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’ INTRODUCTION

The partial molar volume, V�, of a solute is the pressure
derivative of its chemical potential. As such, it is a fundamental
thermodynamic property reflecting the entire spectrum of inter-
and intramolecular interactions of a solute, including solute�sol-
vent interactions commonly referred to as solvation. Interpreta-
tion of partial molar volume data and, ultimately, the usability of
such data for characterizing changes in hydration associated with
various biological processes depend on themodel used to link the
measured macroscopic observables with solute�solvent interac-
tions. The scheme that has been used most widely for parsing
partial molar volume data is based on the relationship1

V� ¼ VC þ V I þ βT0RT ð1Þ

where VC is the volume of the cavity enclosing a solute in the
absence of attractive solute�solvent interactions; VI is the
interaction volume; βT0 is the coefficient of isothermal compres-
sibility of the solvent; R is the universal gas constant; and T is the
absolute temperature. The cavity volume can be viewed as
consisting of the region occupied by the solute and an “empty”
border region between the solute and the unaltered, uniform

pure solvent.2,3 In this scheme, the region occupied by the solute
is its intrinsic volume, VM, while the empty border region is the
thermal volume, VT; VC = VM þ VT. Note that the VC and VI

terms of eq 1 reflect the volume change due to the addition of a
solute molecule at a fixed position in the solvent, while the
translational βT0RT term originates from the availability of the
entire volume of the solution to the solute.

The intrinsic volume, VM, is the geometric volume of the
solute that is impenetrable to surrounding water molecules. The
VT is the operationally defined void volume created around a
solute molecule due to the mutual vibrations of solute and
solvent molecules as well as to structural, packing, and steric
effects. The interaction volume, VI, represents reduction of the
solvent volume under the influence of direct solute�solvent
interactions. Significantly, VI is the only component of the partial
molar volume, V�, of a solute directly reflecting its solvation.
Evaluation of VI requires estimation of the VM and VT compo-
nents of the cavity volume, VC, in eq 1. The intrinsic volume of a
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ABSTRACT: We used molecular dynamics (MD) simulations in
conjunction with the Kirkwood�Buff theory to compute the partial
molar volumes for a number of small solutes of various chemical
natures. We repeated our computations using modified pair poten-
tials, first, in the absence of the Coulombic term and, second, in the
absence of the Coulombic and the attractive Lennard-Jones terms.
Comparison of our results with experimental data and the volu-
metric results ofMonte Carlo simulation with hard sphere potentials
and scaled particle theory-based computations led us to conclude
that, for small solutes, the partial molar volume computed with the
Lennard-Jones potential in the absence of the Coulombic term
nearly coincides with the cavity volume. On the other hand, MD
simulations carried out with the pair interaction potentials contain-
ing only the repulsive Lennard-Jones term produce unrealistically
large partial molar volumes of solutes that are close to their excluded
volumes. Our simulation results are in good agreement with the
reported schemes for parsing partial molar volume data on small
solutes. In particular, our determined interaction volumes and the thickness of the thermal volume for individual compounds are in
good agreement with empirical estimates. This work is the first computational study that supports and lends credence to the practical
algorithms of parsing partial molar volume data that are currently in use for molecular interpretations of volumetric data.
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solute can be evaluated in a relatively straightforward manner as
the molecular volume, that is, the volume enclosed within the
molecular surface of a solute.4,5 For a small solute, VM can
be approximated by its van der Waals volume, VW. The latter can
be calculated additively based on the chemical structure of a
solute and the van der Waals volume group contributions.6,7

Clearly, the situation is more complicated for the biopolymers
proteins and nucleic acids in which case the intrinsic volume
depends on the conformation of the macromolecule.8

Determination of the thermal volume, VT, is less straightfor-
ward and currently based on purely empirical approaches. In one
approach, the cavity volume, VC, of a solute is a linear function of
its van der Waals volume, VW; VC = aVWþ b, where a = 1.53 and
b = 9.9 cm3 mol�1 for hydrocarbons.9 In an alternative approach,
the thermal volume,VT, of a nonpolar molecule consists of a layer
of “empty” volume of a constant thickness, δ.1,10 With this
assumption and the spherical approximation of a solute, the
cavity volume is given by the relationship

