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Highlights

• Continuous-time Markov chains on large, possibly infinite state spaces

• Construction of a computationally tractable approximating process/model

• Computable upper and lower bounds for transient state probabilities

• Different strategies for applying approximate adaptive uniformization
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Chains

Alexander Andreychenko1, Werner Sandmann1,∗, Verena Wolf1

Department of Computer Science, Saarland University, Campus E1 3, 66123 Saarbrücken, Germany

Abstract

We consider the approximation of transient (time dependent) probability distributions of discrete-state

continuous-time Markov chains on large, possibly infinite state spaces. A framework for approximate

adaptive uniformization is provided, which generalizes the well-known uniformization technique and many

of its variants. Based on a birth process and a discrete-time Markov chain a computationally tractable

approximating process/model is constructed. We investigate the theoretical properties of this process and

prove that it yields computable lower and upper bounds for the desired transient probabilities. Finally,

we discuss different specific ways of performing approximate adaptive uniformization and analyze the

corresponding approximation errors. The application is illustrated by an example of a stochastic epidemic

model.

Keywords: Continuous-time Markov chain, Transient probability distribution, Uniformization,

Randomization, Discrete-time conversion, Dynamic state space truncation

1. Introduction

Continuous-time Markov chains (CTMCs) with large (possibly countably infinite) discrete state spaces

are widely used to model real-world systems and processes in many areas such as engineering and envi-

ronmental processes, computer and communication networks, transportation, logistics, production and

manufacturing systems, healthcare systems, epidemic diseases, multiphysics systems, or biochemically re-

acting systems, amongst many others. Often the interest is in transient (time dependent) system behavior

or performance properties, respectively, and the analysis requires the determination of transient probabil-

ity distributions. For instance, recent real-world applications in which transient probability distributions

of CTMCs are highly relevant include such diverse areas as epidemics and the spread of diseases in hu-

man and animal populations as well as in computer networks [1, 2, 3, 4], upstream inventory information

sharing in supply chain networks [5], evacuation route selection of large-scale crowds under emergencies
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[6], allelopathic interactions between competing phytoplankton species in marine environments [7], or the

impact of calcium fluxes on cells in the brain [8].

We consider a regular (conservative and non-explosive) CTMC X = {X(t), t ≥ 0}, that is a discrete-

state Markov jump process with only finitely many jumps in any finite time interval and right-continuous

sample paths. Without loss of generality we assume that the state space is S ⊆ N = {0, 1, 2, . . .}. The

infinitesimal generator of the CTMC is expressed by the matrix Q = (qij)i,j∈S , where qij <∞ for i 6= j

are the state transition rates and qii := −∑i6=j qij such that all row sums of Q are zero, that is the CTMC

is conservative. We define qi := −qii. At any time t ≥ 0 the transient (time-dependent) distribution is

the collection of all state probabilities at that time, represented by the row vector p(t). For any initial

distribution p(0) it is given by

p(t) = p(0)eQt = p(0)
∞∑

k=0

(Qt)k

k!
(1)

as the unique solution of the corresponding system of Kolmogorov (backward and forward) differential

equations, see [9, pp. 80–81],[10, pp. 251–252].

Since analytical solutions are only possible in special cases, numerical techniques are commonly applied

[11, 12], but conceptually exact approaches are often computationally intractable due to prohibitively

large (possibly infinite) state spaces.

Uniformization, also known as randomization or discrete-time conversion, provides a numerically

stable computational scheme to approximate the transient probability distributions of CTMCs with

uniformly bounded transition rates. It was originally proposed by Jensen [13], has been used to study

computational and theoretical aspects of CTMCs [14, 15, 16, 17, 18, 19, 20, 21, 22] and has become one

of the most prevalent approaches to the numerical transient analysis of CTMCs.

The underlying principle is to consider a subordinated discrete-time Markov chain (DTMC) Y =

{Y (n), n ∈ N} with initial distribution p(0) and transition probability matrix P = Q/λ + I where

supi qi ≤ λ <∞. Hence, Q = λ(P − I) such that the transient distribution of the CTMC can be written

as

p(t) = p(0)e−λteλPt = p(0)e−λt
∞∑

k=0

(λt)kP k

k!
=
∞∑

k=0

p(0)P k
(λt)ke−λt

k!
. (2)

Note that p(0)P k =: π(k) is the probability distribution of the DTMC after k steps and (λt)ke−λt/k! is

the probability that a Poissonian random variable with parameter λt takes the value k, which equals the

probability of exactly k events during a time period of length t ≥ 0 in a Poisson process with rate λ.

Hence, the principle of uniformization can be viewed as the construction of a Poisson process {N(t), t ≥ 0}
and a DTMC {Y (n), n ∈ N} such that Y (N(t)) has the same distribution as X(t) for every t ≥ 0.

In numerical computations π(k) = π(k−1)P can be computed iteratively and the infinite sum in (2)

must be truncated, for which a priori truncation error bounds can be set and a corresponding truncation

point can be determined based on the cumulated sum of Poisson probabilities, cf. [23],[12, pp. 410–413].

This technique, henceforth referred to as standard uniformization (SU), often works well, but it has

several serious drawbacks in case of large and stiff models. In particular, it requires uniformly bounded
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transition rates and a global uniformization rate λ that is a finite upper bound on the maximum outrate

of states, which is typically not available in the case of an infinite state space.

Adaptive uniformization (AU) [24] is an approach to cope with large state spaces without assuming

uniformly bounded transition rates by adapting the uniformization rate. More precisely, it is shown in

[24] that depending on the set of active states with nonzero probabilities after a particular number of

jumps one can construct a birth process {B(t), t ≥ 0} and a subordinated DTMC {Y (n), n ∈ N} such

that Y (B(t)) has the same distribution as X(t) for every t ≥ 0. The n-th transition rate of the birth

process corresponds to the ‘fastest’ state visited by the DTMC at step n with positive probability. This

differs from the (constant) rate λ of the Poisson process in that the birth process jumps at rates smaller

than or equal to λ. As a result, the number of vector-matrix multiplications required by AU may be

lower than for SU, in particular if the average rate of the birth process is much less than the jump rate

λ of the Poisson process in SU. However, in many cases AU is less efficient than SU.

The computation of the probabilities Pr(B(t) = n) required with AU [24] is more difficult than

the computation of Poisson probabilities for SU. Furthermore, in general, the rates of the birth process

defined by AU converge to the supremum of the transition rates of all non-transient states of the CTMC

X. Thus, the potential computational gain that can be achieved by AU as compared to SU is anyway

marginal for sufficiently long time horizons. Besides, the initial set of active states can be already large

or the adapted set of active states can grow quickly, that is, the number of states with nonzero initial

probability is large, or a large number of states have a nonzero probability after only a few steps in the

subordinated DTMC. In such cases, even for small and moderate time horizons AU is less efficient than

SU.

Another way of applying the uniformization idea to Markov chains with large state spaces is by state

space truncation, which effectively reduces the number of nonzero entries in the transition probability

matrix of the respective subordinated DTMC Y , thereby reducing the effort required for the vector-

matrix multiplications in numerical computations. Such truncation approaches often allow to compute

accurate approximations to the transient distributions of infinite-state CTMCs with relatively moderate

execution times and memory costs. For instance, approximate uniformization [25] is a truncated version

of SU using a fixed state space truncation such that the assumption of uniformly bounded transition

rates can be relaxed. Similarly, inexact uniformization [26] proceeds SU while ignoring states with small

probabilities below a pre-specified threshold, which in fact corresponds to truncating the state space.

