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A general method for computing excess chemical potentials is presented. The excess chemical
potential of a solute or ligand molecule is estimated from the potential of mean-(BIME)
calculated along a nonphysical fourth spatial dimenswninto which the molecule is gradually
inserted or from which it is gradually abstracted. According to this “4D-PMFur dimensional
scheme, the free energy difference between two limiting states defines the excess chemical potential:
At w= *+o0, the molecule is not interacting with the rest of the system, whereas=&, it is fully
interacting. Use of a fourth dimension avoids the numerical instability in the equations of motion
encountered upon growing or shrinking solute atoms in conventional free energy perturbation
simulations performed in three dimensions, while benefiting from the efficient sampling of
configurational space afforded by PMF calculations. The applicability and usefulness of the method
are illustrated with calculations of the hydration free energy of simple Lennard-Jodjesolutes,

a water molecule, and camphor, using molecular dynamics simulations and umbrella sampling.
Physical insight into the nature of the PMF profiles is gained from a continuum treatment of short-
and long-range interactions. The short-range barrier for dissolution of a LJ solute in the added
dimension provides an apparent surface tension of the solute. An approximation to the long-range
behavior of the PMF profiles is made in terms of a continuum treatment of LJ dispersion and
electrostatic interactions. Such an analysis saves the need for configurational sampling in the
long-range limit of the fourth dimension. The 4D-PMF method of calculating excess chemical
potentials should be useful for neutral solute and ligand molecules with a wide range of sizes,
shapes, and polarities. @999 American Institute of Physids§0021-960809)51231-3

INTRODUCTION Hamiltonian may then be rewritten a$(\)=Hy+AV,,,
whereV,, is the potential energy for solvent—solute interac-
Free energy calculations based on computer simulationgons. Sampling of the configurational space for discrete val-
constitute a powerful tool to compute the excess chemicalies of\ ranging from zero to onéor one to zerpamounts to
potential of small molecules in dense ﬂLﬁdH]d the blndlng gradua”y insertingor remo\/ing the molecule from the sys-
affinities of molecular ligands to biomolecul&3.In such  tem while maintaining thermodynamic equilibrium. By inte-
approaches, the relative free energy of two states of the sygrating the expectation value of the derivativeHof\) with
tem is obtained by calculating the reversible thermodynami(;espect tox (so-called “thermodynamic integration;,’or by
work from one state to the other. More specifically, thecomputing the expectation value of exp(V,,) (“thermody-
Hamiltonian of the system is written @$(A\)=(1—MHo  namic perturbation), one can compute the work required
+AH;, whereH, andH, are the Hamiltonians for the initial o the insertion into(or abstraction fromthe system of in-
and final thermodynamic states, respectively, Rigla cou-  (grest.
pling parameter which yields, ath =0 andH, atA=1. To Linear scaling ofV,,,, however, is fraught with a long-
calculate the excess chemical potential of a moleddleand  ocognized statistical problem associated with the repulsive
Ho may correspond to states where the molecule is, respeg it of the Lennard-JonekJ) potential, namely, the numeri-
tively, coupled and uncoupled to the rest of the system. The) jnstability resulting from the singularity due to the pres-

ence of an infinitely small and infinitely repulsive body in a
dAuthors to whom correspondence should be addressed. dense medium at small values ®f Therefore, alternative
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relative amount of configurational sampling at small valuesrational space available to the molecule. Thus, this shifting
of the coupling parametey, but it does not remove the in- parameter can be replaced by the extension of the molecule
stability problen? Effective ways to bypass the problem into an unphysical “fourth dimension,” in the spirit of Beut-
were reported by Zacharias al® and by Beutleet al® The  ler and van Gunsteren's wofkBy keeping the rest of the
first method consists of combining linear scaling of the LJsystem confined to the physical three-dimensional space and
energy term with the translation of the effective distancesallowing the molecule of interest to evolve in the four-
separating the solute from the solvent atoms. In this so-calledimensional space, one can compute the chemical potential
“separation-shifted potential scaling(SSP$ approach, the as the PMF or work for moving the molecule along the
LJ potential-energy function for solvent—solute interactions fourth dimension into which the molecule is gradually in-
o\12 [ 5\6 serted, or from which it is gradually abstracted. In this 4D-
-3

, (1) PMF scheme, the coupling of the molecule of interest to the
solvent is treated dynamically, similar to thedynamics

wheree and o are the LJ parameters, is replaced by approach’
3 In the following sections, the theoretical foundations of
]' 2 the 4D-PMF method are outlined, and its implementation in

molecular-dynamics simulations is summarized. Applica-
tions to calculations of the hydration free energy of simple
LJ spheres, of water, and of camphor are presented to illus-
trate the tractability of the method. The PMF profiles are
]analyzed in terms of surface area laws and solvent-
continuum approximations. The applicability and reliability
of the method are discussed. Finally, further applications of
g%e method are suggested.