VC ¼ 4πNA

3

� �
ðr þ δÞ3 ð2Þ

where NA is Avogadro’s number and r = (3VW/4πNA)
1/3 is the

radius of the approximating sphere.
The thickness of the void volume, δ, has been empirically

estimated to be between 0.50 and 0.57 Å.1,10 These estimates
agree with the calculations based on scaled particle theory (SPT),
a simple theory in which the solute and solvent molecules are
approximated by hard spheres.1,11 These empirical schemes have
proven useful and have been extensively employed in rationaliz-
ing partial molar volume data on various solutes. However, the
veracity of such rationalizations and the hydration pictures that
they produce remain untested in the absence of more rigorous
theoretical verifications.

Most importantly, the practical evaluation of the cavity
volume, VC, is possible only for nonpolar molecules for which
the interaction volume, VI, can be neglected (see eq 1). Thus,
eq 2 can be applied to evaluating the thickness, δ, of the thermal
volume, VT, of nonpolar but not polar solutes. For a solute
containing polar and/or charged groups and, therefore, exhibit-
ing a nonzero value of VI, the cavity volume, VC, can be estimated
under the assumption that δ does not depend on the chemical
nature of the solute.1 In other words, it is assumed that δ is the
same for polar and nonpolar solutes, independently of their
chemical composition and size.1 This assumption forms the basis
of molecular interpretations of partial molar volume data on
solutes or changes in volume accompanying various chemical
processes (e.g., binding reactions and conformational transitions
of biopolymers) has never been tested in any rigorous theoretical
way. This deficiency is serious, since it undermines the veracity of
insights derived from volumetric investigations of biophysical
and biochemical systems.

In acknowledgment of this deficiency, we combined in this
work molecular dynamics (MD) simulations with the Kirk-
wood�Buff (KB) theory to compute the partial molar volume
of a number of polar and nonpolar solutes and to parse the
resulting partial molar volumes into their intrinsic, thermal, and
interactions components. Specifically, we applied MD simula-
tions to calculating the solute�solvent radial distribution func-
tions (RDF) that were subsequently used in conjunction with the
KB theory to compute the partial molar volumes of various
solutes. TheMD simulations were performed with three solute�
solvent pair interaction potentials. First, we used the full pair

interaction potentials Uij = 4εij[(σij/r)
12 � (σij/r)

6] þ
qiqj/(4πε0εr) to compute the RDF and the partial molar volume
of a solute. Second, we carried out MD simulations and volume
calculations for the same solute with modified pair potentials
that are limited to the Lennard-Jones terms, Uij = 4εij[(σij/r)

12 �
(σij/r)

6] and do not contain the Coulombic contribution. Finally,
we repeated the computations with pair potentials containing
only the repulsive Lennard-Jones term, Uij = 4εij(σij/r)

12.
Comparison of the partial molar volumes obtained with the
three different pair potentials enabled us to extract and analyze
the VM, VT, and VI contributions in eq 1.

’METHODS

Molecular Dynamic Simulations. The MD simulations were
carried out with the GROMACS software, version 4.0.5.12 The
solutes were modeled based on the OPLS-AA parametrization.13

Water was modeled using the TIP3P potential which, despite its
simplicity, quantifies the structural and thermodynamic proper-
ties of water with a reasonably high accuracy.14 Each simulation
box consisted of 2176 TIP3P water molecules and one solute
molecule in a cubic cell with the edge of 40.0 Å with periodic
boundary conditions applied. The Lennard-Jones interactions
were evaluated out to a separation of 12 Å and smoothly switched
to zero at a cutoff distance of 15 Å. Long-range electrostatic inter-
actions were evaluated using particle mesh Ewald method15 with
a real-space cutoff of 15 Å and a Fourier grid spacing of 1.2 Å.
The MD simulations were carried out in the isother-