Fast adaptive uniformization [27] combines state space truncation and the use of adaptive uniformiza-

tion rates. In this approach, the truncation of the state space not only decreases the computational effort

of the vector-matrix multiplication, but also allows the use of smaller transition rates for the birth process

than with AU. This leads to a further reduction in the number of vector-matrix multiplications required

to approximate transient distributions of CTMCs. The method has been applied in [27] to stochastic

chemical kinetics by heuristically choosing sets of active states as sets of ‘temporarily significant’ states

with a probability below a certain threshold similarly as in [26] but with adapted uniformization rates

rather than with a constant uniformization rate. A detailed study of the probabilistic structure and
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interpretation as well as an error analysis is lacking and highly desirable.

In this paper, we provide a general framework for approximate adaptive uniformization that covers

and generalizes all the uniformization approaches outlined above. We generalize the notion of active sets

to allow for an arbitrary non-explosive birth process randomizing the time between transitions in the

corresponding subordinated DTMC. We use this framework to investigate the theoretical/structural and

computational properties of the resulting stochastic process X̄ = {X̄(t), t ≥ 0} where X̄(t) := Y (B(t))

for all t ≥ 0. We prove that the transient distributions of X̄ yield strict upper and lower bounds for the

transient distributions of X, that is, for all states i and times t,

Pr(X̄(t) = i) ≤ Pr(X(t) = i) ≤ Pr(X̄(t) = i) + Pr(X̄(t) = ⊥), (3)

where ⊥ is a special error state, which we adjoin to the state space of X. Additionally, we provide

an approximation error analysis and discuss different strategies for the dynamic truncation of the state

space.

The general framework for approximate adaptive uniformization is given in the next section, including

all necessary definitions of the birth process, the subordinated DTMC, and the combined stochastic

process that is used to approximate the desired transient distribution of the CTMC under consideration.

Then we have all prerequisites required to state (3) formally as our main theorem and to deduce respective

corollaries covering standard uniformization and adaptive uniformization. The proof of this main theorem,

in the course of which we prove a couple of intermediate results that reveal important theoretical insights

into the properties of the constructed stochastic process, is given in Section 3. Subsequently, in Section 4

we investigate different strategies for choosing the active sets used in approximate adaptive uniformization

and prove error bounds for the corresponding approximations. In Section 5 the application is illustrated

by an example of a stochastic epidemic model. Finally, Section 6 concludes the paper.

2. General framework for approximate adaptive uniformization

Our general framework builds upon and generalizes the probabilistic interpretations of SU and AU,

respectively, in that we consider the construction of a CTMC that is a combination of a birth process and

a subordinated nonhomogeneous DTMC. While with AU this construction is based on specifically defined

active sets with nonzero probabilities we consider in general an arbitrary infinite sequence A0, A1, . . . of

subsets of N such that supi∈An
qi <∞ for all n ∈ N. We say that a state i is active at the n-th epoch if

i ∈ An and we call An the n-th active set. Moreover, let λ0 ≥ 0, λ1 ≥ 0, . . . be such that λn ≥ supi∈An
qi.

We refer to λn as the n-th uniformization rate. If used for computing an approximation to the transient

distribution of a given CTMC, then the sets A0, A1, . . . are typically chosen to be finite truncations of

the state space (cf. Section 4).

Now, we specify a birth process B = {B(t), t ≥ 0}, a nonhomogeneous DTMC Y = {Y (n), n ∈ N}
and a combined CTMC X̄ = {X̄(t), t ≥ 0}. Essentially, Y keeps track of the current state of X and B

relates epochs with time. We will show that the combined CTMC X̄ can be used to approximate the
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desired transient probability distribution of X. This approximation is exact for certain choices of the

active sets, in particular for the choices corresponding to SU and AU (see Corollaries 1 and 2 below).

The birth process. The birth process B is a pure birth process that is independent of X with birth rates

λ0 ≥ 0, λ1 ≥ 0, . . . and state space N. For an infinitesimal time interval [t, t + ∆), with ∆ > 0 and any

state n ∈ N, we find transition probabilities

Pr(B(t+ ∆) = m | B(t) = n) =





1− λn∆ + o(∆), if m = n,

λn∆ + o(∆), if m = n+ 1,

o(∆), if m > n+ 1,

0, otherwise.

(4)

where o(∆) is a function such that o(0) = 0 and lim∆→0
o(∆)

∆ = 0. Moreover, we have for the initial

probability distribution that

Pr(B(0) = 0) = 1, (5)

and all other initial probabilities are zero. Note that even if X is non-explosive, B may be explosive de-

pending on the chosen sequence of uniformization rates. In the sequel, we assume that the uniformization

rates are chosen such that B is non-explosive. More details are given in Section 4.

The subordinated DTMC. The DTMC Y is independent of X and B and has state space N ∪ {⊥}
where ⊥ is a new distinguished state. For any state i ∈ N ∪ {⊥} and any time epoch n ∈ N, define

pi(n) := Pr(Y (n) = i). All active states i ∈ A0 have initial probability pi(0) > 0 and all remaining states,

including the state ⊥, have initially probability zero. The idea of approximate adaptive uniformization is

to observe X at the time instances where B jumps. The DTMC Y keeps track of the current state of X

conditioned on the jumps of B. Whenever X jumps to a state that is not active in the subsequent epoch,

the DTMC Y will jump to the special state ⊥. For i, j ∈ N ∪ {⊥}, the one-step transition probabilities

of Y are given by

Pr(Y (n+ 1) = j | Y (n) = i) =





qij/λn, if i ∈ An, j ∈ An+1, i 6= j,
∑
k 6∈An+1

qik/λn, if i ∈ An, j = ⊥,
1−∑k 6=i qik/λn, if i ∈ An, j ∈ An+1, i = j,

1, if i /∈ An, i = j,

0, otherwise.

(6)

Note that i ∈ An, j = ⊥ implies i 6= j and that all infinite sums in the equation above converge since∑
k 6=i qik = qi ≤ λn for i ∈ An. The above transition probabilities depend on the current epoch n, which

means that Y is in general nonhomogeneous in time. Clearly, if all An and λn are identical, then Y is

homogeneous in time.
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The combined stochastic process. We define the stochastic process X̄ = {X̄(t), t ≥ 0} by X̄(t, ω) =

Y (B(t, ω), ω) for any outcome ω. This construction is also called the subordination of Y to B. The

process X̄ has indeed the same state space as Y . Since Y and B are independent, we have

Pr(X̄(t) = i) = Pr(Y (B(t)) = i) =
∞∑

n=0

Pr(Y (n) = i)Pr(B(t) = n). (7)

Lemma 1. The stochastic process X̄ is a continuous-time Markov chain. That is, for states i, j1, . . . , jm
and time points t > t1 > . . . > tm,

Pr(X̄(t) = i | X̄(t1) = j1, . . . , X̄(tm) = jm) = Pr(X̄(t) = i | X̄(t1) = j1).

This follows directly from the independence of Y and B and the fact that both Y and B are Markov

chains.

As a main result of the paper, we prove that if X̄ is constructed based on an arbitrary sequence

A0, A1, . . ., then the transient state probabilities of X̄ are lower bounds of the corresponding transient

probabilities of X and that adding the transient probability of ⊥ yields upper bounds. More precisely:

Theorem 1. For any sequence of active sets A0, A1, . . ., uniformization rates λ0, λ1, . . ., and all t ≥ 0,
i ∈ N, if B does not explode, then

Pr(X̄(t) = i) ≤ Pr(X(t) = i) ≤ Pr(X̄(t) = i) + Pr(X̄(t) = ⊥).

