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Abstract. Dimensionality reduction is a key stage for both the desifja pat-
tern recognition system or data visualization. Recenligré has been a increas-
ing interest in those methods aimed at preserving the dptddgy. Among them,
Laplacian eigenmaps (LE) and stochastic neighbour embgd8NE) are the most
representative. In this work, we present a brief compagatimong very recent
methods being alternatives to LE and SNE. Comparisons are ahainly on two
aspects: algorithm implementation, and complexity. Atstations between meth-
ods are depicted. The goal of this work is providing resessan this field with
some discussion as well as criteria decision to choose aathetbcording to the
user’s needs and/or keeping a good trade-off between pmafare and required
processing time.

1 Introduction

Dimensionality reduction (DR) allows the extraction of xmdimensional, relevant
information from big collections of data aimed at improvihg performance of a pat-
tern recognition system or allowing for intelligible datswalization. In other words,
the goal of dimensionality reduction is to embed a high disi@mal data matrixy™ =
[¥i]1<i<n, such thaty; € RP into a low-dimensional, latent data matt& = [xi]1<i<N,
beingx; € RY, whered < D. Classical DR approaches were conceived follow-
ing an intuitive criterion, such as variance preservatiprn€ipal component analy-
sis - PCA) or distance preservation (classical multidinmmed scaling - CMDS)[]1].
Nowadays, more developed, recent methods are aimed atyirggthe data topology.
Such a topology is very often given by a data-related grapilt,ds a non-directed and
weighted one, in which data points represent the nodes, aoth-aegative similarity
(also affinity) matrix holds the pairwise edge weights. THeigresentation is exploited
by both spectral and divergence-based methods. On onefoaspectral approaches,
similarity matrix can represent the weighting factor foirpése distances as happens
in Laplacian eigenmapsl[2]. On the other hand, once norexdit can also represent a
probability distribution. The latter is the case of the noethbased on divergences such
as stochastic neighbour embedding [3].

This work presents a brief comparative overview of receimedhsionality reduc-
tion methods emerging as alternatives to Laplacian eigpsmad stochastic neighbour
embedding. Among them, locally linear landmarks for mddifearning [4], elastic
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embedding[5] and methods based on mixtures of divergebgel [Comparative anal-
ysis is done mainly on two aspects: algorithm implementatand complexity. As
well, relations between methods are depicted. This worlatheys some criteria and
discussion on how to choose among methods according to #nis ngeds, and/or the
trade-off between performance and required processirg tim

The rest of this paper is organized as follows: Sectidns Z3xoatline the studied
methods. The comparative analysis is presented in sddtiindlly, sectiod b draws
the discussion and final remarks.

2 Spectral methods

A popular spectral approach for DR is Laplacian Eigenmayts) (htroduced in[[2],
which is aimed at minimizing local distances. The LE’s castdtion can be written as
mezl WomllZn — ||, whereW = [Wqom]1<n<n iS the similarity matrix and - || stands
for Euclidean distance. Alternatively, we can express lf&'mulation as

Ee(X)= t(XLX")s.t. XDX =I5, XD1y=0q, 1)

where D = Diag(W1y) is the degree matrix anfl is the graph Laplacian matrix
given byL = D — W. LE’s constraints facilitates the solution leading to agyatfized
eigenvalue problem. Along this line, the embedded dataer thed smallest vector
eigenvectors of normalized Laplacidd—Y2LD~Y2. Very recently, a fast algorithm
to perform LE was introduced in [4]. Instead of using the vehiput dataY’, this
approach approximates the solution by using only a subdetafa points (landmarks)
Y e RN, Furthermore, landmark projections are constrained toobally linear,
such thaty” ~ Y Z, beingZ the projection matrix. The embedded data is obtained by
enforcing it to fulfill the same local linearity property doat X ~ X. By replacing
this approximation in Eq[]1, we can easily demonstrate thatesided data is now
the eigenvectors aZ LZ™ multiplied by Z. In addition, to determing, the authors
propose to solve the simple probléi¥i — Y Z||? subject to linear conditions.

