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Abstract— In this paper we propose to analyze characteristics
of the feature descriptors in terms of robustness against typical
disturbances in the context of the object recognition pipeline for
depth data with intensity information. In terms of robustness
the focus was on the occlusion handling, segmentation errors,
sub-sampling of data as well as the presence of Gaussian noise
in data. For this analyses we considered a set of real life
data captured in an indoor environment using a time-of-flight
sensor returning depth and intensity data. According to our
test results the intensity spin estimator and the ensemble of
shape functions type of feature descriptors proved to be the
most suitable variant for such object recognition tasks.

I. INTRODUCTION

The use of 3D perception sensors in the mobile robotics
application became popular during the last few years. This is
mainly due to the appearance of the affordable depth sensors
such as the time-of-flight or projected infrared (e.g Kinect)
ones. The research focus in the field of object descriptors,
keypoints and classification [1], [2] grow especially for the
Kinect like sensors, while for the time-of-flight sensors such
as the SwissRanger it is rather limited. Although there are
similarities in the characteristics of the two sensors, the
quality of depth data acquired with the SR is smoother
compared to the Kinect like senors, and it can used daytime
in outdoor environment [3]. Instead of RGB data in the case
of the SR camera family for each 3D point the intensity and
the confidence information for that point is available. Thus a
different approach and behavior is expected for the 3D point
descriptors for the data emerging from the SR cameras.

In this paper we propose a thorough analyses for the al-
ready implemented feature descriptors in the PCL [4] library
available with a BSD type license. This analyze is focused on
the data acquired with a Swiss Ranger 4000 (SR4K) time-of-
flight camera [5] in a indoor environment for a large range of
objects. As typical error sources the occlusion, subsampling,
boundary errors and signal noise are considered as separate
test cases. For performance metrics the receiver operating
characteristic (ROC) [6] curve is considered based on the
true positives and false positives during the recognition tests.
Further on, the size and runtime of the different descriptors
are considered. Based on these evaluations the best descriptor
can be considered for the application dealing with time-of-
flight camera data recognition.
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II. DATA PREPROCESSING AND RECOGNITION

This section presents in detail the data base building as
well as the recognition pipeline used in testing phase. The
details regarding the data filtering, object segmentation and
recognition are highlighted as well.

A. Data set acquisition

In order to build up a test database for the feature descrip-
tor analysis 15 different sized objects were considered. The
list of objects captured with the SR4K camera are listed in
Figure 1.

Fig. 1: Test objects considered during the evaluation (top-left
to bottom-right): box, small box, cable-holder, chair1, chair2,
cylinder, drawer, dyno, hexagon, open-drawer, open-drawer2,
paper-holder, small-cylinder, trash-bin, tube.

These objects vary in size from 0.1m to 1.5m and are
well observable with the time-of-flight sensor, i.e they are
not transparent nor lucid surfaces. Also note that, objects
from the same category were considered, i.e two different
chairs or a drawer with different configurations (with one
and with two open doors), which makes the recognition
and thus the feature descriptor evaluation challenging. There
were more than 300 different captures made for these objects
from different views, distances and positions.

B. Filtering

The first step of the object recognition pipeline was the
filtering of the raw data. The main role of this step was to
reduce the outliers with a statistical filtering and to get a
compact representation of the data with a voxel-grid type



filter. Also a pass-through filter was considered in order
to cancel out the false readings from the SRK4 sensor,
which are often present like far shadows for the objects.
All these filters are part of the PCL library. In our setup
the tuned parameters for the filters were as follows: for the
voxel grid we considered a grid size of 0.01m, which is
close to the actual resolution of the sensor, while for the
statistical outliers we considered 50 points and with the
standard deviation threshold of 0.8.

C. Object segmentation

In the next step of the data preprocessing the major planes
are segmented out in order to get the objects from the scene.
This is an important step in order to end up with the data
containing only the objects from a scenario. In order to
achieve this, planar models are fitted to the acquired data, and
the largest planes up to a tuned percentage are removed. The
plane fitting is performed in a standard sampling consensus
(SAC) approach, and for the plane removal parameter we set
to 25 percentage of the original data.