In particular, this mitigates the drawbacks of adaptive uniformization because fast states (i.e., states

having high exit rates) with small probability can be excluded from being active. In this case the speed

of the birth process remains slow or can even become slower as the dynamics of the underlying systems

slows down. Similar as for inexact uniformization [26], the number of non-zero entries in the transition

probability matrix of Y remains manageable for large or infinite Markov chains.

Before we proceed to the proof of Theorem 1 we formulate corollaries addressing special cases corre-

sponding to uniformization approaches outlined in the introduction.

Corollary 1 (Standard Uniformization). Assume that supi qi < ∞. Choose An = N and λn = λ <
∞ for all n ∈ N where λ ≥ supi qi. Then for all t ≥ 0, i ∈ N,

Pr(X̄(t) = i) = Pr(X(t) = i).

Note that Corollary 1 obviously addresses standard uniformization since the birth process with λn = λ

for all n ∈ N is the Poisson process with rate λ. It is clear that with An = N for all n ∈ N all states are

always active such that the sums in (6) with j = ⊥ are empty, Pr(Y (n) = ⊥) = 0 for all n ∈ N and (7)

yields Pr(X̄(t) = ⊥) = 0 for all t ≥ 0.

Corollary 2 (Adaptive Uniformization, Theorem 1 in [24]). For all n ∈ N choose An = {i ∈ S |
pi(n) > 0} and λn = supi∈An

qi. If B does not explode, then for all t ≥ 0, i ∈ N,

Pr(X̄(t) = i) = Pr(X(t) = i).
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Here, since An+1 = {i ∈ S | pi(n+1) > 0}, obviously (i ∈ An)∧(k /∈ An+1)⇒ qik = 0, because otherwise

pk(n + 1) would be positive and thus k be active at epoch n + 1 and contained in An+1. Hence, for all

n ∈ N,

Pr(Y (n+ 1) = ⊥ | Y (n) = i) =
∑

k/∈An+1

qik
λn

= 0, i ∈ An,

such that according to (6) we have Pr(Y (n) = ⊥) = 0 for all n ∈ N and (7) yields Pr(X̄(t) = ⊥) = 0 for

all t ≥ 0.

Note that the bounds in Theorem 1 hold in particular if supi qi < ∞ and λn = λ < ∞ for all n ∈ N
where λ ≥ supi qi. A similar result was shown by van Dijk [25]. In practice, it is used to truncate large or

infinite state spaces. In fact, applying a fixed state space truncation as in approximate uniformization [25]

can be expressed as a special case of our general framework by formally choosing a constant set of active

states. Similarly, dynamically choosing small active sets that contain the most ’significant’ states and

ignoring states with small probabilities below a pre-specified threshold as in inexact unifomization [26]

corresponds to a specific choice of the active sets in our general framework. The advantage of choosing

small sets An is that the computational complexity of the approximation algorithm is reduced. Of course,

this comes at the expense of reduced accuracy.

3. Proof of Theorem 1

In [24] the proof of our Corollary 2, which is Theorem 1 in [24], is established by first proving that

the residence time distribution of a state i is identical in X and X̄. Then, the equality of the jump

probabilities is shown. Similar proof arguments cannot be used to prove our more general Theorem 1

since the dependence of the birth process B(t) on X̄(t) cannot be avoided. Instead, we will relate the

transient distributions of X and X̄ indirectly by comparing them to an intermediate process X̃ which

keeps track of the discarded probability mass in the state ⊥.

We first investigate the infinitesimal transition probabilities of X̄. We will then introduce an auxiliary

‘intermediate’ Markov chain X̃ and compare the Kolmogorov forward equations of X, X̄, and X̃ to

establish our Theorem 1.

3.1. Transition probabilities of X̄

We now consider the transition probabilities of the Markov chain X̄ for an infinitesimal time interval

[t, t+∆). These probabilities will depend on the probability e(n, i, t) that the birth process B occupies an

epoch n under the condition that the Markov chain X̄ occupies a state i ∈ N such that Pr(X̄(t) = i) > 0,

i.e.

e(n, i, t) := Pr(B(t) = n | X̄(t) = i).

Note that for any time point t ≥ 0 and any state i ∈ N, we have
∑∞
n=0 e(n, i, t) = 1. Moreover, for any

epoch n we have that Pr(Y (n) = i) = 0 implies e(n, i, t) = 0.

8
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Theorem 2. Let [t, t + ∆) be an infinitesimal time interval, i, j ∈ N with i 6= j, t ≥ 0, and Pr(X̄(t) =
i) > 0. Then,

a) the transition probability Pr(X̄(t+ ∆) = j | X̄(t) = i) equals


qij

∑

n:j∈An+1

e(n, i, t)


∆ + o(∆),

b) the transition probability Pr(X̄(t+ ∆) = i | X̄(t) = i) equals

1−


qi

∑

n:i∈An+1

e(n, i, t) +
∑

n:i/∈An+1

λne(n, i, t)


∆ + o(∆),

and
c) the transition probability Pr(X̄(t+ ∆) = ⊥ | X̄(t) = i) equals


 ∑

n:i/∈An+1

(λn − qi)e(n, i, t) +
∑

k 6=i
qik

∑

n:k/∈An+1

e(n, i, t)


∆ + o(∆).

For state ⊥ we find Pr(X̄(t+ ∆) = ⊥ | X̄(t) = ⊥) = 1 and for any state i ∈ N we have Pr(X̄(t+ ∆) =
i | X̄(t) = ⊥) = 0.

Proof: We first prove part a). By definition, we have

Pr(X̄(t+ ∆) = j | X̄(t) = i)

= Pr(Y (B(t+ ∆)) = j | Y (B(t)) = i)

=
∞∑

n=0

Pr(Y (n) = j, B(t+ ∆) = n | Y (B(t)) = i)

=
∞∑

n=0

∞∑

m=0

Pr(Y (n) = j, B(t+ ∆) = n | Y (m) = i, B(t) = m)

× Pr(Y (m) = i, B(t) = m | X̄(t) = i).

Note that the probability that B makes more than two jumps within [t, t + ∆) is o(∆). On the other

hand, the probability that Y moves from i to j in zero jumps is obviously zero. We then only need to

consider the case that the birth process B makes exactly one jump in the time interval [t, t+ ∆). Finally,

for the last probability we have that X̄(t) = i and B(t) = m imply Y (m) = i. Therefore, the above

9
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double sum simplifies and we obtain

Pr(X̄(t+ ∆) = j | X̄(t) = i)

=

∞∑

n=0

Pr(Y (n+ 1) = j, B(t+ ∆) = n+ 1 | Y (n) = i, B(t) = n)e(n, i, t) + o(∆)

=
∞∑

n=0

Pr(Y (n+ 1)=j | Y (n)= i)Pr(B(t+ ∆) = n+ 1 | B(t) = n)e(n, i, t) + o(∆)

=
∑

n:i∈An,j∈An+1

qij
λn

(λn∆ + o(∆)) e(n, i, t) + o(∆),

where the second equality holds because of the independence of Y and B and the third equality by

substituting (4) and (6) into the above. For an epoch n such that i /∈ An we have Pr(Y (n) = i) = 0 and

then also e(n, i, t) = 0. Therefore,

Pr(X̄(t+ ∆) = j | X̄(t) = i) =


qij

∑

n:j∈An+1

e(n, i, t)


∆ + o(∆).

For part b) we find, by a similar reasoning as above,

Pr(X̄(t+ ∆) = i | X̄(t) = i)

=
∞∑

n=0

∞∑

m=0

Pr(Y (n) = i, B(t+ ∆) = n | Y (m) = i, B(t) = m)e(m, i, t).