3 Divergence-based methods

Stochastic neighbor embedding (SNE) [3] minimizes therimfation divergence D be-
tween two distributiong?, = [ Prm]1<m<n @NAQn = [Onm] 1<m<n @SSOciated with the-th
point from observed and latent data, respectively. Theimguthe Kullback-Leibler
directed divergence B, the SNE objective function is in the form:

Prm
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Definingdnm = llyn — ymll? anddom = ||z, — zml[?, distributionsP, andQ,, can be
chosen as generalized, normalized nonsymmetric affinitidse form

exp(—%éﬁm/o-ﬁ) exp(—%dﬁm/nﬁ)

B ngm exp(-162,,/02) ngm exp(—1dZ /n2)’

Prm and Onm = (3)



with g = 0 andpp, = 0. A symmetric version of SNE (SSNE) can be achieved by
selecting full normalized affinities which can readily betaibed by slightly expres-
sions in [3). In this case, rather than a restricted sum, ratiess must be summed
on the denominator in order to enforce that all normalizediensum to 1. This can
be done by guaranteeing thifQ1n = 1(P1y = 1. SNE-based methods suffer
from reaching distorted and overlapped latent space, whisnsmaller than the in-
trinsic dimension([5]. To cope with this issue, another aatiraised, which is named
t-SNE and consists of definin@, as at-distribution [7]. Further recently, enhanced
approaches have been proposed founded on the mixture ofdivees. In[[B], it is
proposed a mixture by adding a regularization parameter balanceprecision and
recall so: (1- B) Dk (Phll@n) + B Dk (QnllPn). Similarly, in [6], a novel approach is
introduced which mixes the divergences % B (1-8) DL (Pl Sh) + B Dk (QnllSh),
wheresS, is a distribution following the same mixture rule so tisat= (1-8) P, +B8Q.
This divergence is used in the so-called Jensen-Shannoadshinly (JSE), which aims
then to minimizeEyse = SN, D}, (QnllSn) [6].

As an alternative to SNE methods, lin [5], the Elastic Embegl@E) is introduced.
EE is aimed to optimize:

N N
Eee(XI) = ) W@+ 2 D WnexpZ,) = E£e(X) + AEze(X).  (4)

nm=1 nm=1

Briefly put, this method attempts to involve the two objeesithat SNE fulfills
but in a simpler way. To this end, which is the key of this methtwvo graphs are
used. Then, we have two kind of weighting coefficients, andw;,,, being the entries
of attractiveW* and repulsivéV ~ affinity matrices, respectively. Both of them are
positive semi-definite matrices. For simplicity, full gfepaffinities are considered:
Won = llyn — ymll? andwyy, = exp362/0?). From Eq. [(#), the gradient dEee
can be written asG(X|1) = 4X(L* — AL") = 4X L, whereW,,, = Wy, exp(d2.),
Wom = Wiy, — AWy, and their corresponding Laplaciahs= D - W andL = D - W.
Likewise, as calculated in LEL" is the non-normalized Laplacian and thfi§ =
D* — W+, In [5], to carry out the search for the suboptimal embeddgdtion X,

a gradient descent algorithm is used, which is powered @apectral direction (SD)
proposed in[[B].

4 Comparative analysis

The brief comparative analysis presented here encomplskesetween methods
(Section4.11), a discussion on algorithm implementaticec{i®n[4.2) and some ex-
perimental results (Sectién 4.3).



4.1 Links between methods

Relation between SNE and EE: Eliminating independent terms frolX, Equation [(R)
can be expanded as

N N
Esne(X) = ) Punllen — zall® + > log > explizn — zml?). 5)

nm=1 n=1 n#m

Hence we can appreciate that by omitting the log operatoraatiting a homotopy
parameten, Esye becomes the EE’s cost function. Furthermore, EE is a vaoiGifie
elastic network applied to solve the traveling salesmablpro as explained in [10].