mal�isobaric NPT ensemble for all solutes in water at the
temperature of 298 K (Nose�Hoover thermostat) and the
pressure of 1 atm (Parinello�Rahman ensemble)16�18 using
the leapfrog algorithm with a time step of 0.002 ps. All bonds
were constrained using LINCS.19 The steepest descent method
was used to perform 500 steps of energy minimization to ensure
relaxation of the system. This step was followed by two-phase
equilibration runs using the weak coupling technique.20 Initially,
a 100 ps equilibration run was implemented in the canonical
NVT ensemble to thermalize the system at 298 K. This was
followed by the second 1 ns run in the isothermal�isobaric NPT
ensemble to equilibrate the system at 1 atm and 298 K. The final
production run of 100 ns was performed with configurations
saved every 2 ps for analysis. Errors were estimated as the
standard deviation of the mean from block averaging over 20 ns
for each production run. The resultingMD trajectories were used
to compute the solute�solvent RDFs between the center of mass
of each solute and the oxygen atoms of water.
Determination of Partial Molar Volumes via the Kirkwood�

Buff Integrals. The KB theory is an exact statistical mechanical
theory that links RDFs, gij(r), in the grand canonical ensemble
(μVT) with the derivatives of the chemical potentials of the
species in the system.21�25 These properties are expressed via the
KB integral, Gij, between the species i and j

Gij ¼ Gji ¼
Z ¥

0
½gijμVTðrÞ � 1�4πr2 dr ð3Þ

In the limit of infinite dilution, the partial molar volume of a
solute is related to the solute�solvent KB integral via the
expression24,25

V� ¼ � G12 þ βT0RT ð4Þ
The KB integral reflects the average excess (or deficiency) of j

particles around the central i particle relative to the random
distribution in an equivalent volume of the bulk solution. Note
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that this expression cannot be applied to the canonical NVT
ensemble in which case the KB integrals trivially yield either 0
or �1.25 We calculated the KB integrals from our simulated
RDFs using the following approximation26�29

Gij ¼
Z ¥

0
½gijμVTðrÞ � 1�4πr2 dr

�
Z R

0

0
½gijNPTðrÞ � 1�4πr2 dr ð5Þ

where R0 is the extent of the integration beyond which the RDF
approaches unity, that is, the bulk solution value.
The partial molar volumes were determined at the integration

cutoff distances, R0, of 10, 12, and 15 Å. We found no statistically
significant differences between the partial molar volumes calcu-
lated with the cutoff distances of 12 and 15 Å. Consequently, the
cutoff of 12 Å was chosen as the standard for the computation of
the partial molar volumes of the solutes. The choice of this cutoff
is further justified by our selected cutoff radius for the calculation
of Lennard-Jones interactions which is also 12 Å (see above).
In practice, computation of KB integrals is complicated due to

the noisiness and long-range oscillations of simulated RDFs that
do not converge to unity unless extended simulation boxes (with
dimensions exceeding several diameters of the solute molecule)
are considered. Although the deviation of RDFs from unity is small
(on the order of 1/N in a closed system), the influence of this
deviationon theKB integralmaybe very significant due to the factor r2

in the integrand of eq 5.30 Several algorithms have been proposed to
circumvent this problem by normalizing RDFs in NPT and NVT
ensembles. In particular, in the hydration shell model, it has been
proposed that the entire contribution to the local component of the
partialmolar volumeof a soluteoriginates from thefirst hydration shell
with the contributions of the more distant shells canceling each
other.31 Elsewhere, the RDFs have been normalized by using water
density computed in a region of a solution far from the solute,32 by
averaging the integral over a short distance range (typically, one
molecular diameter),26,29 and by introducing a screening radius which
enhances the convergence of KB integral in such a way that it
essentially reaches its asymptotic limit within the first hydration shell.33

Here, we introduce the following procedure to enhance the
convergence of the KB integrals. We compute the KB integral by
averaging the g(r) function beyond the truncation distance of
12 Å and substituting the obtained average as the asymptotic
limit in the KB integral in place of unity (see eq 5). The deviation
from unity of the average value of g(r) beyond 12 Å was on the
order of (0.0001. This procedure enhances the convergence of
the KB integral by smoothing the oscillations in the RDFs.
Direct Determination of Partial Molar Volumes.The partial

molar volume of a solute can be also determined following the direct
algorithm as described by Moghaddam and Chan.34 In the direct
method, the partial molar volume of a solute is computed as the
difference in the ensemble average volumes between two NPT
boxes, one containing solvent and a single solute molecule and the
other containing pure solvent at the same temperature and pressure.
The ensemble average volume, <V>, for each NPT box was derived
from MD simulations. The difference between the two ensemble
averages is equal to the partial molar volume of a solute.