Again, the birth process takes two jumps in [t, t+ ∆) with probability o(∆) and we only need to consider

the case that B makes zero jumps or one jump in [t, t+ ∆). Thus,

Pr(X̄(t+ ∆) = i | X̄(t) = i)

=

∞∑

n=0

Pr(Y (n) = i, B(t+ ∆) = n | Y (n) = i, B(t) = n)e(n, i, t)

+

∞∑

n=0

Pr(Y (n+ 1) = i, B(t+ ∆) = n+ 1 | Y (n) = i, B(t) = n)e(n, i, t) + o(∆)

=
∞∑

n=0

Pr(Y (n) = i | Y (n) = i)Pr(B(t+ ∆) = n | B(t) = n)e(n, i, t)

+
∞∑

n=0

Pr(Y (n+ 1) = i | Y (n) = i)Pr(B(t+ ∆) = n+ 1 | B(t) = n)e(n, i, t) + o(∆)

=

∞∑

n=0

(1− λn∆ + o(∆)) e(n, i, t) +
∑

n:i∈An+1

λn − qi
λn

(λn∆ + o(∆))e(n, i, t) + o(∆),

10
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where the second equality holds because of the independence of Y and B and the third equality by

substituting (6) and (4). Finally, recall that
∑∞
n=0 e(n, i, t) = 1 such that the above further simplifies to

Pr(X̄(t+ ∆) = i | X̄(t) = i)

= 1−
∞∑

n=0

λn∆ +
∑

n:i∈An+1

(λn − qi)∆e(n, i, t) + o(∆)

= 1−


 ∑

n:i/∈An+1

λne(n, i, t) + qi
∑

n:i∈An+1

e(n, i, t)


∆ + o(∆).

For part c), we find, by similar reasoning as above,

Pr(X̄(t+ ∆) = ⊥ | X̄(t) = i)

=
∞∑

n=0

Pr(Y (n+1) = ⊥|Y (n) = i)Pr(B(t+∆) = n+ 1) |B(t) = n)e(n, i, t) + o(∆)

=


 ∑

n:i∈An+1

∑
k/∈An+1

qik

λn


 (λn∆ + o(∆))e(n, i, t)

+


 ∑

n:i/∈An+1

λn −
∑
k∈An+1

qik

λn


 (λn∆ + o(∆))e(n, i, t) + o(∆)

=


 ∑

n:i/∈An+1

(λn − qi)e(n, i, t) +
∑

k 6=i
qik

∑

n:k/∈An+1

e(n, i, t)


∆ + o(∆).

The transition probabilities for state ⊥ follow directly from the fact that ⊥ is absorbing. Thus, the

proof of Theorem 2 is completed. 2

An immediate consequence of Theorem 2 is that X̄ has the infinitesimal generator function Q̄(t) ≡
(q̄ij(t) : i, j ∈ N ∪ {⊥}) for t ≥ 0 with

q̄ij(t) =





qij
∑

n:j∈An+1

e(n, i, t), if i 6= j, i, j ∈ N,

−


 ∑

n:i∈An+1

qie(n, i, t) +
∑

n:i/∈An+1

λne(n, i, t)


 , if i = j, i ∈ N,

∑

n:i/∈An+1

(λn − qi)e(n, i, t) +
∑

k 6=i
qik

∑

n:k/∈An+1

e(n, i, t), if i ∈ N, j = ⊥,

0 otherwise.

(8)

As usual we denote the exit rate −q̄ii(t) as q̄i(t) for any state i ∈ N∪{⊥} and any time point t ≥ 0. Note

that Q̄(t) is conservative for all finite t, i.e.,
∑
j∈N∪{⊥} q̄ij(t) = 0.
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Corollary 3. For any two distinct states i, j ∈ N and any time point t ≥ 0 we have q̄ij ≤ qij.

Corollary 3 follows from Theorem 2 and the fact that
∑
n:j∈An+1

e(n, i, t) ≤ 1.

In the following we study the relationship between the transient distributions of X and X̄. For this

purpose we will construct an auxiliary Markov chain X̃ and then establish relationships between the

transient distributions of X̃ and X̄ as well as between the transient distributions of X̃ and X.

3.2. The shadow process X̃

Let X̃ = {X̃(t), t ≥ 0} be a nonhomogeneous CTMC taking values in the state space N∪{⊥i : i ∈ N}.
This CTMC X̃, called shadow process, behaves similar to X̄, except that the special state ⊥ is split into

states ⊥i for i ∈ N. The idea is that the states ⊥i, i ∈ N, mimic the behavior of the original Markov

chain X.

Let the shadow process X̃ have the following initial distribution. For i ∈ N,

Pr(X̃(0) = i) =

{
Pr(X̄(0) = i), if i ∈ A0,

0, otherwise
(9)

and

Pr(X̃(0) = ⊥i) =

{
0, if i ∈ A0,

Pr(X(0) = i), otherwise.
(10)

Furthermore, let the shadow process have the infinitesimal generator function Q̃(t) ≡ (q̃ij(t) : i, j ∈ N ∪ {⊥i : i ∈ N})
for t ≥ 0 such that for i, j ∈ N,

q̃ij(t) = q̄ij(t), (11)

q̃i⊥j (t) =





qij
∑

n:j /∈An+1

e(n, i, t), if i 6= j,

∑

n:i/∈An+1

(λn − qi)e(n, i, t), if i = j,
(12)

and

q̃⊥i⊥j
(t) = qij . (13)

All other entries of Q̃(t) are zero. Note that we have
∑
j∈N q̃i⊥j

(t) = q̄i⊥(t) for any state i ∈ N. Moreover,

since Q and Q̄(t) are conservative, so is Q̃(t). Similarly, the non-explosiveness of X and X̄ ensures the

non-explosiveness of X̃. Thus, the generator function Q̃ uniquely determines the transient distributions

of X̃. This follows from the fact that if X̃ makes infinitely many jumps in a finite amount of time with

probability greater than zero, then either this occurs within the subset of states N, and then X̄ must

explode, or explosion occurs within the subset of states {⊥i : i ∈ N}, but then X must explode.

Theorem 3. For all t ≥ 0 and any i ∈ N,

Pr(X̄(t) = i) = Pr(X̃(t) = i),

Pr(X(t) = i) = Pr(X̃(t) = i) + Pr(X̃(t) = ⊥i).

12
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Moreover, for all t ≥ 0,

Pr(X̄(t) = ⊥) =
∑

k∈N
Pr(X̃(t) = ⊥k).

Proof: First we consider the probabilities to be in state k ∈ N both for X̃ and X̄. We write p̄(t) and

p̃(t) for the transient probability distribution of X̄ and X̃, respectively. Moreover, let i, j, k,m, n range

over N. Then the forward Kolmogorov equations of X̄ are as follows.

d

dt
p̄k(t) =

∑

i 6=k
q̄ik(t)p̄i(t)−

∑

j 6=k
q̄kj(t)p̄k(t)− q̄k⊥(t)p̄k(t)

=
∑

i 6=k
q̄ik(t)p̄i(t)−

∑

j 6=k
q̄kj(t)p̄k(t)

−


 ∑

n:k/∈An+1

(λn − qk)e(n, k, t) +
∑

m 6=k
qkm

∑

n:m/∈An+1

e(n, k, t)


 p̄k(t).

