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Abstract—The localization problem in indoor environment
based on LIDAR measurements is analyzed in this paper.
Practical aspects of the localization are discussed including
the implementations of the state estimation and registration
algorithms. The localization framework developed is sufficient
generic to be used in a variety of other autonomous vehicles.
The results of the proposed navigation algorithms demonstrate
a reliable and accurate position estimation for autonomous
vehicles operating in a variety of environments.
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I. INTRODUCTION

The research addressed in this paper is concerned with
the theoretical investigations and practical implementations
of reliable localization algorithms for autonomous vehi-
cles in indoor environment based on the laser range scan
alignments and state estimation. In the literature, the lo-
calization problem is also related to the robot’s position
estimation in a mapped environment which is also known
as the kidnaped robot problem. For localization purposes,
the natural landmark-based localization method is one of
the most common approaches both indoor and outdoor [1].

Landmark-based navigation vary significantly based on
the sensing used to identify landmarks and the types of land-
marks to be identified. In the indoor environment features
such as walls, corners or heaters can be considered as natural
landmarks. For sensing these landmarks we aimed to use for
information retrieval a laser range finder, or LIght Detection
And Ranging(LIDAR) device together with odometric and
IMU sensors mounted on the mobile robot [2].

In the first part of the paper the Extended Kalman fil-
ter(EKF) see [3] is presented briefly and the system model
used for the vehicle. Further on it is introduced the RANSAC
type of algorithms including its implementation details.
In the last sections there are highlighted the experimental
results together with the conclusions.

II. EXTENDED KALMAN FILTER AS STATE OBSERVER

In real life applications instead of pure linear systems in
most cases the systems equations are nonlinear. Some of the
successful applications of the Kalman filters have been used
for the nonlinear systems, although the principal elements
of the estimator remain the same as for the linear case.

A. Process Model for the P3 Skid-Steered Mobile Robot

The kinematic model for the P3 is based on a skid-steered
vehicle model is presented by [4]. The motion of the two
side wheels of the robot can be controller separately, if the
imposed rotation speed at the two side is equal than the
robot moves straight forward, else it will turn. This ensures
a great flexibility to the robot, even the possibility to turn in
the same place. On the other hand, due to the slippage the
odometric information is corrupted by systematic errors.

The nominal process model for this type of robot for the
discrete time case for the time-instant k is given by:

x(k + 1) = x(k) +∇TV (k) cos(ϕ(k))
y(k + 1) = y(k) +∇TV (k) sin(ϕ(k)) (1)
ϕ(k + 1) = ϕ(k) + ω(k)

where u(k) = [V (k), ω(k)] is the control signal applied to
the vehicle containing the linear speed and the rotational
speed respectively at time-instant k. The errors due to
the control signal V and ω are considered to be additive
white noises with Gaussian distributions. The error vector
δw(k) = [δV, δw(k)] is considered to contain both the
modeling errors and uncertainty in the control.

B. Observation Model

In case of natural landmarks the predicted range and
bearing for each natural landmark j at time-instant k can
be computed by:

Rjnlk =
√

[xjnl − xLk
]2 + [yjnl − yLk

]2 (2)

θ = arctan

[
yjnl − yLk

xjnl − xLk

]
− φvk

(3)

where
(
xjnl, y

j
nl

)
id the Cartesian location of the landmark

j and (xL, yL) is the location of the LIDAR on the vehicle.
The landmark observations are corrupted by uncertainties in
the range vRnlk and bearing vθnlk . Finally, the observation
model for the landmark observations is:

Zjnlk =

[
Rjnlk
θjnlk

]
+

[
vRnlk
vθnlk

]
(4)



III. LIDAR MEASUREMENTS FOR REGISTRATION

A. LIDAR Characteristics and the Measured Environment

The LIDAR measurement returns a bearing and range
information about the surrounding reflective surfaces. The
functionality of the device that we used is based on the
time-of-flight and phase difference of the emitted laser beam
reconstructing the distance to the measured object r and the
angle θ from which the beam is reflected.

B. RANSAC based registration

The RANSAC(RANdom Sample And Consensus) was
first introduced by [5] as a method for parameter estimation
for certain models from data affected by noise and corrupted
by outliers.

As we were interested in the localization of the LIDAR
rather than the mapping problem, a rigid approach on the
data searching was adopted. Starting from this idea, the
RANSAC can be seen as an optimization algorithm for the
cost function. In [6] the original algorithm is redefined by
considering the estimator as part of the M-estimator family,
being known as MSAC.

As a comparison for the original RANSAC and MSAC
N = 500 points were considered with half of them being
inliers. During the tests, the σ variance was gradually
increased. The cost function was more relevant for the
algorithm comparison. A summary of a typical run is
presented in the Table I. As it can be seen in this table
the MSAC algorithm proves better performance than the
classical RANSAC, hence this was used further on.

Table I
RANSAC AND MSAC COMPARISON

σ(mm) JRANSAC JMSAC

20 34000 32000
40 120000 118000
60 250000 232000
80 inf 389000

For the scan registration problem between two consecutive
robot movements the displacement can be formulated as
m̂ = (mx,my,mθ). The estimated transformation m̂ can
be used for the position estimation of the robot.

IV. EXPERIMENTAL RESULTS

We carried out the experiments on the corridors of the
TUC-N, with a P3 type mobile robot on which it was
mounted the LMS200 SICK laser range finder. For the IMU
and odometric measurements the presented EKF algorithm
was used to estimate the positions.

Further more for these rather poor estimates the displace-
ment information extracted from the range alignment was
used to correct the position of the robot. For a typical scan
alignment, the part on which the two scans overlap are more
than 50%, and in such cases even the presence of dynamic

Figure 1. Two consecutive aligned laser scans

objects (e.g. human leg forms) is tolerated by the registration
algorithm as it can be seen on Fig. 1.

Even though the measurements with the laser range finder
are quite accurate in the scale in which the movements of the
vehicle were done, sometime the registration algorithm fails
to give coherent information. For this is essential to combine
the with the data from the dead-reckoning systems.

V. CONCLUSIONS

The main idea of this work was to apply for real life
experiments the well known RANSAC and EKF algorithms.
Also some extensions of the RANSAC algorithm were
discussed. The generality of the presented approach was
ensured by not taking specific constrains in the navigation
problem like artificial landmarks.
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