D. Object recognition

The object recognition domain is a well evaluated one
especially in the 2D space, special contests being organized
for this topic such as the Pascal VOC. In the last few years
the recognition in the 3D domain got into the focus with
major contributions such as the work [7]. These ones often
make use of techniques and principles developed in the 2D
domain and extrapolated to the 3D case. This is valid also for
the point-correspondence based recognition. This technique
usually makes use of feature descriptors for the points in
order to perform an efficient recognition.

After the feature descriptors are extracted, for the feature
comparison different distance metrics can be used also such
as the Euclidean, L1, L2, Hellinger or χ2. In our approach
we used the χ2 metric of two feature vectors x and y with
length N such as follows:

χx,y =

√

∑N
i=1 (xi − yi)2

∑N
i=1(xi + yi)

(1)

This metric proved to be stable and good weighting for
the different types of features used in our evaluation tests.
For the feature correspondence search the nearest-neighbors
(NN) search was used with the above mentioned metric. The
details regarding the used feature descriptors are presented
in the next section.

III. DEPTH FEATURE DESCRIPTORS

The depth feature descriptors as well as the image de-
scriptors are compact representation of data. Beside the fact
that the data is represented in a compact form, the features
tend to contain rich information extracted from the data.
Another important general characteristics is the invariance
with respect to certain transformations and disturbances. This
invariance is essential in order to use them as discriminators
in a recognition type applications.

Two main categories of descriptors are distinguished based
on the range of data on which are computed: local and
global ones [8]. Global descriptors are meant to be used
to describe a larger set of data containing objects of in-
terest, and they capture the geometric properties of these
objects. Local descriptors in contrast are usually computed
on a small subset of representative data (keypoints) for al-
ready segmented scenes, and are capturing properties around
these keypoints. Both types of descriptors have their advan-
tages/disadvantages, which we analyzed in our robustness
test benches.

A. Rotation invariant feature transform

The rotation invariant feature transform (RIFT) can be
applied to 3D data containing intensity information too.
Originally it was proposed in the work of [9] as an extension
to the SIFT image descriptors [10]. The algorithm iterates
over each point Pi in the input point cloud and and within a
sphere of radius r all the points are considered to belong
to a subset Pik. An imaginary circle with 4 bins (rings)
are considered perpendicular to the normal at the point Pi.
All neighbors of the selected point are assigned to a ring
based on the relative distance based on gradient histogram
computed with 8 bins using a thresholding. Thus a total
number of 32 histograms are computed with this technique,
which describe circular features of a point Pi.

B. Intensity Gradient Estimator

The intensity gradient estimator (IGE) uses as input depth
data with intensity information. In the first step the normals
of the 3D points are computed, and for each point the
analytical intensity gradient is computed along the surface
direction of the considered region. This technique is similar
to the 2D image intensity computation [11]. In the final step
the computed gradient is projected onto the surface, and
the output of the estimator is the projection gradient vector
containing the intensity information computed for each input
point.

C. Intensity Spin Estimator

This type of descriptor is based on the work of [9], how-
ever the idea of using intensity information as a descriptor
was already present in the earlier work [12]. In contrast to
the IGE type of descriptor in this case there is no need
for explicit normal pre-computation at the input point cloud,
which gives a considerable speed-up for this algorithm. As
tuning parameters the point distance and intensity distance
bins can be set, having the same meaning as in the case of
the RIFT descriptor.

D. Spin Image Estimator

The original idea for the spin image (SI) estimation is
presented in the work [12] and can be applied to depth data
with pre-computed normals. The algorithm computes two
types of distances: the distance of the normals computed at a
point and the source normal n and the between the from the
considered point along n. The distances larger than a tuning
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Fig. 2: 3D data corrupted with different noise (best viewed in color): (a) the nominal data, (b) the contour segmentation
noise, (c) occlusion noise, (d) Gaussian noise, (e) sampling noise

threshold are rejected. From the remaining distance pairs a
histogram is built, which represents the occurrence of the
discrete distance pairs.