’RESULTS AND DISCUSSION

Partial Molar Volumes. Comparison with Experimental
Data.Table 1 lists the partial molar volumes, V�, for a number of

solutes, including charged, polar, and nonpolar organic com-
pounds as well as inorganic ions, calculated with the KB theory
(second column) and the direct method (DM) (third column).
The two data sets are in good agreement with each other with the
exception of the four inorganic ions. The large discrepancies
between the KB and DM values observed in Table 1 for single
ions (whereby the partial molar volume is overestimated by DM
for the cations and underestimated for the anions) probably
reflect artifacts due to Ewald summation in a system with a net
total charge. Note that this discrepancy vanishes in the case of ion
pairs (results not shown), for zwitterionic systems (see Table 1),
and in the absence of Coulombic interactions (see Table 2).
Figure 1 compares our partial molar volumes computed using

KB theory with the reported experimental data (the latter are
listed in the fourth column of Table 1). The comparison reveals
that our computed partial molar volumes are consistent with
experimental data for most of the solutes with the exception of
the two zwitterionic amino acids. The reason for the disparity is
not clear but may be related to the conformational dependence of
electronic polarization of both solvent and solute molecules in
the electrostatic field of the charged termini of zwitterionic
glycine and alanine that is neglected in the force field used in
our MD simulations. This effect compounds the assumption of
transferability of partial-charge parameters developed for small
ionic fragments to a zwitterionic molecule. In contrast, our
calculated partial molar volumes of glycine and alanine with
neutralized termini agree well with the partial molar volumes of
glycolamide and lactamide (uncharged isomers of glycine and
alanine), respectively. The observed agreement between the
calculated and experimental partial molar volumes of the pre-
dominant majority of the solutes investigated in this work lends
credence to our calculations and the subsequent analysis.
Simulations Carried out without the Coulombic Term.

Figure 2 depicts representative RDFs of methanol (panel a),

Table 1. Partial Molar Volumes of Solutesa

solute KB cm3 mol�1 DM cm3 mol�1 EX cm3 mol�1

methane 38.8( 1.0 37.7( 1.2 37.3b

ethane 54.3( 0.7 55.1( 1.5 51.2b

benzene 85.1( 0.9 87.7( 2.2 83.1b

water 18.0( 0.1 18.3( 0.8 18.07

methanol 39.1( 1.8 38.5( 2.6 38.2b

ethanol 53.7( 0.9 55.1( 2.7 55.1b

1,2-ethanediol 52.9( 1.2 55.2( 1.3 54.6b

ammonia 26.9( 0.4 25.6( 1.8 24.8b

urea 40.9( 0.5 39.5( 0.9 44.2b

glycine (zwitterionic) 32.6( 1.1 31.7( 1.8 43.3c

glycine (neutralized) 55.1( 1.1 56.5( 2.2 56.2d

alanine (zwitterionic) 48.0( 1.2 45.8( 1.1 60.4c

alanine (neutralized) 70.2( 1.2 72.7( 2.2 73.5e

lithium (Liþ) �10.9( 1.0 3.2( 1.4 �11.2f,�6.6g

sodium (Naþ) �7.5( 0.6 6.5( 1.4 �7.4f, �6.9g

chloride (Cl-) 23.1( 1.2 10.9( 1.0 23.7f, 23.5g

bromide (Br-) 27.8 ( 0.9 14.9( 1.7 30.2f, 30.4g

aKB, calculated with eq 4; DM, evaluated from the direct method; EX,
experimental values. b From ref 1. c From ref 41. dThe partial molar
volume of glycolamide, an uncharged isomer of glycine.44 eThe partial
molar volume of lactamide, an uncharged isomer of alanine.45 f From ref
46. g From ref 47.
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ethanol (panel b), and 1,2-ethanediol (panel c) computed with
the full pair potentials (black lines) and the Lennard-Jones pair
interaction potentials in the absence of the Coulombic term (red
lines). The second and third columns of Table 2 present the
partial molar volumes of the solutes calculated with the Lennard-
Jones potentials in the absence of the Coulombic term. As
mentioned above, the large discrepancies between the KB and
DM values observed in Table 1 for single ions disappear once the
simulations are performed in the absence of Coulombic interac-
tions (see Table 2).
Data presented in Table 2 correspond to hypothetical analogs