V(r)=4e

0_2

r°+8(1—\)

6 2

(o
r’+38(1—\)

V(r \)=4e

whered(1—\) is a parametric function varying from 0 for a

fully interacting solutgat A =1), to a nonzero finite valué

in the decoupling limit £=0).° The second methddis

similar: In that approach, scaling is achieved with a power o

\, and (o/r) is replaced by f(\) + (/)] ¥, wheref(\)

is a quadratic function of the coupling parameterands is

an integer greater than 1. The advantage of such procedur

is to replace the infinitively repulsive “hard core” of the LJ

potential by a finite potential energy barrier, or “soft core,” THEORY

whose magnitude smoothly decreases to zero in the limit of

Complete decoup“ng. These approaches have been apphed to A Single moleculal‘ Solute immersed in a bulk SOIVent iS

Ca|cu|ati0ns Of the hydration free energy Of neon andCOﬂSidered. Wh||e the SOlVent atoms eVOIVe in the phySica|

ethanoPf to an atomic fluid, and to the calculation of the three-dimensional space, the Hamiltonian of the system is

binding free energy of camphor in cytochrome P450. extended such that the solute atoms evolve along an unphysi-
Furthermore, two methods for improving the efficiency ¢al fourth dimensionw,, in addition to the three physical

of the coupling parameter approach in free energy calculadimensions. We write the total Hamiltonian of the extended

tions were proposed recently. The first one consists in addingyStem as

an unphysical fourth dimension to the conformational space  H=T +T,+V,,+V,,+V,,, 3)

of the system. The technique was first proposed for efficient o

conformational sampling of proteihend extended to free WhereT, and T, are the kinetic energy of the solvent and

energy calculations with the application to an atomic liquid. Solute atoms, respectively, an¥,,,Vy,,Vy, are the

This approach effectively modifies the potential-energy surSolvent—solvent, splute—_solgte, and ;olvent—solute potential
face of the system and in particular, circumvents large en€N€rgy- Note that in applications to biomolecular studies, the

ergy barriers separating thermodynamic states, thereby imSolvent” degrees of freedom could include those of a pro-

proving the efficiency of free energy calculations. tein receptor or binding site. The coordinates of the solvent

1 2 i
Concurrently, the ‘\-dynamics” free energy simulation aton?i? (i'c)lre(i)rf, ,r?,..., where each vector r
technique introduced by Kong and Brodksreats the cou- =(Xy’.¥y’.2,’) represents the three Cartesian degrees of

pling parametek as another degree of freedom of the systenfreedom of solvent atom. The four cartesian degrees of

rather than as a preset parameter. The advantage of tifk )EdOT)Of (a)tor?)of the solute are represented by the vector
. . . 1) — I 1 I H F

\-dynamics technique is that free energy changes can be oba’=(Xy’.Yy’ 2y ,Wy). For the sake of simplicity, we shall

tained from potential of mean-forc@MF) calculations in  Write {r,} and{r,} to represent all the solvent and solute

which the dynamics of the system is governed by an excoordinates, respectively. The kinetic energy of the solute is

tended free energy surface and biasing potentials can be used 1 _ _ _ 1

to overcome free energy barriers. Recently the usefulness of T,= 2 W((pﬂi)%(pﬂ;)% (pf,'z))z)+ M pﬁw,

the method was demonstrated for competitive ligand ! u u

binding 1112 (4)

The general method that we propose combines key aswhereM ,=3,m{! is the total mass of the solute. Since each
pects of each of the three approaches reviewed above for tlaom of the solvent interacts with the solute atoms through a
calculation of excess chemical potentials. First, we note thasuperposition of pairwise radially symmetric LJ and coulom-
the shifting of the effective interatomic separation in the LJbic energy functions, the potential-energy,, is easily ex-
potential interactions of the molecule of interest with the restended to account for motion in the fourth dimension by
of the system, Eq(2), is formally analogous to, and sug- writing any solvent—solute interatomic distance as
gests, introducing an extra spatial dimension to the configu~/(x{) —x{)2+ (y{) —y)2+ (20— zZ")2+ w2, Following
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this prescription, we note thaf,, goes to zero whem umbrella sampling. TheHARMM progrant® was modified to
—oo, and that it is equal to the normal physical solvent—include the following options. The molecular system was
solute interaction whem=0. Thus these two states corre- separated in two groups: The solvent, which is evolving in
spond, respectively, to noninteracting solvent and solute, anthe physical three-dimension&BD) space, and the solute,
to a fully interacting, physical three-dimensional systemwhich can evolve in four dimensions. The potential energy
where the solute is completely immersed in the solvent.  for the nonbonded interactions of the solute with the solvent
The partition function of the extended system comprisesvas calculated in four dimensions, as indicated in the previ-
a complete integration over the coordinates and momenta @fus section. The velocity, acceleration, and force vectors of
the solvent atoms evolving in the physical three-dimensionaihe solute atoms were augmented to include a four-
space, as well as those of the solute, which is evolving ilimensional component. The trajectories were generated by
four dimensions. The equilibrium probability distribution of Langevin dynamics at 300 K. In the case of polyatomic sol-
the solute along the fourth dimensigm(w)), is given by utes, a holonomic constraint was used to impose a single