E. Point Feature Histogram

The local point feature histogram (PFH) [13] descriptor
extends the original surflet-pair relation histograms suggested
in the work of [14]. The input for this feature descriptor is
a pointcloud with normals. In the first step for each point Pi

the neighbors within a search radius are computed, denoted
with sets Pik. Within these sets point pairs are considered
denoted with Ps and Pt with the meaning source and target.
For these pairs, the difference of normals are computed and,
described with 3 angles around the axis and a distance. As
the distance if varying with viewpoint, this can be left out.
Finally, these angles are considered to be sorted in the 125
binned histogram, which is the output of the algorithm for
each point.

F. Fast Point Feature Histogram

The fast point feature histogram (FPFH) [13] is an exten-
sion of the PFH yielding to computationally less expensive
variant of the PFH. The major difference between PFH and
FPFH is that while in the case of PFH all pairs of points
are considered in the subsets Pik, in this case only the point
pairs between Pi and the rest of the point within Pik are
considered. Thus the computation cost drops from O(nk2) to
O(nk). The three angles in this case are binned into a 11 bin
histogram, the total length of the obtained histogram is 33
for each point.

G. Viewpoint Feature Histogram

The global viewpoint feature histogram (VFH) [15] de-
scribes the pointcloud P as containing two components: a
component representing the viewpoint of the scene and one
containing the FPFH features. In this case the FPFH features
are binned into a 45 bin histogram, and the distance between
the points is also taken into account, thus a total number of 4
extended FPFH features are stored. The additional view point
feature is computed by taking the centroid of the pointcloud
denoted with Pc and computing the FPFH for each neighbors.
The later histogram is represented using 128 bins, thus the

total number of bins for a pointcloud is 308 for this descriptor
for the entire pointcloud.

H. Clustered Viewpoint Feature Histogram

The clustered viewpoint feature histogram (CVFH) [16]
is an extension of the VFH in order to handle occlusion
or other types of sensor noise. This is mainly important
for the VFH, as in case of an occluded view of the same
object the histogram of the descriptor varies considerably.
The basic idea of the CVFH is the construction of stable
regions (clusters) S which step is done by computing compact
regions using the region growing approach with thresholding
on the normal values. Once these S regions are computed, the
VFH for each of them is determined, and an additional shape
distribution (SD) is computed as SD = (c−pi)

2

sup(c−p2
i )

, where c is

the centroid of the cluster S and the pi represents the points
from this region. This component is also stored in a binned
histogram, the total number of descriptor histogram bins for
a single point being equal to 308.

I. Ensemble of Shape Functions

The ensemble of shape functions (ESF) type descriptor
was proposed in the work [17] which is based on the A3,
D2, D3 shape descriptor functions and extends the D2 type
description presented in [18].

The algorithm starts with selecting a subset of 20000
points from the pointcloud, and samples three random points
from this Pa, Pb, Pc. The D2 distance is based on the metric
distance between the points Pa and Pb. In the next step is
verified weather the line connecting the two points are on
the surface (in), or out the surface (out) or both (mixed). The
corresponding bin for the D2 distance is incremented at the
computed bin. This procedure is repeated for the remaining
two point-pairs.

J. Radius-based Surface Descriptor

The Radius-based Surface Descriptor (RSD) [19] has as
input an oriented pointcloud, i.e. with normals and describes
the local geometry of a point with respect to its neighbors in
terms of radii. Each point pair is supposed to lie on a sphere,



and the distance of the points d and the angle between the
normals at the two points has the relation:

d(α) =
√

2r ·
√

1− cos(α)≈ rα + rα3/24+O(α5) (2)

The equation holds for α ∈ (0,π/2), while for an accurate
estimation of the radii a linear regression is applied on the
extremas of the (α,r) pairs. Also an intuitive geometric
interpretation of the obtained radii makes it usable for surface
categorization, i.e. the large radii denotes planar surfaces,
while small radii is for cylindric objects. For the recognition
test we used the radii as histograms computed for individual
objects.

K. Principal Curvature Descriptor

The principal curvature (PC) descriptor as its name suggest
computes the curvature for an oriented pointcloud, and
uses this information as descriptor. Beside the curvatures, it
computes the magnitudes and directions for each point along
the XYZ axes, and stores the largest and smallest values
for these ones. As tuning parameter the maximum radii for
neighbors search is considered.

