Knowledge-Based Systems XXX (XXXX) XXX

journal homepage: www.elsevier.com/locate/knosys

Contents lists available at ScienceDirect

Knowledge-Based Systems

Original software publication

RECOLIBRY-CORE: A component-based framework for building

recommender systems

Jose L. Jorro-Aragoneses ¥, Juan A. Recio-Garcia, Belén Diaz-Agudo,

Guillermo Jimenez-Diaz

Department of Software Engineering and Artificial Intelligence, Universidad Complutense de Madrid, Madrid, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 13 March 2019

Received in revised form 5 June 2019
Accepted 16 July 2019

Available online xxxx

Keywords: frameworks.
Recommender systems
Component-based development

Java

Recommendation systems are a key part of almost every modern consumer website. These systems
include techniques to filter, explore and rank a huge amount of information based on users’ preferences
or similar items. Designing and implementing a recommender system from scratch require skills of
programming and recommending technologies. In this paper we describe RECOLIBRY-CORE, a frame-
work to develop recommender systems based on the reuse of components provided by third-party

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Recommender systems (RS) represent a very successful family
of systems that explore and filter knowledge about items and
users to predict the preference that a certain user would give to
an item. Recommendation is based on a number of techniques
that have been proposed in the literature (see [1] for a compre-
hensive review) and have been applied to many different domains
of applications like movies, books or music [2].

The design process of a RS from scratch is a complex task
where many decisions are taken. The system designer should be
able to choose the most appropriate recommendation algorithm
and configuration parameters. An expert designer would require
an in-depth analysis on the available data and the behaviour of
the algorithms. Besides, the choice depends on many different
factors, such as the type of knowledge about the items and the
target users, the data structure, the existence of social or contex-
tual knowledge, the performance and the size of the knowledge
base, and others.

In recent years, numerous frameworks have been created to
make RS [3-6]. However, in most of these frameworks there
are two major problems. First, many frameworks are oriented
to a single type of recommendation methods such as Lenskit [3]
(focused on collaborative filtering algorithms) or Tensorrec [6]
(focused on machine learning). The second problem of these
frameworks is that they are oriented to users with previous

* Corresponding author.
E-mail addresses: jljorro@ucm.es (J.L. Jorro-Aragoneses), jarecio@ucm.es
(J.A. Recio-Garcia), belend@ucm.es (B. Diaz-Agudo), gjimenez@ucm.es
(G. Jimenez-Diaz).

https://doi.org/10.1016/j.knosys.2019.07.025
0950-7051/© 2019 Elsevier B.V. All rights reserved.

knowledge in the development of such type of systems. They do
not offer non-expert users the guidance required to design or
deploy recommender systems. In addition, an active research area
is made tools to integrate different algorithms, for example [7], or
tools to explain users algorithms or data used in a system [8].

In this paper we present a tool to solve these problems. RE-
COLIBRY-CORE is a Java framework to create RS by reusing com-
ponents. It is a tool included in RECOLIBRY SUITE, a set of in-
telligent tools to build RS. RECOLIBRY-CORE acts as a wrapper
of components provided by third-party frameworks and it uses
the dependency injection pattern to implement recommender
systems based on the components selected by the developer.

2. Background

We have created a set of tools that facilitate the process of de-
veloping RS called RECOLIBRY SUITE, which architecture is shown
in Fig. 1. Firstly, we formalise semantically the representation of
components that are typically used in RS, defining their behaviour
and restrictions regarding their composition when developing a
fully functional RS. This formalisation is carried out through an
ontology called REcONTO. The second tool is RECOLIBRY-STUDIO. It
is a web application that guides the design process of an RS using
RECONTO. The components described semantically by the ontol-
ogy have their corresponding implementation in RECOLIBRY-CORE.
It provides the components defined in RECONTO by wrapping ex-
ternal frameworks such as Mahout [5], Lenskit [3] or jJCOLIBRI [4].
In addition, RECOLIBRY-CORE allows to use dependency injection
to easily compose recommender systems from the components
provided. Finally, RECOSERVER tool automatically deploys the RS

Knowledge-Based Systems (2019), https://doi.org/10.1016/j.knosys.2019.07.025.