W drodir Ys(w.—w)e BVt Vuu) value ofw for each atom of the solute at a given time. In the
{p(w)) = Jdir,ydiry} ow, —w) VIV (5) integration of the equations of motion, the acceleration of
{p(wo))  Ja{ry}d{ry}o(w,—wo)e™ " ™ w each solute atom i in the fourth dimension,

wherew, is an arbitrary reference point agd 1=kgTisthe ~ m; }(—dV,,/ow), was replaced by the sum of the forces
thermal energy at temperatufe(note that all integrals over acting on all the atoms in the fourth dimension,
the cartesian momenta of the solute and solvent cancel o&tj(—avvu/aw(')) divided by the total mass of the solute,
from such configurational averages, including that of theM,=2;m;. This procedure ensured energy conservation.

fourth dimensionp,,,). According to the reversible work The first system studied consisted of a spherical droplet
theorem of 151 water molecules with an argon atom in its center. The
(p(W)) TIP3P water potential-energy parametémsere used, while
W(w) —W(wg)=—KkgT In| ——|, (6) the potential-energy interaction of Ar with water was mod-
{p(Wo)) eled with a LJ potential €=0.190226 kcal/mol, o
whereW(w) is the PMF along the coordinate, =3.28029A) derived from Berthelot mixing rufésfrom
TIP3P* and Ar® LJ parameters. The spherical solvent
dW(w) - < ( &V"”)> . (7)  boundary potential]SSBP was imposed to mimic the influ-
dw IWy, (W, =w) ence of bulk solvemt® A quadratic restraining potential

V(ry) = 3k(x2+y2+2% (with k=10kcal/mol/A?) was ap-
plied to the center-of-mass of the solute to keep it near the
center of the hydration droplet in the physical three dimen-
0 IVyy sions. After equilibration in 3D, a series of 21 calculations
Appex= de<( oW )> =W(0) —W(=). ®) (windows was performed. In each window, the solute was
4wy =w) subjected to a harmoni¢“umbrella”) potential U;(w)
In practice, W(«) will be approximated from sufficiently =k (w—w;)? acting in the fourth dimension alone, where
large values ofw, for which the interaction energy of the k; is a force constant and; is the reference value af for
solute with the rest of the system becomes negligible. In thavindow i. The force constant of this biasing potential was
Appendices, we shall show how, in homogeneous system;= 5.0 kcal/mol/&. The reference value varied from,
the largew tail of the PMF can be obtained analytically from =0.0 to 10.0 A in increments of 0.5 A. The time step for
a continuum approximation and how the short-range PMF ointegration of the equations of motion was 2 fs. In a first
LJ particles relates to the solvent-exposed area. series of simulations, the different windows were equili-
In conclusion, by sampling the four-dimensional spaceprated for 5 ps and run for a further 20 ps. In that initial
one can follow a reversible pathway for the abstraction of theseries of simulations, the last configuration of the previous
solute from the solvent—or inversely, its incorporation intowindow was used as the starting configuration for the next
the solvent. Such a process amounts to calculating the PMWindow. Each window was then extended by a further 80 ps,
of the solute in the fourth dimension, betweswr-0 andw  for a total of 100 ps of production per windaigrand total of
=, In this 4D-PMF approach, the traditional thermody- 2.1 ng, from which the 4D(fourth-dimensionalvalue of Ar,
namic coupling parameterused in free energy perturbation w,,, was recorded at every time step. The resulting probabil-
is replaced by allowing dynamical motions along a single,ity distribution of Ar in the fourth dimension was then com-
nonphysical degree of freedom accessible to the solute puted and debiased using the weighted histogram analysis
only and perpendicular to the other cartesian degrees of freeaethod(WHAM).2"*8 This yielded the PMF for the abstrac-
dom defining the physical three dimensions of the system. tion of Ar from water. The same procedure was used with a
larger LJ sphered=0.190 226 kcal/molg=4.61325A).
APPLICATIONS To calculate the PMF for abstraction of a solute water
molecule, the same methodology was used with a droplet of
The PMF for abstraction of LJ particles and of water 151 TIP3P water molecules as a starting point. The simula-
from bulk water into the fourth dimension, as well as that fortion consisted of 22 umbrella runs, with referemgevarying
insertion of a larger polyatomic solute, camphor, were calcuin increments of 0.5 A from—0.5 to 10 A with a force
lated using Langevin molecular-dynamics simulations withconstant of 5 kcal/mol/A

Integrating frome to O yields the excess chemical potential
of the solute A uqy,
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b T exposed area law by considering thedependence of the
three-dimensional distance of closest approach between sol-
ute and water atoms. From E(A5), the above fit corre-
sponds to an apparent surface tension=0.99/(4m)
=0.0788 kcal/mol/ =54.7 dyn/cm(see Appendix A