that have the same geometry but lack the charges that may be
present in real solutes; in other words, the nonpolar analogs of
the solutes. A comparison of data listed in Tables 1 and 2 reveals
that in agreement with conventional wisdom the two calculation
modes (with and without the Coulombic potential) yield similar
partial molar volumes for the nonpolar solutes methane, ethane,
and benzene. In contrast, for solutes containing polar and/or
charged groups, calculations performed with the full pair poten-
tials produce lower partial molar volumes than those performed
without the Coulombic term. The disparity reflects solvent
contraction in the vicinity of polar and charged groups due to
solute�solvent hydrogen bonding and electrostriction.
To a Good Approximation, the Partial Molar Volume of a

Solute Devoid of All Charges Equals Its Cavity Volume.
Monte Carlo simulations with hard-sphere potentials in con-
junction with the KB integrals have been used to compute the
volumes of spherical cavities with radii of up to 8.6 Å.35 This
approach should arguably produce the closest approximation of
the cavity volume. The results of Monte Carlo simulations have
been compared with the cavity volumes calculated with SPT,
another hard-sphere theory albeit less sophisticated.35 SPT, in
which the solute and solvent molecules are approximated by hard
spheres, has been extensively employed for calculating the cavity
volumes for various solutes.2,36 For hard-sphere cavities with
diameters of less than ∼4 Å, the results of the Monte Carlo and
SPT calculations nearly coincide.35 However, for larger cavities,

the volumes calculated from the Monte Carlo simulations
increasingly deviate from those calculated by means of SPT.35

The observed deviation may partly reflect the approximate
nature of SPT and, partly, dewetting of large nonpolar surfaces
in water,37 a feature detected byMonte Carlo simulations but not
by SPT.
Monte Carlo simulations with hard sphere potentials and

SPT-based computations can be readily performed on model
spherical cavities. However, simulations on real solutes are
problematic due to the ambiguity related to assigning specific
hard sphere diameters to solutes or their constituent atoms or
atomic groups. Nonetheless, SPT-based calculations of the
partial molar volumes of small nonpolar solutes produce results

Table 2. Partial Molar Volumes of Solutes Computed fromMDSimulations with the Lennard-Jones Potential via the KB Integrals
(KB) and the Direct Method (DM) and with the Repulsive Lennard-Jones Potential Only (RLJ) via the KB Integralsa

solute KB cm3 mol�1 DM cm3 mol�1 SPTb cm3 mol�1 literaturec cm3 mol�1 RLJ cm3 mol�1

methane 39.2( 0.7 39.3( 1.6 36.6 34.6 78.0( 0.8

ethane 54.1( 0.7 56.4( 0.8 53.0 50.9 115.4( 0.3

benzene 85.7( 1.0 88.7 ( 1.5 84.9 82.2 201.1 ( 1.2

water 29.0( 1.0 27.5( 1.0 28.7 26.2

methanol 44.2( 0.9 45.2( 2.3 44.3 42.3 95.3( 1.0

ethanol 60.3( 0.6 62.2( 1.8 60.2 58.1 132.9( 1.2

1,2-ethanediol 64.5( 1.7 66.8( 1.9 67.3 65.8 148.3( 1.1

ammonia 34.7( 1.0 33.8( 1.2 29.9 29.0 61.7( 0.5

urea 51.8( 1.2 55.5( 1.3 55.9 58.2 168.2( 0.6

glycine 64.0( 0.7 66.8( 2.4 72.9

alanine 80.3( 0.9 84.3( 0.6 88.1

lithium (Liþ) 11.8 ( 0.6 10.8( 0.8

sodium (Naþ) 24.7( 0.8 23.5( 0.7

chloride (Cl�) 55.8( 1.2 57.5( 1.9

bromide (Br�) 61.2( 0.9 63.6( 1.4
aCavity volumes computed from SPT (SPT) and reported empirical schemes (literature). b In SPT calculations of cavity volume,36 each solute was
approximated by a sphere with a radius of r = (3VW/4πNA)

1/3, where VW is its van derWaals volume. The hard sphere radius of a water molecule used in
the calculations is 1.37 Å.1,11 c From ref 1.