Please cite this article as:].L. Jorro-Aragoneses,].A. Recio-Garcia, B. Diaz-Agudo et al., RECOLIBRY-CORE: A component-based framework for building recommender systems,

https://doi.org/10.1016/j.knosys.2019.07.025
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
mailto:jljorro@ucm.es
mailto:jarecio@ucm.es
mailto:belend@ucm.es
mailto:gjimenez@ucm.es
https://doi.org/10.1016/j.knosys.2019.07.025

2 J.L. Jorro-Aragoneses, J.A. Recio-Garcia, B. Diaz-Agudo et al. / Knowledge-Based Systems xxx (XXxx) Xxx

RecolLibry Suite

/

RecoLibry RecOnto ‘ ‘
Studio

RecoLibry
Core

B

RecoServer

Fig. 1. REcOLIBRY SUITE software architecture.

Table 1
Software metadata.

Nr. (executable) Software metadata Please fill in this column
description
S1 Current software version 0.0.4
S2 Permanent link to executables of this https://github.com/UCM-GAIA/RecoLibry-Core
version
S3 Legal Software License GNU v3.0
S4 Computing platform/Operating Microsoft Windows, Mac OSx, Linux
system
S5 Installation requirements & Java DK 8, Apache Maven
dependencies
S6 If available, link to user manual — if https://github.com/UCM-GAIA/RecoLibry-Core/wiki/Home-English

formally published include a
reference to the publication in the
reference list

S7 Support email for questions

jljorro@ucm.es

and creates a RestFull-API with all the RS functionalities. It allows
to use this API in an external application.

In the following section, we describe how the components
are implemented in RECOLIBRY-CORE and how it uses dependency
injection to build the final deployed RS.

3. Software framework

RECOLIBRY-CORE uses a scheme based on the definition of the
minimum set of components necessary to build a new recom-
mender system. The most important component in this scheme
is RecommenderSystem. A RecommenderSystem component
specifies the functionality of a RS. It needs two elements. The
first one is a component that implements the Recommender-
Algorithm interface. It defines the methods that an algorithm
must implement to be integrated in RECOLIBRY-CORE. The second
one is an object that implements the Query interface. The goal of
this interface is to define the structure of the queries that can be
used in the implemented RS. Finally, RecommenderAlgorithm
returns a list of RecommenderResult objects.

Regarding the concrete implementations provided by the
framework, current version includes components to develop
content-based RS, implemented through the jCOLIBRI frame-
work, and collaborative-filtering RS, implemented by the Mahout
library.

In addition, RECOLIBRY-CORE proposes a development process
based on the injection dependency pattern. Concretely, it uses

Google’s Guice library [9] to easily compose the components
included in the framework. In a nutshell, it adds a set of Java
annotations that define how the components have to be com-
bined. For example, Listing 1 shows the annotation of the Recom-
menderSystem component through the @Inject tag. This way,
we define that a RecommenderAlgorithm and a Query objects
are required to build a RecommenderSystem.

Following the dependency injection pattern, developers can
easily build a RS by extending the RecSysConfiguration class
or by defining a configuration file similar to the following one:

4. Conclusions

In this paper we present RECOLIBRY-CORE, a Java framework
to create recommendation systems using components. The large
number of existing frameworks to create recommendation sys-
tems together with the large number of recommendation tech-
niques make the design of these systems very complex. REcOLI-
BRY-CORE alleviates this problem by integrating these frameworks
into a homogeneous set of components. This way, RECOLIBRY-
CORE provides the required components to build RS and defines
a composition process through the dependency injection design
pattern that eases the development of this type of systems.

Currently, RECOLIBRY-CORE provides components to build clas-
sic RS such as collaborative filtering and content-based. In future
versions of RECOLIBRY-CORE we will add additional features such

Please cite this article as: J.L. Jorro-Aragoneses,].A. Recio-Garcia, B. Diaz-Agudo et al., RECOLIBRY-CORE: A component-based framework for building recommender systems,

Knowledge-Based Systems (2019), https://doi.org/10.1016/j.knosys.2019.07.025.

https://github.com/UCM-GAIA/RecoLibry-Core
https://github.com/UCM-GAIA/RecoLibry-Core/wiki/Home-English

J.L. Jorro-Aragoneses, J.A. Recio-Garcia, B. Diaz-Agudo et al. / Knowledge-Based Systems xxx (XXXx) XXX 3

Listing 1: Definition of RecommenderSystem constructor.

public class RecommenderSystem {
@Inject

public RecommenderSystem(RecommenderAlgorithm
Query query) {...}

algorithm,

Listing 2: Composition of recommender system with a JSON file.