In the region 2.6cw<4.5 A there is a balance between
attractive and repulsive terms of the solvent—solute LJ inter-
actions and av=3.02 A the mean force acting on the solute
vanishes so that the PMF reaches a minimum. This separa-
tion may be interpreted as the distance of contact between
the Ar solute particle and the solvent O atoms, since it is the
smallest absolute value of for which the mean force be-
tween Ar and O atoms is not dominated by the repulsion
from the LJ core. This corresponds to configurations where
g:gkoldrignle'j"‘s"i';:f‘('cu'%i% cf)ozfztgi;ﬁ’f;r;c“ons‘;fsg;fg)’mT"r“’gtigli'tzng water molecules have just dislodged or expelled the solute
is fully interacting atflv:(-) and completel‘yT de.coupled.in the limit from the three-dimensional SpaF:e into the fourt_h d_lmenSIOn'
W=, () short-range fiff sz= —0.99%+5.45; (— — ) long-range fit Beyondw=4.5A, the PMF rises gradually with increas-
flr=—81.4v"3+1.78. ing w towards an asymptotic value. This rise results from the

loss of long-range attractivédispersion interactions with
the water molecules as the LJ solute is pulled out into the

Finally, the PMF for insertion of a camphor molecule fourth dimension. As shown in Fig. 1, the long-ran@gd)
into the water droplet was calculated from 22 windows withpart of the PMF is found to be well fit by a function of the
k;=5.0 kcal/mol/&, and successive reference values spacedype f r(w)=aw 3+b. In Appendix B, we show thai can
by 0.5 A betweerw;=8.0 and 2.5 A, and spaced by 0.25 A pe obtained analytically in the limit of large by integrating
between 2.5 and 0.0 A. The smaller spacing between succeghe dispersion interaction between the solute and a con-
sive windows at small values of was designed to increase tinuum solvent. For the argon LJ solute, the total dispersion
statistical sampling in the steep region of the PMF correcoefficient defined in Eq(B4) (see Appendix B is By,
sponding to insertion of the repulsive cores of the camphok=947.0+ 2 x 20.0=988.0 kcal/molA .6 With Poulk
atoms. Equilibration of each window consisted in sequential=0.334 A3, Eq.(B6) yieldsV(w)= —81.42v 3. Since the
runs of 10 ps. The production or data-collection part of theeMF is defined within an arbitrary additional constant, the
calculation consisted in simulations of 40 ps performed confong-range portion of the PMF is then approximated by
currently on four R-10000 SGI processors. The total simu+(w)=—81.42iv*+b, where the shift parametds is ad-
lation time of 1.1 ns took a total 0f-40 h of CPU. The justed to thew(w) profile obtained from the simulation. As

equilibrium geometry and internal-energy parameters okhown in Fig. 1, a reasonably good fit is obtained for
camphor were as listed by Helms and Waddhe LJ pa- =1 78 kcal/mol.

rameters were taken from theHARMM force field, version Following Eq.(8), the hydration free energy of Argon is
2279 by assigning the atom types C and O to the keto atomsza|culated as the PMF difference between the fully interact-
and the types CT, CT1, CT2, and CT3 to the remaining Gng state v=0) and the noninteracting statewt ),
atoms bearing respectively 0, 1, 2,028 H atoms. The par- nich is given by the asymptotic value of the PMF. Based

tial charges of the keto group were 0e38nd —0.38 for C o the present calculatione,=W(0)—W()=5.4-1.8
and O, respectively’ the partial charges of all H atoms were =13.6 kcal/mol.

0.0%, and those of each of the nonketo C atoms were given  The PMF obtained for a larger LJ sphere is shown in
by —nx0.0%, wheren is the number of coordinating H Fig 2. This profile is similar qualitatively to that of the Ar

(kcal/mol)

W(w)

0 1 2 3 4 5 6 7 8 9 10
w (Angstrom)

atoms. solute particle. The larger size of the particle is reflected both
in the larger magnitude of the free energy changes in the
RESULTS AND ANALYSIS short-range and long-range partsWw{w), and in the larger

value ofw,,, for which W reaches a minimum. The analysis
of the three regions of the PMF is as before. As shown in
The PMF for abstraction of Ar from bulk water into the Fig. 2, the short-rangew(<3 A) is fit well by fgg(w)
fourth dimensiorw is plotted in Fig. 1. This profile has three =14.6—1.08~2, which in the framework of a phenomeno-
distinct regions. In the short rang€2 A), the PMF as- logical solvent-exposed area modsée Appendix Acorre-
sumes the shape of a quadratic barrier centered at the origisponds to a surface tension of=0.0859 kcal/mol/&
The barrier arises because at small valuesvahe PMF is  =59.7 dyn/cm, a value close to that obtained for Ar. The
dominated by strongly repulsive forcéhe LJ cor¢ which  minimum of the PMF occurs at=4.25+0.08 A. As before,
tend to expel the solute into the fourth dimension. This shortthis separation is the effective distance of closest approach
range (SR) part of the PMF profile can be fit well by a between the solute and solvent O atoms. Finally, the long-
harmonic functionf sg(w) =5.45—0.99v? kcal/mol (see Fig. range(LR) tail of the PMF (v>5.5A) is approximated by
1). In Appendix A, it is seen that this quadratic dependencef, x(w) =a/w3+b, wherea=604.5 kcal/molA® was calcu-
can be interpreted in terms of a phenomenological solventated from the total dispersion energy of the solute particle

Simple Lennard-Jones solutes

Downloaded 06 Dec 2011 to 76.68.36.75. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 111, No. 8, 22 August 1999 Calculating excess chemical potentials 3391

14

- ~
: g
5 E
o r~
9 3
= (<)
3 z
= =

0 1 2 3 4 5 6 7 8 9
w (Angstrom)

w (Angstrom)

FIG. 2. (——) PMF calculated for the abstraction of the larger Lennard-
Jones soluteq=0.190 226 kcal/molpo=4.613 25 A) from water along the
fourth dimensionw; (---) short-range fitfgz=—1.08v%+14.6; (- — -
long-range fitf, ;= — 604.5v "3+ 5.75.

