see Fig. 3!. Based on the present calculation, the h
dration free energy of TIP3P water ism5W(0)2W(`)50
25.6525.6 kcal/mol.

Camphor

The PMF for insertion of camphor into a droplet of 25
water molecules fromw58 Å to w50 Å is shown in Fig. 4.
This molecule contains nine nonpolar C atoms and one p
CO group. The predominance of nonpolar centers is reflec
in the qualitative profile of the PMF, which resembles that
LJ particles. Belowuwu53 Å,W(w) corresponds to a 10.5
kcal/mol barrier, indicating that in spite of its polarity, cam
phor is expelled from water. Beyond the free energy mi
mum atw53.260.1 Å,W(w) is fit well by the approxima-
tion f LR(w)52621.1/w3113.55 where, as before, th
coefficient ofw23 was derived from the sum of dispersio
coefficients between solute and solvent atoms~see Appendix
B!. Overall, the long-range rise of the PMF compensates
the initial barrier, so thatW(0)2W(`)510.5213.55
.23.0 kcal/mol.

DISCUSSION

Comparison to theoretical and experimental results

We obtained values of 3.6,25.6, and23.0 kcal/mol for
the hydration free energies of argon, water, and camp

-

e

FIG. 4. ~——! PMF calculated for the insertion of camphor into water alo
the fourth dimensionw; ~– – –! long-range fit f LR52621.1w23113.55.
The molecular structure of camphor is depicted as an insert. The statis
uncertainty is largest in the outlying regions~w,20.1 Å andw.8.1 Å!,
which are the least sampled in the simulations.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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respectively. In this section, we compare these results
available experimental and computational data. Because
applications presented in this study are meant as a test o
4D-PMF method, not as a test of force fields, system size
boundary conditions, emphasis is placed on the compar
with results obtained computationally with similar system

The hydration free energy of25.6 kcal/mol that we ob-
tained for TIP3P water in a droplet of 150 water molecu
may be compared to the reported values of25.8 and26.4
kcal/mol calculated byl-scaling of the potential energy i
droplets of 50 and 100 TIP3P water molecules with SSBP16

Other results obtained for a similar three-site water poten
the single-point charge~SPC! model21 range from25.5 to
26.4 kcal/mol~cited in Ref. 19!. The result obtained in the
present study is thus within the range of other values ca
lated by computer simulations, and compares modera
well with the experimental value of26.3 kcal/mol.22 The
hydration free energy of camphor was determined from
perimental measurements as23.5 kcal/mol,23,24 a value
overestimated by 0.5 kcal/mol in the present study. Given
limitations arising from the approximations inherent to t
force field, such agreement is adequate.

A result of 3.0 kcal/mol was obtained for the hydratio
free energy of argon calculated by thermodynamic integ
tion and free energy perturbation withl-scaling in a droplet
of 100 water molecules using identical potential functio
comparable simulation times~2 ns!, and the SSBP boundar
potential~M. Souaille, personal communication!. This value
is in fair agreement~0.6 kcal/mol, or a relative error of 20%!
with our result. One source of systematic error between
calculation and our result lies in the different size of t
water droplet. As noted above, previous free energy per
bation simulations using the SSBP method to calculate
hydration free energy of TIP3P water varied by 0.6 kcal/m
upon increasing the droplet size from 50 to 100 wa
molecules,16 an effect similar in magnitude to the discre
ancy observed here. A result of 2.060.6 kcal/mol was ob-
tained by free energy perturbation and thermodynamic in
gration for Argon with comparable LJ paramete
(e50.196 478 kcal/mol,s53.29 Å) in a periodic system o
SPC water molecules.25 This disagreement, however, may b
attributed largely to different water models and simulati
protocols. Finally, the hydration free energy of Ar was d
termined experimentally as 2.0 kcal/mol.26

