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Abstract
This paper presents a method to detect moving persons based on the information from a LIDAR type sensor mounted on
a mobile robot. The detection of the objects is performed relative to the estimated robot position. The objects of interests
are rst described with Gaussian Mixture Model (GMM) and later on searched and classi ed with a Bayesian classi er.
The estimated person positions are tracked via the Extended Kalman lter with two kind of motion models for humans.

1 Introduction
The perception capabilities of the mobile robots can be im-
proved if multiple sensory information is fused in order to
gain more relevant information as a result of the combi-
nation of several different sensors. This paper presents a
multi-sensor architecture for processing the mobile robot’s
surrounding environment information for detecting mov-
ing person in order to avoid collision in an indoor environ-
ment. Examples of such moving object may be people or
other mobile robots [1].
In the proposed architecture lidar based system is meant
to detect and track the position of the predi ned dynamic
objects like humans. Similar strategies can be adopted in
order to establish the coordinate correspondence between
the lidar or the monocular vision camera to reduce the eld
in which the object detection is performed. The robot po-
sition estimation was based on traditional dead-reckoning
sensors and the Kalman ltering algorithm [2].

Figure 1: Architecture of the system

The architecture of the system is presented on Figure 1
is and composed from three subsystems: the robot posi-
tion estimator, the lidar based classi er together with the
coordinate transformation system the global classi cation
subsystems. Based on the relative position information of

the robot, the people relative to the robot are detected by
the lidar based system. Also the this system can be used
to measure the distance of the object relative to the robot
with a good accuracy [3].
The people detection with lidar is based on the Gaussian
Mixture Model representations of the prede ned leg forms
[4] and to extract the depth information too of the detected
person.

2 Related Work
The robot localization problem represents a key aspect in
making a robot a real autonomous one. The position of
the robot has to be estimated accurately based on the in-
formation from the sensors about the surrounding world
[2]. The human detection and tracking is an essential part
of the human-robot interaction problem. This topic repre-
sents a major interest in the autonomous vehicle research
domain [5].
The current trend in this eld [6] is to fuse together relative
and absolute measurements. The aim of this is to provide a
better position estimation of the robot location based on the
differing nature of the data from different kind of sensors.
In order to fuse the information from different sources one
of the widely applied methods is Kalman ltering [7].
In general detecting different objects on a moving platform
using lidar and vision, or both sensors at the same time, for
collision avoidance, mapping (or SLAM together) is well
reported subject [8] [9].
Several research work have been performed using laser-
scanners in object classi cation and moving object
tracking including but not limited to localization and
navigation[10] application or guarding systems [11]. For
the object classi cation voting schemes, multi-hypotheses
tracking [12] or even boosting approaches [13] were used.
While the rst two approaches lack the proper mathemat-
ical description framework they still offer reasonable per-
formance.
The vision based systems are commonly used for object
detection and classi cation with or without lidar [14]. In
certain light/ambient conditions the performance of the vi-
sion system can degrade, and the range information .
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3 Lidar Based Classi er

In this section the lidar classi er is presented with the
segmentation, feature extraction and classi cation compo-
nents. Basically, the lidar measures bearing-range infor-
mation about the surrounding objects with a relative good
accuracy (in the performed experiments 1cm accuracy at a
10m range).

3.1 Scan Segmentation

The scan segmentation belongs to the primary modules
of the lidar architecture among with the data acquisition
and pre- ltering modules. The segmentation is the pro-
cess of splitting a scan into several coherent clusters, i.e.
point clouds. The choice of segmentation method is rather
arbitrary and dependents on other design choices as the
alignment and covariance estimation strategies [15]. The
current strategy is the one based on the simple assump-
tion of topological distances between segments adopted
from [13].
The laser range scan information is a set of beams of the
form Z = {b1, ...,bL} Each element b j of this set is a pair
of (θ j,ρ j), where θ j is the angle of the beam relative to
the robot and ρ j is the distance from the re ected surface.
The scan Z can be split into subsets according to the dis-
tance threshold computed for the segment. In case that
the topological distance between two segments is greater
than a preset threshold then a new segment is considered.
Even if there are more sophisticated segmentation algo-
rithms e.g. like the one presented by Premebida in [4], in
the current problem setup we found appropriate this sim-
pler approach.
The output of the splitting procedure is an angle ordered
sequenceP = {S1, ...,SM} of segments in such a way that⋃
Si = Z. The elements of each segment S contain pairs f

Cartesian coordinates x= (x,y) which can be converted to
polar coordinates with x= ρ cos(θ ) and x= ρ sin(θ ).
The adopted option is to consider the measurements in
angle-order and segment point clusters at range disconti-
nuities. By considering a full scan as an ordered sequence
of NS points in the form: S = {(rk,θ k)|k= 1, ...,NS } in
which case (rk,θ k) denotes the polar coordinates of the ith
scan. The point goups of a segment can be expressed as