Relation between SNE and LE: Recalling Equatiori(5), it is noticeable that, doing as
in diffusion maps([11] which means using the normalized &féa so thafpnm = Wnm,
the right hand side of the Equation is the same as the LE dgdanction.

Relation between EE and LE: The same as in SNE applies when comparing with
EE. However, it is noteworthy that by setting= 0, EE does not reach the same embed-
ding as LE since the optimization is different. EE's embedds determined through
a search and that of LE comes from a spectral decompositidaerusrthonormality
assumptions.

4.2 Brief discussion on implementation and complexity

Implementation via SD: Methods such as EE, SNE and SSNE can be implemented in
fast fashion via SD-based gradient descent seaiich [5]. \Weteehen-th embedded
data point atiterationasxp[r] = x,[r — 1]+ a[r] on[r]. SD is aimed at determining the
optimal directiongy[r] by incorporating a partial-Hessian strategy within thadjent
descent heuristi¢c [9]. Then, by design, Hessian is heaxijoited which is advanta-
geous for subsequent developments since it can be be catrfpst@nd has the suitable
property to be positive semi-definite. As an intuitive cdiuati, sought direction must
hold thatB[r]en[r] = —gn, beingg, the columnn of G(X|1) and B[r] any positive
semi-definite matrix. SD consists of calculating the gratlief Ecg(X|1) following
the direction of an underlying convex function which arisgseni = 0. Also, the
calculation of SD is speeded up by using Cholesky deconiposilamely, rather than
calculating matrix directly witt? = —G(X|2)(B)™* (which is O(ND) when using
conventional Gaussian-Jordan elimination), two solvengiular systems in the form
R Rvec(P) = —vec(G) are solved, wher& is the upper triangular matrix resulting
from the Cholesky decomposition & ® I4. Latter calculation can be done @{(N2d)
with standard linear algebra routines. In addition, corapah of R needs to be done
only once at first iteration and its complexity(i)s(%N).

Implementation via a full gradient and Hessian: In [6], the search is done by using
a full gradient calculated over the whole cost function (ppraximations are done). In
this case, the search is done wigr] = xn[r — 1] + un[r]VE, whereuq[r] is an adaptive
step size dependent on the Hessian. Given the nature ofgdivees, doing so can
increase the complexity. Even more when using a mixturevadrgencest = E;sg),
calculation of gradient and Hessian may be more expensivretiieless, the advantage
of this implementation is that scaling is considered in butih and low dimensional



space. This provides a more modulated gradient and thenex breicking of the locall
structure of data during the optimization process.

4.3 Experimental results and discussion

For shorthand notatiot;SNE using SD is denoted &SNE + SD. Likewise, LE via
Locally linear landmarks is denoted as LE + LLL. JSE &48NE are implemented via a
full gradient scheme. Both SD and full gradientimplemedbotet involve a backtracking
line search. To form the similarity matrices, given a pexjiigparameteK, the relative
bandwidth parameter, is estimated regarding its distributid®, so that the entropy
over neighbors of such distribution is approximately kag This is done by a binary
search as explained inl[5]. For experiments, wekset 30. Also, for LE + LLL, the
number of landmarks ik = 500, andl = 100 for EE. Regularization paramejgfor
JSE is set to be/R. The methods are tested over the well-known database @OIL2
image bank holdingd = 1440 data points (20 objects in 72 poses/angles) Dith
128&. To quantify the performance of studied methods, the saadesion of the average
agreement rat&x(K) introduced in[[6] is used, which is ranged within the intdrv
[0,1]. SinceRnx(K) is calculated at each perplexity value from 2\e- 1, a numerical
indicator of the overall performance can be obtained byualmng its area under the
curve (AUC). Overall results regarding AlRgx (K) are shown in FiglJ1l. As well, the
resultant embedded spaces reached by each method aredepict
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Fig. 1: Results are shown regarding the quality mea&ugK). The curves and their AUC (a)
for all considered methods are depicted, as well as the editipdata (b)-(j).