Analysis of the 4D-PMF profiles

While the chemical potentials are obtained from the li
its W(0) and W(`) @see Eq.~8!#, the 4D-PMF profile at
intervening values ofw also yields useful information. A
small values of the fourth-dimensional coordinatew, expul-
sion of predominantly nonpolar solutes by water is reflec
by the presence of a free energy barrier centered atw50.
Work is required for the insertion of a solute whose inter
tions with water at values ofw less than the contact separ
tion are dominated by the repulsive core of the LJ potent
In the case of simple LJ spheres, thew-dependence of this
barrier appears to be quadratic, which was interpreted
considering the dependence of the hydration free energ
the solute surface area, as defined by the separation bet
Downloaded 06 Dec 2011 to 76.68.36.75. Redistribution subject to AIP lic
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the solute and water molecules in the three physical dim
sions x, y, and z ~Appendix A!. For the two LJ particles
considered in this work, apparent surface tensions of 5
and 59.7 dyn/cm were derived by this analysis. Both val
fall within the range of 40–60 dyn/cm obtained in a rece
study of LJ solutes by extensive computer simulations.27,28In
contrast, for a polar solute such as water, the PMF adopts
shape of awell at small w values. For polyatomic solute
such as camphor, the short-range PMF is a barrier, reflec
expulsion of the predominantly nonpolar groups of the sol
from water. However, the dependence of this barrier is
quadratic, which arises both from the competition of Co
lombic interactions and from the molecularity of the solut

The location of the minimum in the 4D-PMF of simpl
LJ solutes corresponds to the distance at which the repul
core of the hydrophobic solute has barely been expelled f
the solvent. As such, this separation may be viewed as
distance of contact between the solute particle and solve
atoms, and at which the mean attractive and repulsive fo
acting on the solute cancel out exactly. In the case of
water solute, this contact minimum is a secondary o
reached atw52.360.1 Å, a value which is consistent wit
the distance of closest approach of;2.4 Å obtained from the
TIP3P O–O radial distribution function.14 Finally, although
the 4D-PMF profile of camphor is qualitatively similar t
that of simple LJ solutes, due to the complex molecular
ture of camphor it is not possible,a priori, to ascribe the
location of the PMF minimum to a distance of closest a
proach or contact between water and any single solute a
However, it must be noted that the location of the minimu
in the 4D-PMF of camphor~3.2 Å! reflects the size of the
atoms constituent of the solute, not the size of the wh
molecule, which is significantly more bulky.

Beyond 1 to 2 Å from the ‘‘distance of contact,’’ in all
the cases examined here, the 4D-PMF adopts aw23 depen-
dence that can be derived analytically from summing up
dispersion interactions between each solute atom and the
vent in the limit of a solvent continuum~Appendix B!. In
addition, a similar analysis also led to aw23 dependence of
electrostatic interactions for polar, neutral molecules~Ap-
pendix C!. This electrostatic contribution was shown to be
much smaller magnitude than that arising from dispers
interactions in the long-range limit. The fact that these co
tinuum approximations are valid at such small separati
would be surprising in a three-dimensional system beca
as indicated for example in the radial distribution function
liquid water,14 there is still a lot of structure in the hydratio
shells as far as 10 Å away from any water molecule.
contrast, the 4D-PMF of water~Fig. 3! suggests that the con
tinuum approximation is valid at values ofw as small as 3 to
4 Å—barely beyond the first hydration shell of 3D wate
This difference arises from the fact that once the repuls
core of all the solute atoms has been expelled from the
vent, the influence of the solute on the local structure of
solvent largely vanishes, so that the notion of hydrat
shells does no longer apply as the solute takes off in
fourth dimension.

The magnitude of deviations of the 4D-PMF from th
analytical short- and long-range fitsf SR and f LR in the re-
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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spective regions of validity of these approximations provid
an estimate of the statistical errors in the PMF profiles. Fr
Figs. 1–4, these deviations are seen to be within 0.3 kcal/
for Ar and camphor, within 0.2 kcal/mol for water, an
within 0.1 kcal/mol for the large LJ solute. In the light o
systematic errors arising from the force field and fro
boundary conditions, this uncertainty is acceptable and s
gests that the 4D-PMF has converged adequately. Such w
behaved convergence in the limit of ‘‘large’’ values ofw
demonstrates the validity of the approximation as well as
reliability of the method as the solute is pulled into the fou
dimension beyond contact separation. This predictability a
suggests a straightforward improvement to the computatio
efficiency of the method: Instead of extending the simu
tions all the way to~or starting from! w510Å, one can save
up to 50% of the CPU time by truncating the calculation
the PMF at values ofw just large enough to fit the long-rang
PMF with confidence. In the applications presented abo
these values could be 6 to 7 Å for argon and the large L
solute, 5 Å for water, and 4.5 to 5 Å for camphor.