Figure 1. Partial molar volumes, V�comp, of the solutes computed based
on the KB theory plotted versus experimental values, V�exp (from
Table 1). Errors for the calculated values are comparable to the size of
the symbols.
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that are in impressive agreement with experimental values.2 In
particular, the thickness of the thermal volume, δ, determined
empirically from the partial molar volume data on nonpolar
solutes10 is nearly identical to that determined from SPT-based
simulations.1,2,11 On the basis of these agreements, it is plausible
to expect that the partial molar volume of nonpolar solutes is
predominantly determined by their cavity volumes. Our simula-
tion results listed in Table 2 are consistent with this expectation;
the partial molar volumes of solutes computed with Lennard-
Jones potential in the absence of the Coulombic term
(“nonpolar” volumes) are in good agreement with those we
calculated with SPT. We performed the SPT calculations of
partial molar volumes as described previously36 using a hard
sphere radius for a water molecule of 1.37 Å.1,11 The hard sphere
radii, r, for the solutes were evaluated from the van der
Waals volumes, VW, based on the spherical approximation,
r = (3VW/4πNA)

1/3.
Recall that cavity volume refers to the partial molar volume of a

hard core solute (which does not interact with its surrounding
water molecules by any attractive forces) minus the translational
βT0RT term. The attractive (σij/r)

6 term of the Lennard-Jones
potential may, therefore, influence the “nonpolar” volume of a
solute. To estimate the magnitude of this influence, we repeated
our calculations with the pair potential containing only the
repulsive Lennard-Jones term, Uij = 4εij(σij/r)

12. The computed
RDFs for methanol (panel a), ethanol (panel b), and 1,2-
ethanediol (panel c) are shown in Figure 2 (marked in blue).
The partial molar volumes for a set of selected solutes calculated
with the repulsive Lennard-Jones potential are listed in the sixth
column of Table 2. Inspection of the data presented in Table 2
reveals that the partial molar volumes of solutes calculated with
the repulsive potential are significantly larger than those calcu-
lated with the full Lennard-Jones potential. In fact, the partial
molar volume of a solute calculated with the repulsive potential is
so great that it is close to the excluded volume. The latter is
defined as the volume encompassed within the solvent accessible
surface of a solute, that is, the surface traced out by the center of a
spherical probe of a radius of 1.4 Å as it rolls over the surface of
the solute (the excluded volume is larger than the cavity volume
of a solute). This result suggests that, in the absence of the
neutralizing influence of the attractive (σij/r)

6 term, the repulsive
4εij(σij/r)

12 potential extends to unrealistically large distances
from the central solute. In other words, as far as partial molar
volume is concerned, the repulsive 4εij(σij/r)

12 potential is a
poor substitute for the hard sphere potential.
In the aggregate, our computed partial molar volumes of

nonpolar analogs of the solutes coincide with SPT-based calcula-
tions which, in turn, are consistent withMonte Carlo simulations
with hard sphere potentials.35 This observation suggests that the
nonpolar volume of a small solute, independent of its chemical
nature, is a good approximation of the cavity volume, VC. It also
lends credence to the practical algorithms for parsing the partial
molar volumes of solutes reported in the literature.1,9,10 In
particular, our computational results support the validity of the
empirical approach in which the thermal volume, VT, is calcu-
lated as a layer of void space of a constant thickness that does not
depend on the chemical nature of the solute.1

Thermal Volume and the Thickness of the Void Volume.
Thermal volume, VT, can be viewed as consisting of a layer of
void volume surrounding the solute. To estimate the thickness of
the thermal volume, δ, we approximate the solutes by spheres.
Alternatively, instead of a sphere one can use a set of simple

