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Abstract: This paper presents the details of several mobile robot experiment designs including
indoor, outdoor and urban variants. The aim of the paper is to give insights to setting up
these tracking experiments covering both the software and hardware components as well as the
application details. Beside these aspects the references to the perception, tracking and estimation
parts are also pointed out for a wheel based mobile robots, bicycles and auto vehicles in various
scenarios.
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1. INTRODUCTION

Although there are a great number of published papers
about the mobile robot related measurements they often
present only the results of the theoretical and practical
investigations without putting too much emphasis on the
experiment details. However a well designed experiment
setup is essential in order to have a good dataset on
which further data processing work can be carried out
[Ch. Laughier, 2007].

Several research works present the building steps for mo-
bile robots, focusing mainly on the hardware components
[Kozlowski, 2009], [Cepon, 2010]. On the other hand there
is a great variety of publications dealing with the results
of the performed experiments. The target domain for the
mobile robots experiments in this case is related the ones
dealing with environment perception, detection and track-
ing [Arras and Mozos, 2009], [Bar-Shalom and Li, 2001].

The main aim of this paper is to detail those parts of a
mobile robot experiment design which include the sensor
integration, communication and data preprocessing and
tracking algorithms. These modules vary according to the
type of the performed measurements. In this paper there
are presented a variety of designed experiments starting
from indoor mobile robot experiments, covering outdoor
and urban scenarios.

The first steps in this design process should be architec-
tural definition of the experiment based on the available
hardware and software components. According to this idea
the first part of the paper covers the necessary hardware
and software components for such an experiment.

The second part deals with the algorithms that were used
for the target application part of the experiments including
the perception, detection and tracking algorithms. Finally,
there are presented the details regarding the experiment
designs in various environments starting from indoor sce-
narios to urban and outdoor variants.
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2. HARDWARE COMPONENTS

This section summarizes the hardware design principles
based on our available resources. Later on this can be
used as a starting point for choosing the software com-
ponents for the experiment. The hardware components
in the proposed experiments are mainly sensors reflecting
the state of the environments and the own the state of
the moving vehicle. According to this idea first those
sensors are presented which give information about the
surrounding environment. Further on some custom devices
are introduced used in the different measurements.

2.1 Environment Perception

There are many possibilities to acquire information from
the surrounding environment. The measurement methods
can be divided into three major categories based on ap-
plied sensor and sensing technology: vision with one or
more cameras [Droeschel et al., 2009], active triangula-
tion [Perceptron, 2003] and time-of-flight (TOF) measure-
ments. One of the most precise TOF measurement systems
is based on laser scanners.

Planar Laser Range Finder The Sick LMS200 has a
depth resolution of 2 [cm] and an angular resolution of
0.25◦, 0.5◦, or 1◦ depending on the configuration. The
scanning cone of the device can be set either to 100◦ or
180◦ depending on the actual needs, while the maximum
range of readings is up to 80 [m]. The scanning time is
around 15 [ms] and additional time is required to send the
data to the PC at 9600, 19200, 38400 or 500000 [kb/s].

Stereo Camera A low cost option for 3D information
acquisition is the use of stereo or multiple cameras. The
reconstruction of the third dimension from multiple images
can be expressed in several ways [Demirdjian and Darrell,
2002].

By simple geometrical deduction the depth information Z
can be obtained in the following ways:

Z =
fB

x1 + x2
1 (1)



where the absolute difference d = |x1 − x2| represents the
disparity, f is the focal length, B is the baseline, and X1,
X2 represent the image coordinates in the right and left
camera. The disparity can be defined as the difference
between the coordinates of the same feature in the left
and right image.

High Resolution Camera In the proposed experiments
a high resolution Canon EOS 350 camera was used in
order to get high quality images for image processing.
The communication with the laptop was done by using
the PTP (Picture Transfer Protocol) implemented in the
GPhoto GNU licensed package [GPhoto, 2010]. By using
this package it was possible to remotely record high
resolution (12 MB) images every second.

2.2 State Reflection Devices

This class of sensor gives information about the state of the
mobile vehicle including its position, orientation or relative
displacement [Borenstein et al., 1997]. From a wide variety
of commercial sensors only a few modules were used the
rest being designed&integrated on dedicated PCB-s.