Applicability and advantages of the 4D-PMF method

Excess chemical potentials are calculated as the dif
ence in the free energy of two states: Fully interacting a
noninteracting solvent and solute. The specificity of the 4
PMF method is to treat the noninteracting state as a sys
in which solvent and solute are infinitely separated in a n
physical spatial dimension. This procedure is formally ana
gous to the ‘‘shifting’’ of solvent–solute interactions.5,6 With
both methods, numerical instabilities originating from t
growth or deletion of LJ atoms with simplel-scaling of the
LJ interactions are completely avoided. In that respect,
effectiveness of shifting the nonbonded interaction poten
by the extension of the solute into the fourth spatial dim
sion is similar to methods using shifting.5,6 Unlike these ap-
proaches, in which the extension of solvent–solute sep
tions is parametric@see Eq.~2!#, in the 4D-PMF approach the
extension is governed by the mean force exerted by the
vent on the solute along a continuous spatial dimension
the previous discussion, we have considered how far the
culation of the PMF should extend into the fourth dimens
to allow an accurate estimate of the free energy of the n
interacting state,W(`), relative to that of the fully interact-
ing one,W(0). Importantly, the analysis of the factors go
erning the 4D-PMF profiles leads to physical insight
practical use. In particular, we have seen that the long-ra
approximation of the 4D-PMF derived from a continuu
treatment of the solvent can be used advantageously, bo
calculate the asymptotic valueW(`) without introducing ad-
ditional errors, and to gauge the convergence of the calc
tions. Thus the truncation of the 4D-PMF profiles compu
in this study atw55 to 7 Å would lead to equally reliable
estimates ofW(`). Moreover, the values ofw from which
the long-range approximations become valid (w.3 to 5 Å!
are determined by atomic size~as discussed above!, and do
not depend on the molecular size of the solute. Accordin
the convergence of computations of the 4D-PMF was see
be as fast for large solutes~such as our larger LJ sphere an
camphor! as for smaller ones.
Downloaded 06 Dec 2011 to 76.68.36.75. Redistribution subject to AIP lic
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To underscore further the tractability, simplicity, an
generality of the 4D-PMF method, we note that unlike p
viously reported calculations using shifting,5,6 the present
calculations were performed without concurrentl- or
ln-scaling of the nonbonded interactions. The PMF appro
allows to treat molecular solutes in a single set of umbre
sampling simulations, which saves setup and analysis ti
Thus the 4D-PMF results reported for camphor were
tained within one work-day, including CPU time~on four
R10 000 processors! and manpower.

Based on the present study, we expect that similar sim
lation protocols and simulation times could be applied w
confidence to a wide range of uncharged solute molecu
whether polar, or nonpolar. The case of ionic solutes will
treated in subsequent studies. In such cases, additional
culations might be needed due to the divergence of Coul
bic interactions. Among the possible approaches, the in
tion of a neutral analog of the solute could be treated w
this method, whereas the free energy of charging or unch
ing the fully inserted solute~at w50! could be performed by
direct free energy perturbation, by continuum electrosta
calculation,29 or by using cumulant expansions of the deriv
tive of the free energy with respect to the ionic charge30

Finally, it should be stressed that the direct application of
approach to problems of molecular recognition and liga
binding is straightforward, although simulations may need
include comparatively large values ofw since the simple
analytical treatment of long-range interactions derived in A
pendices B and C for homogeneous media is expecte
break down. In any event, it is hoped that the 4D-PM
method to compute excess chemical potentials can be
practical use in industrial and drug-design efforts.