Figure 2. Solute�solvent radial distribution functions between the
center of mass of a solute and the oxygen atom of water for methanol
(panel a), ethanol (panel b), and 1,2-ethanediol (panel c) computed
with the full pair potentials (black lines), the Lennard-Jones pair
interaction potentials in the absence of the Coulombic qiqj/(4πε0εr)
term (red lines), and the repulsive Lennard-Jones potential only (blue
lines).
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three-dimensional geometric figures approximating the shape of
a solute molecule.1 However, approximation of a solute by a
nonspherical shape does not necessarily translate into a higher
accuracy of the determination of thermal volume due to a large
number of adjustable geometric parameters.
With the spherical approximation, the cavity volume of a

solute is given by eq 2. For all solutes but the inorganic ions, we
calculated the VW required for determining the hard sphere radii,
r = (3VW/4πNA)

1/3, in eq 2 using the additive approach
presented by Bondi.6 In this procedure, each solute is concep-
tually divided into constituent atomic groups with VW being
computed as the sum of respective group contributions reported
by Bondi.6 Such an additive scheme is valid for the lowmolecular
weight solutes studied in this work, although these molecules
exhibit flexibility around their covalent bonds. Given their small
size, the conformational space sampled by these solutes should
overwhelmingly consist of fully solvent-accessible conformations
with negligible nonadditive effects. The situation is more com-
plicated for larger molecules that may exhibit conformations with
internal voids formed by partially or fully buried atomic groups.
The van der Waals volumes of the inorganic ions were computed
using the Monte Carlo-based algorithm McVol.38

Our calculated van derWaals volumes,VW, for the solutes studied
here are listed in the second column of Table 3. Note that our
calculated van der Waals volume of an isolated water molecule is
12.0 cm3 mol�1 (the contribution of a hydroxyl group is 8.04 cm3

mol�1, while the average contributionof a hydrogen atom is∼4 cm3

mol�1).6 This volume is larger than that of a hydrogen-bonded
water molecule of 6.9 cm3 mol�1 as evaluated based on the
“hydrogen-bonded” radius of a water molecule of ∼1.4 Å.
The values of δ calculated with eq 2 are presented in the third

column of Table 3. Our computed values of δ ranging from 0.4 to
0.6 Å are in good agreement with the empirical estimates
reported in literature.1,2,10

Interaction Volumes. The interaction volume, VI, of charged
and polar molecules in water is due to electrostriction and/or

formation of solute�solvent hydrogen bonding.1,9,39 Thus, solutes
will display negative VI according to their charge, polarity, and
hydrogen bonding capability.We calculated the values ofVI for each
solute as the difference between its V� and the sum of the cavity
volume, VC, and the ideal term βT0RT (see eq 1). The calculated
values of VI are listed in the fourth column of Table 3.
Inspection of data in Table 3 reveals that in agreement with

conventional wisdom the interaction volume, VI, for the non-
polar solutes we studied (the alkanes and benzene) is close to
zero. On the other hand, strongly polar groups such as hydroxyl
or amino groups that can form up to three hydrogen bonds with
water molecules exhibit large negative values of VI. For example,
methanol and ethanol are characterized by interaction volumes
of �5.2 and �6.6 cm3 mol�1, respectively, in good agreement
with empirical estimates.1,9 1,2-Ethanediol with its two hydroxyl
groups is characterized by a VI of �11.6 cm3 mol�1, twice as
negative as those ofmethanol and ethanol. It has been empirically
estimated that the formation of a solute�solvent hydrogen bond
causes on average a volume contraction of about 2.2 cm3 mol�1.1

Thus, the average number of solute�water hydrogen bonds can be
roughly estimated for a solute by dividing itsVI by�2.2 cm3mol�1.
For the ions and the zwitterionic amino acids studied here, the

hydration shell is predominantly formed under the influence of
strong charge-dipole interactions between the solute and water.
For these solutes, the interaction volumes, VI, are strongly
negative, which reflects electrostriction of the solvent by the
charges. Note that our determined value of VI for glycine is in
qualitative agreement with previously reported empirical
estimates.40,41 In contrast, our results on VI for the ions are
significantly more negative than the previous SPT-based theore-
tical estimates.42,43