IV. ROBUSTNESS TEST

In our robustness tests we investigated the sensibility of
the different feature descriptors with respect to common dis-
turbances encountered during the object recognition pipelines
(see Figure 2). For qualitative evaluation we considered
the ROC curve, which incorporates the information from a
confusion matrix, while for the quantitative comparison the
ACd metric was used defined as [6]:

ACd = 1−
√

W · (1−TP)2 − (1−W) ·F p2 (3)

where T P and FP denote the true positives respectively
the false positives and W is a weighting factor giving an
application specific weighting to T p in favor of FP.

A. Test methodology

The test methodology followed in this paper is similar
to the generic test procedures in the main literature with
the focus on the recognition applications. This means that
we divided our captured dataset into 1/3 and 2/3 ratio
used for training and testing purposes. The training set we
denote with templates while the testing objects we consider
as observations of the template objects.

In the training phase we compute for each object each
aforementioned descriptor, and store the descriptors in a
FLANN [20] data structure and store it for later queries.
This can be viewed also as an offline phase in a real life
recognition application.

In the test phase each of computed descriptors for the
considered object is searched in the FLANN database con-
taining the specific template feature descriptors. The object
is compared against each other object in the database and the
one with the smallest metric defined in eq. (1) is considered
to be a match. In this manner are determined the indicators

for the recognition such as the Tp expressing the true positive
rate and Fp the incorrect classification rate for the objects.

Another important aspect of the test procedure is that
for each type of tested disturbances, the added artificial
disturbance is considered both for the template and for the
observation side in two separate phases, thus the total object-
object comparison exceeds half million test cases.

For the nominal case, i.e. no added artificial noise, the best
performance f meaning closest to the point (0,1) is achieved
by the PFH and ISE descriptors, while the poorest is the
FPFH in this case.

B. Occlusion test results

The occlusion test tackles one of the most common
issues in the object recognition pipeline, the object occlusion
problem. This practically means that the template is only
partially visible, i.e. an occluded observation is available for
the recognition. In our experimental setup we considered
variable occlusion to be tested, by removing a radial zone
of an object at a random position. The amount of removed
points is given as a tuning parameter expressing the removed
points as a percentage of pointcloud size of the template. The
results are shown in Figure 3 part (a) and part (b) for the
occlusion noise at observation and at the template side.

For the observation side occlusion test case the best
behavior is obtained with the CVFH. ISE and SI type of
descriptors, while the poorest results are given by VFH and
FPFH. Also on the template side added disturbance the best
robustness is achieved with the CVFH, which proves the
efficient approach of the clustered viewpoint approach for
the occlusion handling.

C. Segmentation error test results

Another important source of error in the object recognition
applications are emerging from the segmentation phase. The
segmentation errors can be viewed also as contour noise
around the object, which is present due to the inaccuracy
in the segmentation process. In order to test this kind of
error source, first we determined the boundary of the test
object, and than we removed a tunable region for each point
from the boundary. The results for this test case are shown
in Figure 3 part (c) and part (d) for the observation occlusion
noise and for the template side noise respectively. The best
results are achieved with VFH and ISE respectively.

D. Sensor noise test results

The most common problem with the real data recognition
setups is the sensor noise, i.e. measurement inaccuracies due
to the physical sensor limitations. Usually the non-systematic
part of the noise is approximated with a Gaussian probability
distribution. In our case we used also this assumption, and
we considered a system with variable added Gaussian noise
covariance along the XYZ coordinates added independently.

This kind of disturbance affects drastically the perfor-
mance of the CVFH and VFH at the observation side noise,
while the SI is vulnerable for the template side Gaussian
noise disturbances. Still in this case the ISE tolerates well
the noise both on observation and template sides.
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Fig. 3: 3D data corrupted with occlusion and contour noise (best viewed in color): (a) occlusion noise at the observation
side, (b) occlusion noise at the template side, (c) contour noise at the observation side, (d) contour noise at the template

E. Subsampling test results

The last test case deals with the varying sampling type
error. This kind of disturbance is present in the case of
the time-of-flight cameras, as the same object captured at
different distances from the sensor has a varying sampling
ratio. Thus this is a disturbance which is important to be
analyzed for such type of sensors. In our test cases we
computed different subsampling by applying a tunable sized
voxel grid on the original data.