For the shadow process we find, using (11) and (12)

d

dt
p̃k(t) =

∑

i 6=k
q̃ik(t)p̃i(t)−

∑

j 6=k
q̃kj(t)p̃k(t)− q̃k⊥k

(t)p̃k(t)−
∑

m 6=k
q̃k⊥m

(t)p̃k(t)

=
∑

i 6=k
q̄ik(t)p̃i(t)−

∑

j 6=k
q̄kj(t)p̃k(t)

−


 ∑

n:k/∈An+1

(λn − qk)e(n, k, t) +
∑

m 6=k
qkm

∑

n:m/∈An+1

e(n, k, t)


 p̃k(t).

Thus, the forward Kolmogorov equations of X̄ and X̃ are identical. Since X̄ and X̃ are non-explosive

these forward equations have unique solutions. Moreover, (9) implies p̄k(0) = p̃k(0) for all k ∈ N. Thus,

it follows p̄k(t) = p̃k(t) for all t ≥ 0.

Now we consider the relationship between the ⊥-states of X̃(t) and the ⊥-state of X̄(t). For the

shadow process, we get

d

dt

∑

k

p̃⊥k
(t) =

∑

k

d

dt
p̃⊥k

(t)

=
∑

k


∑

i 6=k
q̃⊥i⊥k

(t)p̃⊥i
(t)−

∑

j 6=k
q̃⊥k⊥j

(t)p̃⊥k
(t) +

∑

m

q̃m⊥k
(t)p̃m(t)




=
∑

k

∑

i 6=k
q̃⊥i⊥k

(t)p̃⊥i
(t)−

∑

j

∑

k 6=j
q̃⊥k⊥j

(t)p̃⊥k
(t) +

∑

k

∑

m

q̃m⊥k
(t)p̃m(t).

The first two sums are identical. Splitting the third term according to the cases m 6= k and m = k,

respectively, and applying (12) yields that the above equals
∑

k

∑

m 6=k
qmk

∑

n:k/∈An+1

e(n,m, t)p̃m(t) +
∑

k

∑

n:k/∈An+1

(λn − qk)e(n, k, t)p̃k(t).
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For X̄(t), we get

d

dt
p̄⊥(t) =

∑

k∈N
q̄k⊥(t)p̄k(t)

=
∑

k

∑

m6=k
qkm

∑

n:m/∈An+1

e(n, k, t)p̄k(t) +
∑

k

∑

n:k/∈An+1

(λn − qk)e(n, k, t)p̄k(t)

=
∑

k

∑

m6=k
qmk

∑

n:k/∈An+1

e(n,m, t)p̄m(t) +
∑

k

∑

n:k/∈An+1

(λn − qk)e(n, k, t)p̄k(t).

Given that p̄k(t) = p̃k(t) for all k ∈ N and t ≥ 0, we have d
dt p̄⊥(t) = d

dt

∑
k∈N p̃⊥k

(t). Furthermore, (10)

yields p̄⊥(0) =
∑
k∈N p̃⊥k

(0). The non-explosiveness of X̄ and X̃ then gives us p̄⊥(t) =
∑
k p̃⊥k

(t).

Finally, by a similar approach we show p̃k(t) + p̃⊥k
(t) = pk(t). For the shadow process, we get

d

dt

(
Pr(X̃(t) = k) + Pr(X̃(t) = ⊥k)

)
=

d

dt
p̃k(t) +

d

dt
p̃⊥k

(t)

=
∑

i 6=k
q̃ik(t)p̃i(t)−

∑

j 6=k
q̃kj(t)p̃k(t)−

∑

m6=k
q̃k⊥m(t)p̃k(t)− q̃k⊥k

(t)p̃k(t)

+
∑

i 6=k
q̃⊥i⊥k

(t)p̃⊥i
(t)−

∑

j 6=k
q̃⊥k⊥j

(t)p̃⊥k
(t) +

∑

m 6=k
q̃m⊥k

(t)p̃m(t) + q̃k⊥k
(t)p̃k(t)

=
∑

i 6=k
q̃ik(t)p̃i(t) +

∑

i6=k
q̃i⊥k

(t)p̃i(t) +
∑

i 6=k
q̃⊥i⊥k

(t)p̃⊥i
(t)

−
∑

j 6=k
q̃kj(t)p̃k(t)−

∑

j 6=k
q̃k⊥j

(t)p̃k(t)−
∑

j 6=k
q̃⊥k⊥j

(t)p̃⊥k
(t).

Applying (11), (12), and (13) yields that the above equals

∑

i6=k
qikp̃i(t)


 ∑

n:k∈An+1

e(n, i, t) +
∑

n:k/∈An+1

e(n, i, t)


+

∑

i 6=k
qikp̃⊥i(t)

−
∑

j 6=k
qkj p̃k(t)


 ∑

n:j∈An+1

e(n, k, t) +
∑

n:j /∈An+1

e(n, k, t)


−

∑

j 6=k
qkj p̃⊥k

(t).

Since
∑∞
n=0 e(n, i, t) = 1 for any state i ∈ N, we can simplify this and obtain

d

dt
(p̃k(t) + p̃⊥k

(t)) =
∑

i 6=k
qik (p̃i(t) + p̃⊥i

(t))−
∑

j 6=k
qkj (p̃k(t) + p̃⊥k

(t)) .

For the Markov chain X we have

d

dt
pk(t) =

∑

i 6=k
qikpi(t)−

∑

j 6=k
qkjpk(t).

From (10) it follows pk(0) = p̃k(0) + p̃⊥k
(0). Now the non-explosiveness of X and X̃ yields pk(t) =

p̃k(t) + p̃⊥k
(t) for any t ≥ 0. 2
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From Theorem 3 it follows that for any state i ∈ N and any time point t ≥ 0,

Pr(X̄(t) = i) = Pr(X̃(t) = i) ≤ Pr(X̃(t) = i) + Pr(X̃(t) = ⊥i) = Pr(X(t) = i)

and

Pr(X(t) = i) = Pr(X̃(t) = i) + Pr(X̃(t) = ⊥i)
≤ Pr(X̃(t) = i) +

∑

j∈N
Pr(X̃(t) = ⊥j) = Pr(X̄(t) = i) + Pr(X̄(t) = ⊥),

which then implies Theorem 1. Thus, the proof of Theorem 1 is completed.

4. Choosing the active sets

In this section we discuss different strategies for choosing the sets An and the uniformization rates

λn when computing the transient probability distribution of X̄ in order to approximate the transient

probability distribution of a CTMC X. For a given time point t ≥ 0, we use (7) to compute the transient

distribution of X̄. In the sequel, we will focus on

1. ensuring that the resulting birth process B is non-explosive, such that we can apply Theorem 1,

and

2. keeping the total approximation error Pr(X̄(t) = ⊥) small.

First of all, we remark that once the sets An are chosen, the rates λn = supi∈An
qi yield the slowest

possible birth process [24]. In Section 4.4 we will see that this is advantageous from a computational

point of view since the slower B the fewer non-zero terms are required in (7). Furthermore, we note that

the active sets can be chosen dynamically. That is, given sets A0, . . . , An−1 and uniformization rates

λ0, . . . , λn−1 it is possible to compute Pr(Y (m) = i) and Pr(B(t) = m) for any epoch m < n, state

i ∈ N ∪ {⊥}, and time point t ≥ 0, regardless of the choices of later active sets and later uniformization

rates. Given that n > 0 and the probabilities Pr(Y (n− 1) = i) are known, let f
(n)
j be a prediction of the

probability Pr(Y (n) = j) when j ∈ N is chosen to be active in epoch n, that is,

f
(n)
j =

∑

i6=j
Pr(Y (n− 1) = i)

qij
λn−1

+ Pr(Y (n− 1) = j)
λn−1 − qj
λn−1

. (14)

For n = 0 we set f
(n)
j = pj(0). Then indeed for all n ∈ N,

Pr(Y (n) = j) =

{
f

(n)
j , if j ∈ An,

0, otherwise.
(15)

Furthermore, we can also use these predictions to find the amount of probability moving to ⊥ in every

epoch, that is,

Pr(Y (n+ 1) = ⊥)− Pr(Y (n) = ⊥) =
∑

j /∈An+1

f
(n+1)
j . (16)
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Finally, we have

Pr(X̄(0) = ⊥) = Pr(Y (0) = ⊥) =
∑

j /∈A0

f
(0)
j . (17)

Now we can choose active sets and uniformization rates in the following way, where for n ∈ N we

denote by f (n) the probability vector with components f
(n)
j .