The interaction volume, VI, calculated for glycine and alanine
with neutralized termini (equal to�12.1 and�12.0 cm3 mol�1,
respectively) reflect the formation of solute�solvent hydrogen
bonds in the absence of electrostriction. The differential VI for
the amino acids with the ionized and neutralized termini reflects

Table 3. van der Waals (VW) and Interaction (VI) Volumes (cm3 mol�1) and the thicknesses of thermal volume (δ, Å) of the
Solutesa

solute VW cm3 mol�1 δ Å VI cm
3 mol�1 literature cm3 mol�1

methane 17.1b 0.51 �0.4( 1.4 1.6d

ethane 27.3b 0.48 0.2( 1.0 �0.8d

benzene 48.4b 0.47 �0.6( 0.6 �0.2d

water 12.0b 0.49 �10.9( 0.5 �9.3d

methanol 21.7b 0.46 �5.2( 2.1 �5.1e;�5.2d

ethanol 31.9b 0.46 �6.6 ( 0.7 �3.7e;�4.7d

1,2-ethanediol 36.5b 0.43 �11.6( 1.9 �12.3d

ammonia 13.7b 0.54 �7.8( 0.7 �5.3d

urea 32.8b 0.33 �10.9( 1.0 �15.1d

glycine (zwitterionic) �31.4( 1.4 �27.0f;�24.1g

glycine (neutralized) 40.5b 0.39 �12.1( 1.1

alanine (zwitterionic) �32.3 ( 1.6

alanine (neutralized) 50.7b 0.40 �12.0( 1.3

lithium (Liþ) 3.2c 0.48 �22.6( 1.1 �16.3h

sodium (Naþ) 11.6c 0.59 �32.2( 1.2 �17.3h

chloride (Cl�) 27.4c 0.59 �32.7( 1.1 �11.5h

bromide (Br�) 30.3c 0.60 �33.4( 1.3 �11.0h

aReported empirical estimates of interaction volumes (literature) and the thickness of the thermal volume, δ. b VW was calculated according to Bondi.6
c VW was calculated using the McVol algorithm.38 dReference 1. eReference 9. fReference 41. gReference 40. hReference 43.
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the contribution of electrostriction that roughly equals �20
cm3 mol�1.
In general, inspection of data presented in Table 3 reveals a

good agreement between our computed VI and the reported
empirical estimates (the fifth column). This agreement further
supports the reliability of the reported practical approaches used
for microscopic rationalization of volumetric data.

’CONCLUSION

WeusedMD simulations in conjunction with the KB theory to
compute the partial molar volumes for a number of small solutes
of various chemical natures. Our calculated partial molar volumes
are in good agreement with the experimental data. Additionally,
the partial molar volumes of the same solutes were computed
using modified pair potentials. First, we carried out MD simula-
tions using the Lennard-Jones potential in the absence of the
Coulombic term. Second, the simulations were performed with
the pair potential containing only the repulsive Lennard-Jones
term. Simulations performed with the full Lennard-Jones poten-
tial yield for the small molecules studied here partial molar
volumes that are in close agreement with the cavity volumes
derived from calculations with scaled particle theory (SPT).
Given this observation and the fact that for solutes with a
diameter of less than ∼4 Å the cavity volumes calculated with
SPT are similar to those computed withMonte Carlo simulations
with hard sphere potentials,35 we conclude that the cavity
volume, VC, of a small molecule nearly coincides with its
nonpolar volume. The latter is the partial molar volume of a
solute devoid of its charges that can be computed from MD
simulations using the Lennard-Jones potential in the absence of
the Coulombic term. On the other hand, MD simulations carried
out with the repulsive Lennard-Jones term produce unrealisti-
cally large partial molar volumes of solutes that are close to their
excluded volumes. This result suggests that the repulsive Len-
nard-Jones potential is a poor substitute for the hard sphere
potential. In general, our theoretical results are in good agree-
ment with the derivations based on practical approaches to
parsing partial molar volume data on small solutes. In particular,
our determined interaction volume, VI, and the thickness of the
thermal volume, δ, for individual solutes are consistent with the
empirical estimates. To the best of our knowledge, this work is
the first computational study that supports and lends credence to
the empirical algorithms of parsing partial molar volume data.
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