FIG. 4. (——) PMF calculated for the insertion of camphor into water along
the fourth dimensiorw; (— — - long-range fitf,g=—621. 3+ 13.55.

The molecular structure of camphor is depicted as an insert. The statistical
uncertainty is largest in the outlying regions<—0.1 A andw>8.1A),
which are the least sampled in the simulations.

with water (see Appendix B and the asymptotic valub
=5.75kcal/mol was obtained by fit. From this analysis we  Despite the presence of Coulombic solvent—solute inter-
extract the valuaNV(0)=14.6 andW(=)=5.75kcal/mol to  actions, the long-range tail of the water PMF is well approxi-
get u=W(0)—W()=8.9 kcal/mol. mated by integrating the dispersion interactions assuming a
solvent continuun{Appendix B), similar to the analysis for
simple LJ particles. The resulting function i§ g(w)
=—49.0nv 3+5.6 kcal/mol. A derivation of the long-range
The PMF for the abstraction of a water molecule from contribution to the PMF arising from electrostatic interac-
bulk water into the fourth dimension is depicted in Fig. 3.tjons of the solute with water, presented in Appendix C,
There are three distinct regions in the profile. Unlike the Lndicates that at separations=4 A, the Coulombic interac-
particles, this solute is polar, which gives rise to a qualitajons between the vanishing water molecule and bulk solvent
tively different profile. Below|w|=1.9A, the PMF corre-  are smallless than 3%compared to dispersion interactions.
sponds to a well centered at=0. This is because at short Consequently, the asymptotic value W can be ap-
intermolecular separations, the solvent—solute potential erproximated from the long-range fit of the dispersion interac-
ergy is dominated by attractive coulombic interactions, sajgns (see Fig. 3 Based on the present calculation, the hy-

that work is required to extract the water solute into thegration free energy of TIP3P water jis=W(0)—W(*)=0
fourth dimension. Besides this absolute minimum, there is a5 g= — 5.6 kcal/mol.

secondary free energy well at=2.35A. Within the 0.1 A
resolution of the histogram bins used to consthw), the  camphor

location of this minimum matches the distance of closest

approach, 2.4 A, apparent in the O—O radial distribution The PMF for insertion of camphor into a droplet of 251
function for the TIP3P modéf water molecules frorw=8 A tow=0 A is shown in Fig. 4.

This molecule contains nine nonpolar C atoms and one polar
CO group. The predominance of nonpolar centers is reflected
7 — in the qualitative profile of the PMF, which resembles that of
LJ particles. Belowjw|=3 A ,W(w) corresponds to a 10.5
61 ] kcal/mol barrier, indicating that in spite of its polarity, cam-
B phor is expelled from water. Beyond the free energy mini-
mum atw= 3.2+ 0.1 A, W(w) is fit well by the approxima-
tion f g(w)=—621.1w°+13.55 where, as before, the
coefficient ofw™> was derived from the sum of dispersion
coefficients between solute and solvent atgsee Appendix
B). Overall, the long-range rise of the PMF compensates for
the initial barrier, so thatW(0)—W(%)=10.5-13.55
= —3.0 kcal/mol.

Water molecule

(kcal/mol)

W(w)
N

0 1 2 3 4 5 6 7 8 9 10 DISCUSSION
w {(Angstrom) . . X
Comparison to theoretical and experimental results

FIG. 3. (—) PMF calculated for the abstraction of a solute water molecule .
from TIP3P water along the fourth dimension (---) long-range fitf We obtained values of 3.6;5.6, and—3.0 kcal/mol for

=—49.0v"3+5.63. the hydration free energies of argon, water, and camphor,
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respectively. In this section, we compare these results tthe solute and water molecules in the three physical dimen-
available experimental and computational data. Because ttgons x, y, and z (Appendix A). For the two LJ particles
applications presented in this study are meant as a test of tlwensidered in this work, apparent surface tensions of 54.7
4D-PMF method, not as a test of force fields, system size, aand 59.7 dyn/cm were derived by this analysis. Both values
boundary conditions, emphasis is placed on the comparisofiall within the range of 40—60 dyn/cm obtained in a recent
with results obtained computationally with similar systems. study of LJ solutes by extensive computer simulatigf§in