GPS-DGPS The GPS was used as a reference signal
in the experiments during the navigation. Although it
is widely available, it cannot be used as a single source
of information for the localization as long as signal loss
may appear in urban environments or the precision of the
localization it is not satisfactory.

The GPS module involved in the experiments was built
using a LEA4-H precision core with a custom PCB. The
precision of the receiver with a dedicated antenna was
around 5-10 [m] in urban environment. In order to reduce
this error the DGPS was chosen as a low cost alternative.
By using the NTRIP protocol [NTRIP, 2010] it was
possible to do both the real time and the off line processing
of the correction data to the GPS signal. In this way
the absolute error was reduced in the range of 1-3 [m]
depending on the GPS signal quality.

Digital Compass In our project we used this sensor
to estimate the heading of the autonomous vehicle. The
TCM2 it is a sensor module which is replacing several
sensors within a system. In addition to compass heading
the TCM2 also supplies the pitch, roll, magnetic field
data and temperature information. The accuracy for the
heading information is 0.5◦ RMS for pitch and roll and 1◦

RMS for yaw. This sensor module was connected to the
computing unit through the serial port.

Custom Odometer The need for a low cost custom
odometer arose for an outdoor experiment performed on a
bicycle. The specifications for this sensor were a response
time lower than 20[ms] and an absolute accuracy of 1[m].
With these requirements the use of an optical encoder
from a mechanical mouse, as it can be seen on the left
hand side of the Figure 1. By passing an obstacle between
the transmitter and receiver from this device, an impulse
was generated on the serial port. Thus with this approach
easily it can be received the odometer information from
a wheel on a normal serial port. The limitation of this
solution relies on the general interrupt periods in which the

Fig. 1. The bike with custom odometer

serial mouse port is queried which in most of the systems
is 18[ms].

2.3 Dedicated Actuators

This part describes two dedicated actuators for the one
small mobile robot platform and for one for a real car.
Both solutions are low cost options.

Wireless Command Tool For the urban experiment de-
sign a Tag4M [Folea and Ghercioiu, 2010] wireless device
was used in order to send displacement commands to the
mobile robot as it can be seen in Figure 2. This measure-
ment tag is small 6x5[cm], low power consumption device
able to communicate in a 802.11b/g network implementing
the full TCP/IP stack. It can be configured to send mea-
sured analogue and digital data at a user defined rate to
a server. As measured data the output of 3 axes analogue
ADXL330 accelerometer was considered.

Fig. 2. Tag4M wireless tag control for the P3 mobile robot

In this way a wireless joystick like system was built which
based on the inclination sent the command to the mobile
robot. At the robot side the commands were received as
UDP packets containing the raw values of the ADXL330
output every 250[ms].

Active Car Breaking System The active breaking system
was designed according to the Figure 3. Its main purpose
was to activate the breaking in the car in case that an
obstacle was signalled by the main computer.

There are four main components in this design: the PC,
the control unit, the actuator motor and the link to
the breaking system. The detection of the obstacles by
the PC and additional sensors will be presented in the
next section. The control unit is based on an Atmeg128
microcontoller board and is communicating with the PC
via the RS232 protocol. This control board commands the
12 [V] DC motor with a PWM signal, which activates
the breaks. The link between the motor and the breaking
system was constructed in such a way that the driver’s
break commands and the active breaking system act
independently, thus enabling the both systems to work in
the same time.



3. SOFTWARE COMPONENTS

Dealing with a wide variety of experiments it is important
to have a well designed software architecture too. This
can reduce substantially the development time by ensuring
code reuse and robustness in the software modules. The
first part presents the general concepts followed during
the design phase. Further on, the involved components are
highlighted and the details of the integration process.

3.1 Design Considerations

The main idea for design considerations was to obtain a
balance between the maintainability of the packages and
the flexibility for code reuse. The adapted solution in this
case was the Domain Driven Design (DDD) which is well
described in [Evans, 2003].

Fig. 3. Active breaking system overview

The domain layer contains the core of the package which
for the detection&tracking applications might be the de-
tection algorithm itself (e.g. Particle Filters). It imple-
ments the interfaces to the application layer, data reposito-
ries and message endpoints. The application service layers
main role is the delegation and execution of the tasks. It
is a middle layer between the core and the user interface
without knowing about the data representation and the
communication within the package. The communication
with external data sources is done via the data repository
layer, while the message endpoints specify the communi-
cation internally and externally to the package.