CONCLUSIONS

We have introduced a method for the calculation of e
cess chemical potentials by computer simulations. We h
shown how the excess chemical potential of a solute
ligand can be calculated from the PMF for abstracting
molecule into~or inserting it from! an extra spatial dimen
sion. This approach is formally related to the parame
shifting of interatomic distances in the calculation of LJ p
tential interactions,5,6 and possesses the same basic adv
tage over conventional free energy calculations: because
singularity problem that arises from a simple scaling of t
LJ core is avoided, the method is not limited to conservati
atom-by-atom perturbations of the molecule of interest.
stead, whole molecules can be introduced or abstracted
single set of simulations with minimal human intervention

The tractability, simplicity, effectiveness, and general
of the method were illustrated through calculations of t
hydration free energy of two LJ spheres, of water, and
camphor using molecular-dynamics simulations and u
brella sampling. We expect the method to be useful for
efficient calculation of chemical potentials of solute a
ligand molecules with a wide range of sizes, shapes,
polarities. Further, in homogeneous systems it is possibl
obtain a 30%–50% gain in computational efficiency by ma
ing use of the analytical integration of long-range intera
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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tions between solvent and solute atoms in the limit of a s
vent continuum.

Other, straightforward applications of the method cou
include the concerted insertion–abstraction of several m
ecules, for example, in computing the binding free energy
water in protein cavities.2,8 The method can also be extend
to the direct calculation of relative binding free energies
making use of negative as well as positive values of
fourth dimensionw: Thus, a molecule initially atw50 could
be dislodged from a binding site by expelling it tow.0
while simultaneously bringing another ligand fromw,0 to
w50. Furthermore, an effective treatment of competit
ligand binding problems could be devised through the int
duction of additional~fifth, sixth, etc.! spatial dimensions
each of them reserved to a different ligand.

APPENDICES: INTERPRETATION OF THE PMF
PROFILES. APPENDIX A: APPROXIMATION
OF SHORT-RANGE LJ INTERACTIONS

The hydration free energy of hydrophobic solutes,m, can
be related to their solvent-exposed surface areaS through a
proportionality constant

m5gS, ~A1!

whereg is the apparent surface tension of the solvent.31 For
simple LJ particles in water, the effective surface is defin
by the distance of closest approachRcontactas

S54pRcontact
2 . ~A2!

As the solute is pulled into the fourth dimension, howeve
constant contact separation in 4D corresponds to a dimin
ing effective 3D radius given by

R3,eff5~Rcontact
2 2w2!~1/2!, ~A3!

so that the effective surface area of the solute at2Rcontact

<w<Rcontactbecomes

S54pR3,eff
2 54p~Rcontact

2 2w2!. ~A4!

From the combination of Eqs.~A1! and~A4!, the short-range
dependence of the PMF for the expulsion of a LJ solute i
the fourth dimension is predicted to be a quadratic barrie

W~w!524pgw21C. ~A5!

APPENDIX B: APPROXIMATION OF LONG-RANGE LJ
INTERACTIONS

In this section, we derive an analytical approximation
long-range dispersion interactions of the solute in the f
spatial dimensions based on a continuum treatment of
solvent. First, we rewrite the LJ interaction potential betwe
solvent and solute atomsi and j separated byR4

i j 5(r i j
2

1w2)(1/2) as

VLJ
i j ~r i j ,w!5

Ai j

~r i j
2 1w2!62

Bi j

~r i j
2 1w2!3 , ~B1!

with Ai j 54e i j s i j
12 and Bi j 54e i j s i j

6 . The LJ interaction en-
ergy between theN solvent atoms and solute atomj is given
by
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V~r1 ,...,rN ,ru
~ j ! ,w!5(

i 51

N

VLJ
i j ~r i j ,w!. ~B2!