The hydration free energy of5.6 kcal/mol that we ob- contrast, for a polar solute such as water, the PMF adopts the
tained for TIP3P water in a droplet of 150 water moleculesshape of awell at smallw values. For polyatomic solutes
may be compared to the reported values-&.8 and—6.4  such as camphor, the short-range PMF is a barrier, reflecting
kcal/mol calculated by-scaling of the potential energy in expulsion of the predominantly nonpolar groups of the solute
droplets of 50 and 100 TIP3P water molecules with S3BP. from water. However, the dependence of this barrier is not
Other results obtained for a similar three-site water potentialguadratic, which arises both from the competition of Cou-
the single-point chargéSPQ modef! range from—5.5to  lombic interactions and from the molecularity of the solute.
—6.4 kcal/mol(cited in Ref. 19. The result obtained in the The location of the minimum in the 4D-PMF of simple
present study is thus within the range of other values calcutJ solutes corresponds to the distance at which the repulsive
lated by computer simulations, and compares moderatelyore of the hydrophobic solute has barely been expelled from
well with the experimental value of-6.3 kcal/mo”® The  the solvent. As such, this separation may be viewed as the
hydration free energy of camphor was determined from exdistance of contact between the solute particle and solvent O
perimental measurements as3.5 kcal/mof*** a value  atoms, and at which the mean attractive and repulsive forces
overestimated by 0.5 kcal/mol in the present study. Given th@cting on the solute cancel out exactly. In the case of the
limitations arising from the approximations inherent to thewater solute, this contact minimum is a secondary one
force field, such agreement is adequate. reached av=2.3+0.1A, a value which is consistent with

A result of 3.0 kcal/mol was obtained for the hydration the distance of closest approach-e2.4 A obtained from the
free energy of argon calculated by thermodynamic integraf|p3p O-O radial distribution functioff. Finally, although
tion and free energy perturbation withscaling in a droplet  the 4D-PMF profile of camphor is qualitatively similar to
of 100 water molecules using identical potential functions,hat of simple LJ solutes, due to the complex molecular na-
comparable simulation timg& ng, and the SSBP boundary tyre of camphor it is not possibl@, priori, to ascribe the
potential(M. Souaille, personal communicatiprThis value  |ocation of the PMF minimum to a distance of closest ap-
is in fair agreement0.6 kcal/mol, or a relative error of 20%  proach or contact between water and any single solute atom.
with our result. One source of systematic error between thigjowever, it must be noted that the location of the minimum
calculation and our result lies in the different size of thej, the 4D-PMF of camphot3.2 A) reflects the size of the
water droplet. As noted above, previous free energy perturatoms constituent of the solute, not the size of the whole
bation simulations using the SSBP method to calculate thf"nolecule, which is significantly more bulky.
hydration free energy of TIP3P water varied by 0.6 kcal/mol Beyond 1 6 2 A from the “distance of contact,” in all
upon increasing the droplet size from 50 to 100 watehne cases examined here, the 4D-PMF adopts & depen-
molecules,” an effect similar in magnitude to the discrep- gence that can be derived analytically from summing up the
ancy observed here. A result of 20.6 kcal/mol was ob-  gigpersion interactions between each solute atom and the sol-
tamgd by free energy pgrturbatlon and thermodynamic inteyant in the limit of a solvent continuurfAppendix B. In
gration for Argon with comparable LJ parameters gqgition, a similar analysis also led tona 3 dependence of
(e=0.196 478 keal/mol r=3.29 A) in a periodic system of  gjectrostatic interactions for polar, neutral molecul@p-
SPC water molecule7§.Th|s disagreement, however, may be nenqix . This electrostatic contribution was shown to be of
attributed Iargely to dlfferent. water models and simulation, ,ch smaller magnitude than that arising from dispersion
protocols. Finally, the hydration free energy of Ar was de-jyieractions in the long-range limit. The fact that these con-

termined experimentally as 2.0 kcal/nf6l. tinuum approximations are valid at such small separations
would be surprising in a three-dimensional system because,
as indicated for example in the radial distribution function of
While the chemical potentials are obtained from the lim-liquid water* there is still a lot of structure in the hydration
its W(0) andW(=) [see Eq.(8)], the 4D-PMF profile at shells as far as 10 A away from any water molecule. In
intervening values ofv also yields useful information. At contrast, the 4D-PMF of watéFig. 3) suggests that the con-
small values of the fourth-dimensional coordinateexpul-  tinuum approximation is valid at values wfas small as 3 to
sion of predominantly nonpolar solutes by water is reflectedt A—barely beyond the first hydration shell of 3D water.
by the presence of a free energy barrier centered-aD.  This difference arises from the fact that once the repulsive
Work is required for the insertion of a solute whose interac-core of all the solute atoms has been expelled from the sol-
tions with water at values of/ less than the contact separa- vent, the influence of the solute on the local structure of the
tion are dominated by the repulsive core of the LJ potentialsolvent largely vanishes, so that the notion of hydration
In the case of simple LJ spheres, tWedependence of this shells does no longer apply as the solute takes off in the
barrier appears to be quadratic, which was interpreted bfourth dimension.
considering the dependence of the hydration free energy on The magnitude of deviations of the 4D-PMF from the
the solute surface area, as defined by the separation betweanalytical short- and long-range fifgg and f 5 in the re-