All layers have their test units defined. The adopted
solution for unit tests is based on the test doubles, i.e.
stub objects, which act as the other packages during the
test. This may be useful for larger projects to separate the
testing for layers [Meszaros, 2007].

3.2 Involved API Components

Several components were developed for the experiments
on different platforms (Windows or Linux), thus it was
important to have cross platform libraries which could be
merged into a single application. Also different developing
languages like C++, Python or Matlab M-code needed
to be used in the same application. The target language
was C++ on a Linux platform. The cross compilation of
the M-code could be easily done by the Matlab Compiler
both under Windows and Linux. The Robotics Operation
System (ROS) [WillowGarage, 2010] seemed to be a good
choice for integrating the different hardware and software
modules.

4. LASER BASED DETECTION AND TRACKING

In this section the laser classifier is presented with the
segmentation, feature extraction and classification com-
ponents. Basically, the laser measures bearing-range infor-
mation about the surrounding objects with a relative good
accuracy (in the performed experiments 1cm accuracy at
a 10m range).

4.1 Scan Segmentation

The scan segmentation belongs to the primary modules
of the laser architecture among with the data acquisition
and pre-filtering modules. The segmentation is the process
of splitting a scan into several coherent clusters, i.e.
point clouds. The choice of segmentation method is rather
arbitrary and dependent on other design choices as the
alignment and covariance estimation strategies [Borges
and Aldon, 2004]. The current strategy is the one based
on the simple assumption of Euclidean distances between
segments adopted from [Mozos et al., 2007].

The laser range scan information is a set of beams of the
form Z = {b1, ..., bL}. Each element bj of this set is a pair
of (θj , ρj), where θj is the angle of the laser beam relative
to the robot and ρj is the distance from the reflecting
surface.

4.2 Feature Extraction

This module extracts the relevant information from the
segmented data and ensures robustness in the algorithm.
The extracted information is used later on in the classifier
module and can also be used for visualisation purposes too.
The feature vector components may be chosen upon the
required information [Mozos et al., 2007]. The basic set of
feature which was used in the experiments contained the
following e1, e2 and e3 entries:

(1) e1: object centroid;
(2) e2: normalized Eucledian distances given by:

f2 =
√

∆X2 + ∆Y 2 (2)

(3) e3: the standard deviation of the point from the r
centroid computed for n points:

f3 =

√
1

n− 1

∑
||rn − x̄|| (3)

These components are essential to the classifier.

4.3 GMM Object Description

A Gaussian mixture model (GMM) is a weighted com-
bination of Gaussian probability density functions (pdf).
These densities are used to capture the particularities of
an object. In a GMM model the probability distribution
of a x random variable is defined as a sum of M weighted
Gaussian probability density functions:

p(x|Θ) =
M∑
m=1

αmp(x|θm) (4)

where θ1, ..., θM are the parameter of the Gaussian dis-
tributions and α1, ..., αM is a weighted vector such that



∑M
m=1 αm = 1. A set of parameters for a mixture model

is given by Θ = (α; θ1, ..., θM ) where each parameter
θm = (µm,Σm) represents the mean and the covariance
of the model with Gaussian pdf.

The Gaussian mixture parameters for each object of in-
terest was determined using the expectation-maximization
(EM) algorithm [McLachlan and Krishnan, 1997]. For each
set of feature vectors (ΩN = Ω1, ...,ΩN ) the EM algorithm
computes M Gaussian parameter vectors that maximizes
the joint likelihood of the Gaussian density [Paalanen
et al., 2005] :

p(ΩN |qi,Θi) =

M∏
j=1

p(Ωj |qi,Θi
m) (5)

Fig. 4. Possible leg forms in the laser scan

A typical leg form described with GMM is presented on
the Figure 4.

4.4 Bayesian Classifier

After a Gaussian mixture pdf for classified object is
available a Ωk feature-vector is considered in order to
classify which category (qi) fits the current observation.
Based on a Bayesian decision framework the log-likelihood
of the fitness is computed.

Computing the log-likelihood has the advantage of reduced
computational effort by avoiding the computation of the
exponential in the pdf and by turning the product (5) into
sums. Furthermore, as the log-likelihood is a monotoni-
cally increasing function allows it can be used the former
directly to classify the objects.