{"injections": [{
"type": "Class",
"bind": "es.ucm.fdi.gaia.recolibry.api.RecommenderAlgorithm",
"to": "es.ucm.fdi.gaia.recolibry.impl.MatrixFactorization"
3,1
"type l|: I|Class|l’
"bind": "es.ucm.fdi.gaia.recolibry.api.Query",
"to": "es.ucm.fdi.gaia.recolibry.impl.MFQuery"
33
Table 2
Code metadata.
Nr. Code metadata description Please fill in this column
C1 Current code version 0.0.4
c2 Permanent link to code/repository https://github.com/UCM-GAIA/RecoLibry-Core
used of this code version
Cc3 Legal Code License GNU v3.0
C4 Code versioning system used Git
c5 Software code languages, tools, and Java 8
services used
Cc6 Compilation requirements, operating Apache Maven
environments & dependencies
Cc7 If available link to developer https://github.com/UCM-GAIA/RecoLibry-Core/wiki/Home-English
documentation/manual
Cc8 Support email for questions jljorro@ucm.es

as explanations or group-based and context-aware recommenda-
tions.

Acknowledgements

Supported by the UCM (Research Group 921330), the Ministry
of Economy and Competitiveness (TIN2017-87330-R) and the
funding provided by Banco Santander in UCM (CT17/17-CT17/18).

Appendix. Required metadata

Current executable software version
See Table 1.
Current code version

See Table 2.

References

[1] F. Ricci, L. Rokach, B. Shapira, Recommender systems: introduction and

challenges, in: Recommender Systems Handbook, Springer, 2015, pp. 1-34.

D. Paraschakis, BJ. Nilsson,]. Hollinder, Comparative evaluation of top-n

recommenders in e-commerce: An industrial perspective, in: 2015 IEEE 14th

International Conference on Machine Learning and Applications (ICMLA),

2015, pp. 1024-1031.

M.D. Ekstrand, M. Ludwig, J.A. Konstan, J.T. Riedl, Rethinking the recom-

mender research ecosystem: Reproducibility, openness, and Lenskit, in:

Proceedings of the Fifth ACM Conference on Recommender Systems - RecSys

11, ACM Press, New York, New York, USA, 2011, p. 133.

[4] J.A. Recio-Garcia, B. Diaz-Agudo, P.A. Gonzélez-Calero, Prototyping recom-

mender systems in jcolibri, in: Proceedings of the 2008 ACM Conference on

Recommender Systems - RecSys '08, ACM Press, New York, New York, USA,

2008, p. 243.

S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action, Manning

Publications Co., 2011, p. 375, Online, doi:citeulike-article-id:7544201, URL

http://www.manning.com/owen/.

[6] J. Kirk, Tensorrec, 2018, https://github.com/jfkirk/tensorrec.

[7] C.Zhang,]. Bi, S. Xu, E. Ramentol, G. Fan, B. Qiao, H. Fujita, Multi-imbalance:
An open-source software for multi-class imbalance learning, Knowl.-Based
Syst. 174 (2019) 137-143.

[8] J.M. Moyano, E.L. Gibaja, S. Ventura, MLDA: A tool for analyzing multi-label
datasets, Knowl.-Based Syst. 121 (2017) 1-3.

[9] R. Vanbrabant, Google Guice: Agile Lightweight Dependency Injection
Framework, APress, 2008.

(2]

(3]

(5]

Please cite this article as: J.L. Jorro-Aragoneses,].A. Recio-Garcia, B. Diaz-Agudo et al., RECOLIBRY-CORE: A component-based framework for building recommender systems,

Knowledge-Based Systems (2019), https://doi.org/10.1016/j.knosys.2019.07.025.

https://github.com/UCM-GAIA/RecoLibry-Core
https://github.com/UCM-GAIA/RecoLibry-Core/wiki/Home-English
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb1
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb1
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb1
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb2
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb2
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb2
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb2
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb2
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb2
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb2
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb3
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb3
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb3
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb3
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb3
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb3
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb3
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb4
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb4
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb4
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb4
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb4
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb4
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb4
http://www.manning.com/owen/
https://github.com/jfkirk/tensorrec
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb7
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb7
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb7
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb7
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb7
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb8
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb8
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb8
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb9
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb9
http://refhub.elsevier.com/S0950-7051(19)30329-6/sb9

	RecoLibry-core: A component-based framework for building recommender systems
	Introduction
	Background
	Software framework
	Conclusions
	Acknowledgements
	Appendix. Required Metadata
	Current executable software version
	Current code version

	References