Analysis of the 4D-PMF profiles
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spective regions of validity of these approximations provides  To underscore further the tractability, simplicity, and
an estimate of the statistical errors in the PMF profiles. Frongenerality of the 4D-PMF method, we note that unlike pre-
Figs. 1-4, these deviations are seen to be within 0.3 kcal/maliously reported calculations using shiftin§,the present

for Ar and camphor, within 0.2 kcal/mol for water, and calculations were performed without concurrent or
within 0.1 kcal/mol for the large LJ solute. In the light of \"-scaling of the nonbonded interactions. The PMF approach
systematic errors arising from the force field and fromallows to treat molecular solutes in a single set of umbrella-
boundary conditions, this uncertainty is acceptable and sugsampling simulations, which saves setup and analysis time.
gests that the 4D-PMF has converged adequately. Such welFhus the 4D-PMF results reported for camphor were ob-
behaved convergence in the limit of “large” values wf tained within one work-day, including CPU tim@n four
demonstrates the validity of the approximation as well as thék10 000 processorand manpower.

reliability of the method as the solute is pulled into the fourth Based on the present study, we expect that similar simu-
dimension beyond contact separation. This predictability alséation protocols and simulation times could be applied with
suggests a straightforward improvement to the computationalonfidence to a wide range of uncharged solute molecules,
efficiency of the method: Instead of extending the simula-whether polar, or nonpolar. The case of ionic solutes will be
tions all the way tqor starting from w=10A, one can save treated in subsequent studies. In such cases, additional cal-
up to 50% of the CPU time by truncating the calculation ofculations might be needed due to the divergence of Coulom-
the PMF at values ofv just large enough to fit the long-range bic interactions. Among the possible approaches, the inser-
PMF with confidence. In the applications presented abovetjon of a neutral analog of the solute could be treated with
these values could be ® 7 A for argon and the large LJ this method, whereas the free energy of charging or uncharg-

solute 5 A for water, and 4.5a 5 A for camphor. ing the fully inserted solutéatw=0) could be performed by
direct free energy perturbation, by continuum electrostatic
Applicability and advantages of the 4D-PMF method calculation? or by using cumulant expansions of the deriva-

Excess chemical potentials are calculated as the differt-'\./e of t'he free energy with respect tp the lonic (.:héﬁ be.
ence in the free energy of two states: Fully interacting and=|nally, it should be stressed that the direct application of the
approach to problems of molecular recognition and ligand

noninteracting solvent and solute. The specificity of the 4D-

PMF method is to treat the noninteracting state as a systet_lﬁinding Is straightforward, although simulations may need to

in which solvent and solute are infinitely separated in a nonlnCIUde comparatively large values @f since the simple

physical spatial dimension. This procedure is formally analoAnalytical treatment of long-range interactions derived in Ap-

gous to the “shifting” of solvent—solute interactio®§ With pendices B and C for homogeneous media is expected to

both methods, numerical instabilities originating from thebreak down. In any event, it is hpped that.the 4D-PMF
growth or deletion of LJ atoms with simplescaling of the methpd to cqmpute excess chemical .potent|als can be of
LJ interactions are completely avoided. In that respect, th@r"’lCtlcal use in industrial and drug-design efforts.
effectiveness of shifting the nonbonded interaction potential

b_y th_e exte_nsion of the solut_e into _th_e fourt_h spatial dimen'CONCLUSIONS

sion is similar to methods using shiftifig.Unlike these ap-

proaches, in which the extension of solvent—solute separa- We have introduced a method for the calculation of ex-
tions is parametrifsee Eq(2)], in the 4D-PMF approach the cess chemical potentials by computer simulations. We have
extension is governed by the mean force exerted by the sofhown how the excess chemical potential of a solute or
vent on the solute along a continuous spatial dimension. Ifigand can be calculated from the PMF for abstracting the
the previous discussion, we have considered how far the cainolecule into(or inserting it from an extra spatial dimen-
culation of the PMF should extend into the fourth dimensionsion. This approach is formally related to the parametric
to allow an accurate estimate of the free energy of the nonshifting of interatomic distances in the calculation of LJ po-
interacting stateW(«), relative to that of the fully interact- tential interactions;® and possesses the same basic advan-
ing one,W(0). Importantly, the analysis of the factors gov- tage over conventional free energy calculations: because the
erning the 4D-PMF profiles leads to physical insight of singularity problem that arises from a simple scaling of the
practical use. In particular, we have seen that the long-rangeJ core is avoided, the method is not limited to conservative,
approximation of the 4D-PMF derived from a continuum atom-by-atom perturbations of the molecule of interest. In-
treatment of the solvent can be used advantageously, both stead, whole molecules can be introduced or abstracted in a
calculate the asymptotic val¥(e0) without introducing ad-  single set of simulations with minimal human intervention.
ditional errors, and to gauge the convergence of the calcula- The tractability, simplicity, effectiveness, and generality
tions. Thus the truncation of the 4D-PMF profiles computedof the method were illustrated through calculations of the
in this study atw=>5 to 7 A would lead to equally reliable hydration free energy of two LJ spheres, of water, and of
estimates ofW(«). Moreover, the values ofv from which ~ camphor using molecular-dynamics simulations and um-
the long-range approximations become vald>3 to 5 A) brella sampling. We expect the method to be useful for the
are determined by atomic siZas discussed aboyeand do  efficient calculation of chemical potentials of solute and
not depend on the molecular size of the solute. Accordinglyligand molecules with a wide range of sizes, shapes, and
the convergence of computations of the 4D-PMF was seen tpolarities. Further, in homogeneous systems it is possible to
be as fast for large solutésuch as our larger LJ sphere and obtain a 30%—-50% gain in computational efficiency by mak-
camphoy as for smaller ones. ing use of the analytical integration of long-range interac-
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tions between solvent and solute atoms in the limit of a sol- _ N
vent continuum. V(rl,...,rN,rf,”,w)z_Z VI(rij ,w). (B2)
Other, straightforward applications of the method could =1