1. Compute the prediction vector f (0) using the initial distribution of X.

2. Choose the active set A0 based on f (0).

3. Choose the uniformization rate λ0 = supi∈A0
qi.

4. Compute the probabilities Pr(Y (0) = i) for all i ∈ N according to (15).

5. Compute the prediction vector f (1) according to (14).

6. Iterate the above scheme.

4.1. State-based probability threshold

The simplest way to choose the active sets An is to include only those states that have a probability

above a certain threshold [26, 27]. This corresponds to the use of inexact vector-matrix multiplica-

tions, that is, during the computation of the probabilities Pr(Y (n) = i) we remove those entries in the

corresponding vector that are below a certain threshold. Given a threshold δ > 0 we choose

An = {i ∈ N : f
(n)
i > δ}, n ∈ N.

We now prove that this strategy of choosing the active sets ensures that the birth process has bounded

rates if X is ergodic and we choose λn = supi∈An
qi for all n. To accomplish this we first show that the

embedded Markov chain of the subordinated chain Y can be used to ‘underapproximate’ the distribution

of the embedded Markov chain of X in the sense that lower bounds for all transient probabilities of

the latter can be obtained. Recall that the embedded Markov chain (or jump chain) of a (discrete- or

continuous-time) Markov chain Z is the DTMC Ze with Ze(n) = Z(Jn) for all n ∈ N where Jn is the

n-th jump time of Z [9].

Lemma 2. Given any sequence of active sets and uniformization rates, the transient distribution of the
embedded Markov chain of Y is an ‘underapproximation’ of the transient distribution of the embedded
Markov chain of X, which means that for all n ∈ N and i ∈ N,

Pr(Ye(n) = i) ≤ Pr(Xe(n) = i).

Proof: Initially, we have

Pr(Y (0) = i) ≤ Pr(X(0) = i)

for any state i ∈ N. The probability to jump from a state i ∈ N to a state j ∈ N with i 6= j in the

embedded Markov chain of X equals qij/qi. For the subordinated Markov chain Y it holds

Pr(Y (n+ 1) = j | Y (n) = i, Y (n+ 1) 6= Y (n), Y (n+ 1) 6= ⊥) =
qij/λn
qi/λn

= qij/qi
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and, thus,

Pr(Y (n+ 1) = j | Y (n) = i, Y (n+ 1) 6= Y (n)) ≤ qij/qi. (18)

This means that, regardless of the epoch in which Y jumps to a new state, it always performs this jump

with a probability that is at most qij/qi. It follows that the jump probabilities of the embedded Markov

chain of Y are lower bounds for the jump probabilities of the embedded Markov chain of X. Finally,

induction over the number of jumps yields Lemma 2. 2

The embedded Markov chains of X and Y are important, because a state in a Markov chain is

recurrent if and only if it is recurrent in the embedded Markov chain [9, pp. 185–188]. Furthermore, the

ergodicity of a Markov chain requires all its states to be recurrent. This leads us to the following result.

Lemma 3. Let X be ergodic. For some threshold δ > 0 choose active sets

An = {i ∈ N : f
(n)
i > δ}

and uniformization rates λn = supi∈An
qi, n ∈ N. Then the rates of the birth process B are bounded.

Proof: We prove Lemma 3 by contradiction and assume that the rates of B are unbounded. Since for

any epoch n the rate λn is chosen as the supremum exit rate over the states in An there exists a sequence

of states {in ∈ N : n ∈ N} such that

qin = λn, in ∈ An, and sup
n∈N

qin =∞.

Given our choice of active sets we further have

Pr(Y (n) = in) ≥ δ.

In other words, the Markov chain Y “goes to infinity” with a probability of at least δ. Since the exit

rates of the states {in} are unbounded, it must follow that all states in A0 are transient in Y . If a state

in A0 were non-transient (i.e., recurrent) in Y then the probability to return to such a state after a finite

amount of epochs would be one [28], but this is a contradiction with the fact that, with probability at

least δ, Y goes to infinity as n increases. It follows that the embedded Markov chain of Y goes to infinity

as well and then, by Lemma 2, so does the embedded Markov chain of X. We then have that all the

states in A0 are transient in the embedded Markov chain of X and then the same holds for X itself. This

completes the proof of Lemma 3, because it is a contradiction with the assumption that X is ergodic. 2

Note that the above result ensures that Theorem 1 can be applied if X is ergodic and if we choose

the active sets by using a state-wise probability threshold δ. The boundedness of the rates of B ensures

that B is non-explosive.

4.2. Global probability threshold

Although using a state-based probability threshold can be easily and efficiently implemented, it suffers

from an obvious drawback. If the probability distribution of Y is spread out in such a way that many
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states have probability less that δ, then the total approximation error may become very large. In the

worst case, it may happen that initially all states have probability less than the threshold and then we

have Pr(X̄(t) = ⊥) = 1 for any time point t ≥ 0. A solution to this problem is to use a global probability

threshold ε > 0. Therefore, we consider the problem of choosing the An given predicted probabilities f (n)

such that during one epoch of Y the probability of the state ⊥ grows by at most ε.

Let En be the set of states with non-zero predicted probability for epoch n, that is,

En = {i ∈ N : f
(n)
i > 0}.

Since the infinitesimal generator matrix of X has finitely many non-zero entries in each row and A0 is

finite, En is also finite for all n ∈ N. Now, the set of candidate sets Bn consists of all sets that ensure

that at most ε probability-mass is “lost”. Thus,

Bn = {B : B ⊂ En,
∑

j /∈B
f

(n)
j ≤ ε}.

We then choose a subset An from Bn such that the maximal rate in An is minimized, that is,

max
i∈An

qi = inf
B∈Bn

max
i∈B

qi.

Note that a set An that fulfills the above condition can be found by ordering the states in En according

to their exit rates. However, this ordering may be costly if En is large.

A result similar to Lemma 3 can be easily shown for the global probability threshold. We omit to

state it explicitly here.

4.3. Towards a priori error bounds

The global error threshold approach still does not lead to a priori error bounds. For any epoch n,

Pr(Y (n) = ⊥) ≤ (n+ 1)ε,

but this probability may still reach one after d1/εe − 1 epochs. Furthermore, for a sufficiently large time

point t ≥ 0,

Pr(B(t) ≥ d1/εe) ≈ 1,

such that the total approximation error will be arbitrarily close to one. It is clear that to find an a priori

bound on the total approximation error Pr(X̄(t) = ⊥) we must consider both the rates of the birth

process B and the time point of interest t.