S j = {((rn,θ n))}, n ∈ [kbegin,kend ], j = 1, ...,NS (1)

where NS is the number of detected segments, kbegin and
kend are the rst and last points in the scan of the current
segment. The segment can also transformed in the Carte-
sian coordinates using a simple polar to Cartesian transfor-
mation.
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Figure 2: Segmentation output in a cluttered environment

A gating technique is applied in order to lter out the
spurious data which can be summarized as follows: if
the innovation νk is less than a γk gating threshold then
a break point is observed. The innovation is de ned as
νk = νkT S−1k νk where Sk is the associated measurement
covariance matrix. The γk is chosen from the χ21 test table.
A typical scan segmentation can be seen in Figure 2. The
segments are denoted with different colors, although in
lack of easily distinguishable colors the same color appears
as denoting another apart segment on the image. The size
of the segments can be tuned via the distance threshold pa-
rameter between two consecutive segments.

3.2 Feature Extraction

Thismodule extracts the relevant information from the seg-
mented data and ensures robustness in the algorithm. The
extracted information is used later on in the classi er mod-
ule and can also be used for visualisation purposes too.
The feature vector components may be chosen upon the
required information [13]. The basic set of feature which
was used in the experiments contained the following en-
tries:

1. f1: object centroid;

2. f2: normalized Cartesian dimensions given by:

f2 =
√

ΔX2+ΔY 2 (2)

3. f3: the standard deviation of the point from the cen-
troid:

f3 =
√

1
n−1∑ ||rn− x̄|| (3)

These components are essential to the classi er.
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3.3 GMM Object Description
AGaussian mixture model (GMM) is a weighted combina-
tion of Gaussian probability density functions (pdf). These
densities are used to capture the particularities of an object.
In a GMMmodel the probability distribution of a x random
variable is de ned as a sum ofM weighted Gaussian prob-
ability density functions:

p(x|Θ) =
M

∑
m=1

αmp(x|θm) (4)

where θ 1, ...,θM are the parameter of the Gaussian dis-
tributions and α1, ...,αM is a weighted vector such that
∑Mm=1αm = 1. A set of parameters for a mixture model is
given by Θ = (α ;θ 1, ...,θM) where each parameter θm =
(μm,Σm) represents the mean and the covariance of the
model with Gaussian pdf. The likelihood of a feature vec-
tor Ω is given by the linear combination of the Gaussian
mixture probability density functions:

p(Ω|qi,Θi) =
M

∑
m=1

α imp(Ω|θ
i
m) (5)

In this case each Gaussian density function for the two di-
mensional and gives as:

p(Ω|qi,Θi) =
1√

(2π)2|Σim|
e[−

1
2 (Ω−μ im)T (Σim)−1(Ω−μim)] (6)

The Gaussian mixture parameters for each object of in-
terest was determined using the expectation-maximization
(EM) algorithm [16] . For each set of feature vectors
(ΩN = Ω1, ...,ΩN) the EM algorithm computes M Gaus-
sian parameter vectors that maximizes the joint likelihood
of the Gaussian density functions:

p(ΩN |qi,Θi) =
M

∏
j=1
p(Ω j|qi,Θim) (7)

Further more advanced optimization algorithms can be
used for the parameter vector searching like Figueiredo-
Jain method [17], but in this case the optimal parameter
searching algorithm is not crucial, thus the faster EM is
preferred.

Figure 3: Possible leg forms in the laser scan

For a single leg pair the Gaussian models describing to the
same leg forms are shown on Figure 3. As it can be seen
on this gure, more Gaussian models are tted to the leg

pair. The number of the Gaussian model can be tuned with
a parameter during the EM algorithm used for the tting.
In this case there it is not worth using more than 10 models
for a leg pair, as the leg forms are rather simple ones, as
this can be seen in Figure 4.
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Figure 4: Gaussian models for a leg pair

Although not all the possible leg con gurations are cap-
tured, with a proper classi er algorithm the distorted
leg forms can also be detected in the segmented laser
scan [18].

3.4 Bayesian Classi er
After a Gaussian mixture pdf for classi ed object is avail-
able, in order to classify which category (qi) modelled by
Θi ts the current observation feature-vectorΩk a Bayesian
decision framework based on the log-likelihood and on the
log-prior probability is used.
Computing the log-likelihood has the advantage of reduced
computational effort by avoiding the computation of the
exponential in the pdf (6) and by turning the product (7)
into sums . Furthermore, as the log-likelihood is a mono-
tonically increasing function allows it can be used the for-
mer directly to classify the objects.
By considering the features equip probable, the logarithm
of the posterior probability log(P(Θi|Ω)) for all categories
is proportional to the sum of the log-likelihood of the log-
arithm of the prior probability:

log(P(Θi|Ω))≈ log(p(Ω|Θi))+ log(P(Θi)) (8)