By considering the features equip-probable, the logarithm
of the posterior probability log(P (Θi|Ω)) for all categories
is proportional to the sum of the log-likelihood of the
logarithm of the prior probability:

log(P (Θi|Ω)) ≈ log(p(Ω|Θi)) + log(P (Θi)) (6)

It is more convenient to use Bayes’ law to estimate the
posterior probability as it uses only the likelihoods and
the prior probability. The former pdf is computed at
each scan, which will become in the next scan the last
estimated posterior. Therefore the prior probability is
updated dynamically as:

P (Θi
k) = P (Θi|Ωk−1) (7)

4.5 Extended Kalman Filter for Tracking

A large number of mobile robots use position estimation
based on the Kalman filters. Originally the theoretical
backgrounds were formulated by Rudolf Kalman in 1960
and later on several extensions were developed [Borenstein
et al., 1997]. The Kalman filter is an optimal recursive data
processing algorithm for linear systems corrupted by noise.

The Extended Kalman filter (EKF) [Maybeck, 1979] uses a
model to describe a discrete-time state transition. The fil-
tering algorithm can be described in two steps: prediction
and update. The prediction step is done at time instant
k − 1, before the information from the measurement is
available and it is based on the previous state estimate
x+
k−1. The update step is performed after the measurement

from the time step k is available, and includes this infor-
mation as a correction for the predicted state.

4.6 The Motion Models for Humans

Two motion models were adopted for people tracking.
For both models the measured state variables were the
positions in the Cartesian coordinates (xk, yk).

Position-velocity-heading (PVH) Model – used to estimate
the human motion with constant velocity model. In our
experiments this model was extended with the orientation
φk and velocity vk according to [Bellotto and Hu, 2005] as
follows: 

xk = xk−1 + δkvk−1cosφk−1

yk = yk−1 + δkvk−1sinφk−1

φk = φk−1 + nφk−1
vk = vk−1 + nvk−1

(8)

with δk being the sampling time, nφk−1 and nvk−1 the zero-

mean Gaussian noises with σφ = π
16 and σv = 0.05ms−1.

Position-velocity-acceleration (PVA) Model – or referred
as the α − β − γ filter [Bar-Shalom and Li, 1993] is the
model of a Newtonian system represented in 2D coordinate
system. Along a single axes the motion equations are given
as follows:

xk =

 1 δk δ
2
k/2

0 1 δk
0 0 1

xk−1 +

 δ2k/2δk
1

nk−1 (9)

The same equations are valid for the yk coordinates. When
using this model special care must be taken for computing
the model noise, which is a function of the sampling rate
δk. Additional information on filter tuning can be found
in [Durrant-Whyte, 2006b].

In both cases the legs position are measured as bearing-
range information with relative to the robot’s position
(xRk , y

R
k , φ

R
k ) as follows:
bk = tan−1

(
yk − yl
xk − xl

)
− φRk + nbk

rk =

√
(xk − xl)2 + (yk − yl)2 + nrk

(10)

where (xl, yl) are the offset of the laser device with
respect to the robot. The noises nbk and nrk are device
specific measurement Gaussian noises, considered for the
experimental part σb = π

32 and σr = 0.05m.



5. TARGET EXPERIMENTS

5.1 Indoor Human Tracking with Laser

The aim of this experiment was to compare motion models
for human position tracking in indoor environment. To
compare the two models, the EKF was used to estimate
the position of the detected person with respect to the
robot position. The same dataset was tested checking the
computational effort and the standard deviation of the
innovation along the x and y axes during the experiments.
The results are summarised in Table 1.

Table 1. Comparison of the PVH-PVA models

Criteria PVH Model PVA Model

Runtime (s) 6.2 7.9

XStd(cm) 171 112

YStd(cm) 78 23

As it can be seen in Table 1, the PVH model runs
faster, but it gives larger standard deviation along the axis
compared to PVA. This should be expected as in the case
of PVA there are 6 states compared to PVH with only 4
state variables.

5.2 Bycicle Experiment

The aim of the two sensors fusion was to obtain a con-
tinuous, bounded-error position estimation for the vehicle.
While in the case of the GPS the error usually is not drifted
in time - thus is reliable on longer distances - on short
distances (less than 3 [m]) it cannot be used for position
estimation due to the limited accuracy of the sensor. It
can also be the case that the data from this type of sensor
is not available (e.g.: in tunnels, or within high buildings).