Theorem 4. Assume that the birth process B does not explode. Given an error bound ε > 0, a time
point t > 0, active sets An, and birth rates λn such that for all n ∈ N,

λn
∑

j /∈An+1

f
(n+1)
j ≤ ε

t
, (19)

we have that
Pr(X̄(t) = ⊥) ≤

∑

j /∈A0

f
(0)
j + ε. (20)
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Proof: For the derivative of the error probability Pr(X̄(t) = ⊥) we get

d

dt
Pr(X̄(t) = ⊥) =

d

dt

∞∑

n=0

Pr(Y (n) = ⊥)Pr(B(t) = n)

=
∞∑

n=0

Pr(Y (n) = ⊥)
d

dt
Pr(B(t) = n). (21)

For the derivatives of the probabilities Pr(B(t) = n) of the birth process B we get

d

dt
Pr(B(t) = n) =

{
−λ0Pr(B(t) = 0), if n = 0,

λn−1Pr(B(t) = n− 1)− λnPr(B(t) = n), otherwise.
(22)

Applying (22) to (21) yields

d

dt
Pr(X̄(t) = ⊥)

=
∞∑

n=1

Pr(Y (n) = ⊥)λn−1Pr(B(t) = n− 1)−
∞∑

n=0

Pr(Y (n) = ⊥)λnPr(B(t) = n)

=
∞∑

n=0

(Pr(Y (n+ 1) = ⊥)− Pr(Y (n) = ⊥))λnPr(B(t) = n)

=

∞∑

n=0

λn
∑

j /∈An+1

f
(n+1)
j Pr(B(t) = n)

where the last equality follows from (16). Using
∑
n∈N Pr(B(t) = n) = 1 we obtain

d

dt
Pr(X̄(t) = ⊥) ≤ max

n∈N
λn

∑

j /∈An+1

f
(n+1)
j ,

and by (17) it follows

Pr(X̄(t) = ⊥) ≤
∑

j /∈A0

f
(0)
j + tmax

n∈N
λn

∑

j /∈An+1

f
(n+1)
j .

Applying the assumption (19) then yields (20). 2

Note that it is no problem to choose active sets and uniformization rates to ensure that (19) holds (for

instance, by choosing the sets An as for adaptive uniformization). However, it must also be ensured that

the birth process B does not explode. Therefore, it will be interesting to find necessary and sufficient

conditions that ensure non-explosion when the active sets and uniformization rates satisfy (19). However,

a detailed discussion of this issue is beyond the scope of the present paper. For more information we refer

to [29].

4.4. Truncating the birth process

Given active sets An and uniformization rates λn we can find state-wise approximations of the transient

probability distribution of X at a time t ≥ 0 by computing the infinite sum (7). In practice, however,
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the sum must be truncated since usually analytical solutions are not available. In the case of standard

uniformization, where the birth process is a Poisson process, it is well-known that such a truncation is

possible for any desired error bound [23]. We will show that the same holds for general, non-explosive

birth processes.

Lemma 4. Let the birth process B be non-explosive. Then for any threshold ε > 0 and any time point
t ≥ 0 there exists a right truncation point R ∈ N such that

∞∑

n=R+1

Pr(B(t) = n) < ε.

Proof: We prove the statement by contradiction. Assume that for some threshold ε > 0 and a time

point t ≥ 0 we have
∞∑

n=R+1

Pr(B(t) = n) ≥ ε

for all R ∈ N. Note that the sum on the left hand side gives the probability of at least R+ 1 jumps in t

time-units. Hence,

0 < ε ≤
∞∑

n=R+1

Pr(B(t) = n) = Pr(B(t) ≥ R+ 1) = 1− Pr(B(t) < R+ 1).

Thus,

Pr(B(t) < R+ 1) ≤ 1− ε < 1

for all R ∈ N. Then it follows

lim
R→∞

Pr(B(t) < R+ 1) ≤ 1− ε < 1.

Hence, the probability of B performing finitely many jumps in t time-units is at most 1 − ε < 1 and

therefore the probability of B performing infinitely many jumps in t time-units is at least ε > 0, which

means that B explodes. 2

It is important to note that the smaller the birth rates of B, the smaller R will be for any time-point

t. Allowing smaller birth rates and thus decreasing R is the main advantage of adaptive uniformization

over standard uniformization.

We can now combine Theorem 4 and Lemma 4 to arrive at a computable approximation of the

transient distribution of X with a priori error bounds.

Theorem 5. Given error bounds ε1 > 0, ε2 > 0, active sets An, and uniformization rates λn, such that,
choosing ε = ε1, (19) holds for all n ∈ N and the resulting birth process B is non-explosive, there exists
a truncation point R such that the active sets A′n with

A′n =

{
An, if n ≤ R,
∅, otherwise,
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and uniformization rates λ′n with

λ′n =

{
λn, if n ≤ R,
0, otherwise,

yield an approximation X̄ ′ with global approximation error

Pr(X̄ ′(t) = ⊥) ≤
∑

j /∈A0

f
(0)
j + ε1 + ε2. (23)

Proof: Let R be the smallest natural number such that

∞∑

n=R+1

Pr(B(t) = n) < ε2.

Since the birth process B is non-explosive, by Lemma 4 such an R exists. Let X̄ = Y (B) and X̄ ′ = Y ′(B′),

respectively, be the Markov chains derived from active sets An and A′n, and uniformization rates λn and

λ′n, respectively. As the active sets and uniformization rates of X̄ and X̄ ′ concur for the first R + 1

epochs, we have for all n ∈ N,

n ≤ R =⇒ Pr(Y (n) = i) = Pr(Y ′(n) = i),

for all i ∈ N and

n ≤ R =⇒ Pr(B(t) = n) = Pr(B′(t) = n).

Thus, we obtain the total approximation error of X̄ ′ as

Pr(X̄ ′(t) = ⊥) =
∞∑

n=0

Pr(Y ′(n) = ⊥)Pr(B′(t) = n)

=
R∑

n=0

Pr(Y (n)=⊥)Pr(B(t)=n) +
∞∑

n=R+1

Pr(Y ′(n)=⊥)Pr(B′(t)=n)

≤
∞∑

n=0

Pr(Y (n) = ⊥)Pr(B(t) = n) +
∞∑

n=R+1

Pr(B′(t) = n)

= Pr(X̄(t) = ⊥) + (1−
R∑

n=0

Pr(B(t) = n)).

Applying Theorem 4 and Lemma 4 to the above yields (23), which completes the proof of Theorem 5. 2

5. Application Example

We consider a stochastic SIR (Susceptible→Infected→Removed) model [30, Ch. 2] with closed ho-

mogeneous uniformly mixing population of constant size N ∈ N where the individuals in the population

are classified according to the standard terminology in epidemic modeling as susceptibles, infectives, and
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removals (recovered, permanently immune). Susceptibles can become infected when in contact with in-

fectives. Infectives become permanently immune (removals) when being recovered. At any time t ≥ 0

the discrete random variables S(t), I(t), and R(t) = N − S(t)− I(t) denote the numbers of susceptibles,

infectives, and removals, respectively. The epidemic is described by a CTMC {(S(t), I(t)), t ≥ 0} with

finite state space {(s, i) : 0 ≤ s ≤ s0, 0 ≤ i ≤ i0 + s0 + s} where s0 and i0 denote the initial numbers of

susceptibles and infectives, respectively. The possible state transitions are from a state (s, i) to a state

(s−1, i+1), s, i > 0, corresponding to an infection, with transition rate βsi/N where β > 0 is a constant

contact rate and from a state (s, i) to a state (s, i− 1), i > 0, corresponding to a recovery from infection,

with transition rate γi where γ > 0 is a constant recovery rate per infected individual. This implies in

particular that states (s, 0), 0 ≤ s ≤ s0, are absorbing; all other states are transient.