5 Discussion and final remarks

By one hand, spectral methods, in general, attempt to pedbke global structure.
Particularly, CMDS exhibiting a pronounced peak on largigimeors. LE + LLE re-



sembles the LE’s behaviour. Then we can say that LLL is a gtiethative to initialize
LE. In addition, LLL can also mean a significantly degreasifghe processing time
if O(N2d) + O(3N) + O(L3) < O(N3). This inequality depends heavily on the num-
ber of landmarks, then determining an optimal number of haaudks is a crucial stage
aiming to get a good trade-off between processing time aniwqmmeance (how much
it resembles the LE’s performance). By the other hand, SkiErhethods perform a
better embedding preserving smaller neighbours (locatstre). We can notice that
SNE, SSNE and EE have a similar performance. In this case, &@%that SNE and
EE behave as a symmetrized version due to strong assumptitiregradient calcu-
lation. On the contraryt-SNE + SD performs a better embedding sitabstributed
probabilities may improve the separation of underline teltssdespite of biasing the
gradient. Indeed;SNE + SD accomplishes a similBgx(K) shape and AUC in com-
parison witht-SNE. JSE outperforms the remaining considered methodsadheth
the divergence type, and the identical similarity defimitio the high-dimensional and
low-dimensional space.

This work gathers some key aspects to compare dimensipnaditiction methods.
Namely, relations between them, algorithm implementaton complexity/processing
time. Very recent methods were studied such as elastic esiriggdocally linear land-
marks for laplacian eigenmaps and Jensen-Shanon embeddisgussion and hints
provided here may facilitate users to chose a method acuptte trade-off between
performance and complexity.

References

[1] Ingwer Borg. Modern multidimensional scaling: Theory and applications. Springer, 2005.

[2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmajs Bimensionality reduction and data repre-
sentation.Neural computation, 15(6):1373-1396, 2003.

[3] Geoffrey E Hinton and Sam T Roweis. Stochastic neighlobedding. InAdvances in neural infor-
mation processing systems, pages 833—-840, 2002.

[4] Max Vladymyrov and MiguelA Carreira-Perpinan. Locally linear landmarks for lasymie manifold
learning. InMachine Learning and Knowledge Discovery in Databases, pages 256—-271. Springer,
2013.

[5] Miguel A Carreira-Perpinan. The elastic embeddingoalym for dimensionality reduction. IKCML,
volume 10, pages 167-174, 2010.

[6] John A Lee, Emilie Renard, Guillaume Bernard, Pierre éutpand Michel Verleysen. Type 1 and 2
mixtures of kullback-leibler divergences as cost fundiam dimensionality reduction based on simi-
larity preservation Neurocomputing, 2013.

[7] Laurens Van der Maaten and Geoffrey Hinton. Visualizhgta using t-sne.Journal of Machine
Learning Research, 9(2579-2605):85, 2008.

[8] Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helendo8j and Samuel Kaski. Information re-
trieval perspective to nonlinear dimensionality redutfior data visualizationThe Journal of Machine
Learning Research, 11:451-490, 2010.

[9] Max Vladymyrov and Miguel Carreira-Perpinan. Partigssian strategies for fast learning of nonlinear
embeddingsarXiv preprint arXiv: 1206.4646, 2012.

[10] Richard Durbin, Richard Szeliski, and Alan Yuille. Amalysis of the elastic net approach to the
traveling salesman problereural Computation, 1(3):348-358, 1989.

[11] Amit Singer and H-T Wu. Vector diffusion maps and the gection laplacian.Communications on
Pure and Applied Mathematics, 65(8):1067-1144, 2012.



	Introduction
	Spectral methods
	Divergence-based methods
	Comparative analysis
	Links between methods
	Brief discussion on implementation and complexity
	Experimental results and discussion

	Discussion and final remarks