The majority of the feature descriptors are robust against
this type of disturbance, however the ISE giving the best
performance till now fails at this test phase. Also the FPFH
get worse in this case, getting close to point (1,1) n ROC.

F. Quantitative results

In order to have a quantitative evaluation of the test bench
we considered the ACd metrics defined in eq. (3) for the
analyzed descriptors. Each descriptor varies also with the test
object considered for the recognition problem, hence in order
to reduce the dimensionality of the evaluation, we considered
the average values for the metrics over all test object for
each descriptor. This gives a good performance indicator
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Fig. 4: Feature descriptor test result for the nominal data
(best viewed in color)

for the different test cases without loosing the important
characteristics of the test outputs. The evaluation was done
for both the observation and template side disturbances.

The results for the test cases shown also on the ROC
curves are summarized in the Table I for the object side
noise disturbances and in the Table II for the template side



Descr. Nom. Occ. Cont. Gauss Sampl.

VFH 0.75 0.63 0.64 0.52 0.58
CVFH 0.61 0.61 0.57 0.51 0.59
PFH 0.82 0.56 0.71 0.68 0.71
FPFH 0.41 0.46 0.42 0.46 0.40
RSD 0.73 0.52 0.62 0.62 0.77
RIFT 0.59 0.55 0.53 0.51 0.49
PC 0.48 0.44 0.45 0.39 0.46
SI 0.83 0.54 0.67 0.74 0.83
ISE 0.87 0.59 0.67 0.87 0.63
IGE 0.64 0.57 0.65 0.62 0.60
ESF 0.83 0.57 0.59 0.80 0.74

TABLE I: Observation side robustness tests containing the
nominal, occlusion, contour, Gaussian and sampling noise
test cases

Descr. Nom. Occ. Cont. Gauss Sampl.

VFH 0.71 0.65 0.64 0.52 0.62
CVFH 0.81 0.69 0.75 0.54 0.74
PFH 0.78 0.71 0.73 0.61 0.690
FPFH 0.88 0.79 0.77 0.74 0.63
RSD 0.73 0.64 0.63 0.63 0.69
RIFT 0.59 0.49 0.47 0.50 0.49
PC 0.59 0.51 0.49 0.55 0.48
SI 0.83 0.66 0.75 0.62 0.84
ISE 0.87 0.66 0.76 0.86 0.64
IGE 0.64 0.65 0.65 0.61 0.63
ESF 0.89 0.59 0.59 0.79 0.77

TABLE II: Template side robustness tests containing the
nominal, occlusion, contour, Gaussian and sampling noise
test cases

case. The level of added noise in this test bench was 4cm
for the contour noise removal band, 10% for the occlusion
percentage of the original object, 5cm voxel grid for the
sampling and the Gaussian noise with 0.03m covariance.

In average the best performance is achieved in this case
with the ISE type feature descriptor and ESF for the object
and template side respectively.

In average the best performance in these cases is achieved
with the ISE type feature descriptor and ESF for the object
and template side respectively, however the performances of
the descriptor lowered considerably with the noise.

In terms of run-times, the best performance was achieved
with FPFH, while computationally the most intensive ones
were the ISE and IGE type of descriptors.

V. CONCLUSIONS

In this paper the problem of feature descriptor robustness
was tackled for depth and intensity type of data. The main
aim was to give both a qualitative and quantitative evaluation
of the existing feature descriptors for the 3D domain on
this type of specific data, and to test against a large variety
of disturbances including the occlusion, segmentation error,
sensor noise and sub-sampling cases too. The result were
presented using the ROC curves and the ACd metric for the
different test benches. In the future the evaluation on outdoor
data is planned to be performed as well as the extension of
the recognition pipeline to handle multi-object scenarios too.
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