It is clear that this CTMC with finite state space can be analyzed with SU, AU, and approximate

adaptive uniformization, henceforth referred to as AAU. We consider the three variants of AAU introduced

in the previous section, that is, AAU with global probability threshold (AAU-GPT), AAU with a priori

error bound (AAU-AEB) and AAU with state-based probability threshold (AAU-SPT). The state space

is mapped to the set N according to a numbering of the states that may be different for the different

methods. Of course, in this paper our goal is not to present in-depth studies of the model for different

parameter values, but the purpose of the example is to illustrate the application and the performance of

the different uniformization methods (and corresponding computer implementations) with a particular

focus on the number of states that have to be handled by the different methods. For extensive treatments

of stochastic epidemic models we refer the reader to, e.g., [30, 31]. We emphasize that stochastic epidemic

models are not restricted to biological or medical applications such as human or animal diseases, but they

also apply to, e.g., the spread of computer viruses and malicious objects in computer networks [2, 3, 4].

Note that in order to compare with SU we have to consider an example with finite (but large) state space,

because SU cannot deal with infinite state spaces.

As a specific instance of the SIR model we consider a constant population of size N = 1000 with

initially one infected individual. Hence, the initial state of the CTMC is (999, 1). For the contact rate

and the recovery rate per infected individual we choose β = 1/3 and γ = 1/5. For a comparison of

SU, AU, and the three variants of AAU we have computed the transient probability distribution of the

SIR model at different times with all methods, where for AAU we have chosen different values for the

respective probability thresholds and error bounds, respectively, as described in sections 4.1–4.3.

Since our focus is not on an in-depth study of the SIR model, we omit to present extensive tables

or figures of the whole probability distribution at different times, but with regard to the analysis of

the specific model we restrict ourselves to some representative properties. Table 1 contains for different

times the values of the expectations and standard deviations, respectively, of the numbers of susceptibles,

infectives, and removals as well as the absorption probability. We emphasize that up to at least six digits

there is no difference in these values obtained from the transient probability distributions computed with

any of the methods under study. Comparisons of the performance of these methods with regard to the

error P⊥, the runtime, the average and the maximum number of significant states to be processed, and
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Table 1: Expectations and standard deviations of the population sizes for all epidemiological classes, and absorption

probabilities for the SIR example at different times.

t = 10 t = 20 t = 50 t = 100 t = 200

E[S(t)] 992.18 970.52 805 733 731.84

σ[S(t)] 10.4 46.83 254.3 327.25 329.28

E[I(t)] 3.67 11.38 26 1.19 0.000661

σ[I(t)] 6.22 19.99 36.19 4.42 0.07

E[R(t)] 4.13 18.09 167 265 268.15

σ[R(t)] 4.72 27.57 224.58 325.96 329.27

P(absorption) 0.5255 0.5844 0.6035 0.8001 0.9979

the number of jumps in the corresponding DTMC when computing transient probability distributions

for time horizons t = 100 and t = 200 are given in Table 2, where AAU-GPT, AAU-AEB, and AAU-

SPT refer to AAU with global probability threshold, a priori error bound, and state-based probability

threshold, respectively.

As can be seen the runtime can be significantly decreased by AAU while maintaining a reasonable

accuracy, e.g. for AAU with δs = 10−10 the truncation error is of order 10−4, which is sufficiently small

for many if not most applications, and in the case of t = 200 the runtime as compared to SU is decreased

by a factor of more than one hundred. Hence, AAU yields a great efficiency improvement even for models

with a finite state space. Furthermore, as shown by the detailed theoretical foundations in the previous

sections, AAU can also deal with infinite state spaces, which is not possible with SU.

6. Conclusion

We have provided a general framework for approximate adaptive uniformization of continuous-time

Markov chains, which generalizes and includes as special cases standard uniformization as well as the

adaptive uniformization approach based on active sets introduced by van Moorsel and Sanders [24].

A large body of theoretical foundations has been developed, including error bounds for the respective

approximations of transient probability distributions. Furthermore, strategies for the choice of our ex-

tension of the concept of active sets are given along with proofs that show how certain error bounds

can be guaranteed. It has been shown that the general non-explosive birth process used in approximate

adaptive uniformization supports truncation of the infinite sum to be computed in a way that allows for

approximations up to a predefined accuracy, which means that a priori error bounds can be set and are

then met. Approximate adaptive uniformization is particularly useful for numerically computing approx-

imations to the transient probability distributions of multivariate continuous-time Markov chains with

huge, possibly infinite state spaces. Thus, it substantially enhances the numerical transient analysis of

complex systems and networks that can be modeled as a continuous-time Markov chain. The application
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Table 2: Comparison of SU, AU, and variants of AAU for the SIR example.

Comparison of methods for time horizon t = 100

Method P⊥ runtime (s) av. |S| max |S| jumps

SU 0 5361 496761 496761 23856

AU 0 4743 472321 496750 20675

AAU-GPT, ε = 10−15 7.9× 10−12 3971 161996 197384 8716

AAU-AEB, ε = 10−15 9.2× 10−16 4430 158291 191611 9559

AAU-SPT, δ = 10−50 2.1× 10−44 2209 250038 283918 13781

AAU-SPT, δ = 10−30 2.0× 10−24 1506 185194 218161 11518

AAU-SPT, δ = 10−15 1.6× 10−09 754 112763 143923 8632

AAU-SPT, δ = 10−10 1.3× 10−04 319 74378 103329 6815

Comparison of methods for time horizon t = 200

Method P⊥ runtime (s) av. |S| max |S| jumps

SU 0 49531 496761 496761 47209

AU 0 49083 484797 496750 42255

AAU-GPT, ε = 10−15 1.4× 10−11 11239 149183 197384 14894

AAU-AEB, ε = 10−15 9.6× 10−16 14888 146367 192317 16930

AAU-SPT, δ = 10−50 4.6× 10−44 17574 245418 283918 26473

AAU-SPT, δ = 10−30 4.1× 10−24 10762 175804 218161 21394

AAU-SPT, δ = 10−15 2.9× 10−09 3443 98572 143923 14461

AAU-SPT, δ = 10−10 1.8× 10−04 443 61035 103329 9565

and the performance of the different uniformization approaches have been demonstrated by an example

of a stochastic epidemic model.

The construction of a computationally tractable approximating model for multivariate continuous-

time Markov chains, along with computable error bounds and application guidelines, as developed in this

paper, constitutes a flexible and powerful means of gaining new insights into many real-world problems.

While much theory and many efficient computational methods for analyzing the long run behavior of

complex Markov models that are ubiquitious in real-world applications are available, in particular state

space truncation approaches for CTMCs with infinite state spaces [32, 33, 34], similarly flexible and

powerful approaches to the transient analysis of complex CTMC models have been lacking and are highly

desirable. Approximate adaptive uniformization of continuous-time Markov chains renders possible to

efficiently analyze transient probability distributions at arbitrary time points as well as the evolution

of these probability distributions over time, which has many important managerial implications. For

instance, in epidemics it is obviously valuable to have information about the evolution of the epidemic

over time rather than only of long run averages. Such time dependent information can be useful in
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deciding if and when specific medical treatments such as vaccination or actions like quarantine should

be conducted. In the computer virus case, network administrators and system managers can activate

antivirus programs or update firewall configurations. In call centers and customer contact centers, which

are often modeled by complex CTMCs, managers can optimize staffing policies based on, e.g., time

dependent probabilities of large customer backlogs or high traffic intensity. In emergency situations the

evacuation route selection of large-scale crowds can be based on the transient analysis of corresponding

CTMC models. Clearly, any company that operates complex systems, networks or processes can benefit

a lot from a proper analysis of transient performance indicators and their changes over time. Hence,

approximate adaptive uniformization is useful with regard to many design issues, required actions and

decisions in a broad spectrum of real-world systems.
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