On the other hand, the dead reckoning (DR) sensors
produce unbounded errors in the position estimation,
unless they are regularly reset from another type of sensor
reading. Thus the external update form the GPS would
increase the position estimation performance both on short
and long distances.

The Process Model For Estimation The model used to
describe the bicycle motion under the constant velocity
assumption in our experiment was extended beside the
orientation φk and velocity vk with the radius of the wheel
R according to [Durrant-Whyte, 2006a] as follows:

xk = xk−1 + δkvk−1Rcosφk−1

yk = yk−1 + δkvk−1Rsinφk−1

φk = φk−1 + nφk−1
vk = vk−1 + nvk−1

Rk = Rk−1 + nRk−1

(11)

with δk being the sampling time, nφk−1 and nvk−1 the zero-

mean Gaussian noises with σφ = π
64 , σv = 0.15ms−1

and σR = 0.04m. The wheel information is considered
to be constant, but with small perturbations during the
time (e.g. changing the load on the bicycle). Further
information regarding the modelling of the error for such
a case can be found in [Durrant-Whyte, 2006a]. The
odometer information is given as a function of the wheel

radius. As this is not directly measurable, it can only be
estimated using an external sensor reading.

The challenge in the observation model was the combina-
tion of the asynchronous readings. As the rate of the DR
readings were with an order of magnitude higher than the
ones from the GPS, a sequential [Bellotto and Hu, 2005]
approach was adopted.

According to the sequential update, each time a GPS data
is available, a position estimate update is also performed.
Between two GPS measurements, the position estimation
based on the DR data is done.

Beside the sequential update of the estimate from the
GPS data, the covariance of the estimate is reduced to
the values of the GPS measurement covariance matrix. A
similar approach is presented in the case of systems based
on the landmark observations. The covariance reduction in
this case is rather straightforward: the uncertainty in the
position after the GPS data is fed into the filter is given
by covariance of the GPS data.

Fig. 5. The original map (a); fused odometer and gps data
(b)

The fused DR and GPS data is shown in Figure 5. The
GPS data and the DR readings were fused with the
Extended Kalman Filter [Bar-Shalom and Li, 2001]. As
it can be seen, the DR data after a certain point has
heading errors. These can easily occur in case that a large
electromagnetic field is encountered in the near proximity
of the compass. This was also in the case of the current
experiment, when a trolley passed by the compass.

Between two consecutive GPS readings, the DR can per-
form acceptable. Even if the data would be missing for
a short period (e.g. tunnel without GPS availability), the
DR still could give a reasonable position estimation.

5.3 Active Car Breaking Systems

The car with the sensors and the active breaking system
is shown on the Figure 6. On the left hand side the
Bumblebee2 stereo camera and the LMS200 laser range
finder (LRF) is shown. These sensors were used for the
pedestrian recognition and they were mounted on a metal
support [Tamas et al., 2009]. On the right hand side of
the figure the breaking system is presented. This contains
the control unit (CU), the actuating motor and the break
cable connected in parallel to the main breaking system.

The data acquisition and processing of the information
from the stereo camera and the LRF was done within
ROS with detection libraries developed in Matlab and



Fig. 6. The car with the active breaking system

cross compiled to the Linux platform. The detection with
the LRF was based on the Gaussian Mixture Model
representation of the predefined shapes [Premebida and
Nunes, 2006]. The active breaking system was able to slow
down the car in safe conditions in case of the pedestrian
crossing the front of the vehicle. The test scenario was
performed on normal road surface with a cruising speed of
40 [km/h] and with the pedestrian crossing in front of the
car at a 5 [m] distance from the car. These specifications
can be further more extended with faster communication
cards between the sensors and the main computer as well
as by using a breaking system with lower response time.

6. CONCLUSION

This paper covered a series of mobile vehicle experiments
starting from indoor 4 wheeled mobile robot, outdoor
bicycle or car navigation related experiments. The setups
for these applications were presented separately, highlight-
ing the important setup&configuration aspects for each of
them.

For the future it is intended to be used advanced detec-
tion&tracking algorithms in the traffic implemented on
high speed FPGA boards in order to be suitable both
for aerial and urban scenes. We are also intending to
implement an algorithm which combines 3D with image
data for improved segmentation.
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