In the limit of largew we approximate the solvent as a co
tinuum. The potential is dominated by the dispersion te
whereas the repulsive term becomes negligible. By integ
tion over the full range of 3D separationsr and summation
over all the atoms of the solute, Eq.~B2! becomes

V.V~w!5(
j
E

0

` 2Bj

~r 21w2!3 rbulk4pr 2dr, ~B3!

whererbulk is the bulk density of the solvent, and

Bj5BOj12BHj , ~B4!

is the sum of the dispersion coefficients between the so
atom j, and the atoms of a water molecule. Eq.~B3! yields

V~w!524p(
j

BjrbulkF r

4~r 21w2!22
r

8w2~r 21w2!

2
arctan~r /w!

8w3 G
0

`

. ~B5!

Finally, for sufficiently largew, this becomes

V~w!5
2p2rbulk( jBj

4w3 . ~B6!

APPENDIX C: APPROXIMATION OF LONG-RANGE
ELECTROSTATIC INTERACTIONS

We first consider the long range tail of solvent–solu
interactions in the case of a mono-atomic solute carryin
chargeQ. When the solute is located atw, the electrostatic
potential seen by the solvent atoms is

f~r !5
Q

~r 21w2!1/2, ~C1!

wherer 5ur u. The reversible electrostatic work to charge t
mono-atomic solute at a positionw is expressed as a thermo
dynamic integral

Velec5E
0

Q

dQ8E dr
1

~r 21w2!1/2^rv~r ;Q8!&, ~C2!

where^rv(r ;Q8)& is the average charge density of the s
vent ~in the three-dimensional space! induced by the pres-
ence of the solute in the system. To estimate^rv(r ;Q8)& we
use a continuum electrostatic approximation. The solution
this problem is particularly simple ifw is larger than the
range of the solute–solvent core repulsion potential beca
the solvent dielectric constant is uniform everywhere in
three-dimensional space. According to Poisson’s equa
for macroscopic media, the average solvent charge distr
tion induced by a solute of chargeQ in a medium of dielec-
tric constanteD is
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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^rv~r ;Q!&5S 1

eD
21D S 21

4p D¹2f~r !

5S 1

eD
21D 3Qw2

4p~r 21w2!5/2. ~C3!

Therefore, according to Eq.~C2!

Velec5
Q2

2 S 1

eD
21D4pE

0

`

r 2drS 1

~r 21w2!1/2D
3S 3w2

4p~r 21w2!5/2D5Q2S 1

eD
21D 3p

32w
. ~C4!

Following a similar approach, we now estimate the lon
range electrostatic tail in the case of neutral polar solu
The reversible work to bring the polar solute from infinity
a positionw is ~assuming linear response of the dielect
medium!

Velec5
1

2 E dr(
i j

Qi

~~r2r i !
21w2!1/2^rv~r2r j ;Qj !&, ~C5!

where ^rv(r2r j ;Qj )& is the average charge density of th
solvent induced by thej th charge of the solute located atr j .
Using the translational symmetry of the system, the integ
is re-written as

Velec5
1

2 S 1

eD
21D(

i j
QiQjE

0

2p

dfE
1

p

du sin~u!

3E
0

`

r 2drS 1

~r 21w21r i j
2 22rr i j cos~u!!1/2D

3S 3w2

4p~r 21w2!5/2D , ~C6!

wherer i j 5ur i2r j u. To obtain the asymptotic behavior inw
it is appropriate to perform a series expansion in terms of
solute intramolecular charge–charge distancer i j . Retaining
only the lowest nonvanishing order inr i j , it is possible to
express the result in terms of the solute dipole momentme

using the relationm25( i j QiQjr i j
2

Velec5
1

2
me

2S 1

eD
21D E

0

2p

dfE
1

p

du sin~u!

3E
0

`

r 2dr
3w2~r 21w223r 2 cos~u!2!

~8p~r 21w2!5!

5me
2S 1

eD
21D 15

1024w3 . ~C7!

As expected, the magnitude ofVelec becomes vanishingly
small asw goes to infinity. Interestingly, thew-dependence
of Velec is the same as that ofVvdw . For a water solute in
water, me50.5e•Å, eD580, yielding Velec

521.200 623/w3 kcal•mol21
•Å 3. This is much smaller than

the correction for the van der Waals long range t
~249.0/w3 kcal•mol21

•Å 3, see Appendix B!.
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