include the concerteq |nsert|on—abstrapt|qn of several mOI'n the limit of largew we approximate the solvent as a con-
ecules, for example, in computing the binding free energy o

: . 198 inuum. The potential is dominated by the dispersion term,
water in protein cavitie$® The method can also be extended whereas the repulsive term becomes negligible. By integra-

to th_e direct calculatpn of relative bmdm_g_free energies bytion over the full range of 3D separationsand summation
making use of negative as well as positive values of the

fourth dimensiornw: Thus, a molecule initially atv=0 could over all the atoms of the solute, E@B2) becomes

be dislodged from a binding site by expelling it w@>0 » _B.

while simultaneously bringing another ligand from<0 to VzV(W):E f (r2+—v\/'2)3pbu,k47rr2dr, (B3)
w=0. Furthermore, an effective treatment of competitive I Jo
ligand binding problems could be devised through the intro- . .
duction of additional(fifth, sixth, etc) spatial dimensions, where pyy is the bulk density of the solvent, and

each of them reserved to a different ligand. B,=Bo; + 2By, (B4)

is the sum of the dispersion coefficients between the solute

APPENDICES: INTERPRETATION OF THE PMF atomj, and the atoms of a water molecule. EB3) yields

PROFILES. APPENDIX A: APPROXIMATION

OF SHORT-RANGE LJ INTERACTIONS r .

The hydration free energy of hydrophobic solutescan Viw)= _4772 BjPoui A(r2+w?)? sw?(rZ+w?)

be related to their solvent-exposed surface &dlarough a .

proportionality constant arctarr/w)
m=7vS, (AL) 0

wherey is the apparent surface tension of the solveritor Finally, for sufficiently largew, this becomes

simple LJ particles in water, the effective surface is defined

by the distance of closest approaR as —? > B;

y pp Bontact V(W)= pbugf iPi (B6)

S= 477R§0ntact (A2) aw

As the solute is pulled into the fourth dimension, however, a

constant contact separation in 4D corresponds to a diminisrﬁ‘EEPE_'F'S(')XS%;%ZPIRN?Eg\"AAngloONNgF LONG-RANGE
ing effective 3D radius given by

R3’eﬁ:(R§0mact_W2)(ll2), (A3) _ We_flrst _con3|der the long range ta|l_ of solvent—sqlute
) interactions in the case of a mono-atomic solute carrying a
so that the effective surface area of the solute-®conact  chargeQ. When the solute is located at the electrostatic

<W=R;onactb€COMES potential seen by the solvent atoms is
S=47RE o= 47 (Roniac W2)- (A4) o
From the combination of Eq$A1) and(A4), the short-range d(r)= W) (C)

dependence of the PMF for the expulsion of a LJ solute into

the fourth dimension is predicted to be a quadratic barrier wherer =|r|. The reversible electrostatic work to charge the
W(W) = —47yw?+C. (A5) ~ mono-atomic solute at a positianis expressed as a thermo-
dynamic integral

APPENDIX B: APPROXIMATION OF LONG-RANGE LJ

Q 1
INTERACTIONS Velec JO dQ'J dfmzvrz(m(ﬁQ')% (C2)
In this section, we derive an analytical approximation for

long-range dispersion interactions of the solute in the fOUKNhere<pv(r;Q’)> is the average charge density of the sol-
spatial dimensions based on a continuum treatment of thgent (in the three-dimensional spacieduced by the pres-
solvent. First, we rewrite the LJ interaction potential betweensnce of the solute in the system. To estimatg(r;Q’)) we
solvent and solute atoms and j separated byRj=(ri  use a continuum electrostatic approximation. The solution to
+w?) M2 as this problem is particularly simple ifv is larger than the

A B;; range of the solute—solvent core repulsion potential because
T T 53 (B1)  the solvent dielectric constant is uniform everywhere in the
(Fj+ w5 (rij+w?) three-dimensional s According to Poi ’ ti

pace. According to Poisson’s equation

with A;; =4eijaﬁ2 and B;; =4eijaﬁ. The LJ interaction en- for macroscopic media, the average solvent charge distribu-
ergy between thé&l solvent atoms and solute atgns given  tion induced by a solute of charggin a medium of dielec-
by tric constantep is

ViLjJ(rij W) =
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