It is more convenient to use Bayes’ law to estimate the pos-
terior probability as it uses only the likelihoods and the
prior probability. The former is computed at each scan,
which will become in the next scan the last estimated pos-
terior. Therefore the prior probability is updated dynami-
cally as:

P(Θik) = P(Θ
i|Ωk−1) (9)
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By knowing the initial prior probability for each class, the
classi cation algorithm computes the maximum posterior
probability for each segment. In order to decide which is
the most likely class of object qi for the segment S j a deci-
sion rule of the following form was adopted:

S j ∈ qi i f log(P(Θi|Ωk)) =max(log(P(Θu|Ωk))) (10)

where u spans from 1 to the number of classes.

4 Extended Kalman Filter for
Tracking

A large number of mobile robots use position estimation
based on the Kalman lters. Originally the theoretical
backgrounds were formulated by Rudolf Kalman in 1960
and later there several extensions were developed [2]. The
Kalman lter is an optimal recursive data processing algo-
rithm for linear systems corrupted by noise.
The Extended Kalman lter (EKF) [19] uses a model to
describe a discrete-time state transition. The ltering algo-
rithm can be described in two steps: prediction and update.
The prediction step is done at time instant k− 1, before
the information from the measurement is available and it is
based on the previous state estimate x+k−1.

x−k = Fx+k−1+Buk (11)
P−k = FP+k−1+Q (12)

The update step is performed after the measurement from
the time step k is available, and includes this information
as a correction for the predicted state. This step can be
summarised with the following equations:

x+k = x−k +Kk(zk−Hkx
−
k ) (13)

P+k = (I−KkHk)P−k (14)
Kk = P−k H

T
k (HkP

−
k H

T
k +R)

−1 (15)

The term with given by the difference between the estimate
and the measured state is called the innovation or residual.
The innovation sequence should be an uncorrelated, white
sequence [6].

4.1 The Motion Models for Humans
Two motion models for were adopted for people tracking.
For both models the measured state variables were the peo-
ple’s position in the Cartesian coordination (xk,yk).

4.1.1 Position-velocity-heading (PVH) Model

used to estimate the human motion the constant velocity
model in our experiment was extended with the orientation
φ k and velocity vk according to [10] as follows:⎧⎪⎪⎨

⎪⎪⎩

xk = xk−1+ δ kvk−1cosφ k−1
yk = yk−1+ δ kvk−1sinφ k−1
φ k = φ k−1+n

φ
k−1

vk = vk−1+nvk−1

(16)

with δ k being the sampling time, n
φ
k−1 and n

v
k−1 the zero-

mean Gaussian noises with σφ =
π
16 and σ v = 0.05ms−1.

4.1.2 Position-velocity-acceleration (PVA) Model

or referred as the α−β − γ lter [7] is the model of a par-
ticle in a Newtonian system represented in 2D a coordinate
system. Along a single axes the motion equations are given
as follows:

xk =

⎡
⎣ 1 δ k δ 2k/2
0 1 δ k
0 0 1

⎤
⎦xk−1+

⎡
⎣ δ 2k/2

δ k
1

⎤
⎦nk−1 (17)

The same equations are valid for the yk coordinates. When
using this model special care must be taken for computing
the model noise, which is a function of the sampling rate
δ k. Additional information on lter tuning can be found
in [6].
In both cases the legs position are measured as bearing-
range information with relative to the robot’s position
(xRk ,y

R
k ,φ

R
k ) as follows:

⎧⎨
⎩
bk = tan−1

(
yk−yl
xk−xl

)
−φRk +nbk

rk =
√
(xk− xl)2+(yk− yl)2+nrk

(18)

where (xl,yl) are the offset of the laser device with respect
to the robot. The noises nbk and n

r
k are device speci c mea-

surement Gaussian noises, considered for the experimental
part σ b = π

32 and σ r = 0.05m.

4.2 Motion Model Comparison for the
Tracking

To compare the two models, the EKF was used to estimate
the position of the detected person. The same dataset was
tested against the computational effort and the standard de-
viation of the innovation along the x and y axes. The results
are summarised in Table 1.

Table 1: Comparison of the PVH and PVA models

Criteria PVH Model PVA Model
Runtime (s) 6.2 7.9
XStd(cm) 171 112
YStd(cm) 78 23

As it can be seen in Table 1, the PVH model runs faster,
but it gives larger standard deviation along the axis com-
pared to PVA. This should be expected as in the case of
PVA there are 6 states compared to PVH with only 4 state
variables.
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5 Experimental Results
The purpose of this experimental part was to validate the
presented classi er for the human leg form detection prob-
lem. The measured data contained random error points due
to the imperfections of the laser scanner. These points have
to be eliminated, as well as the effect of the varying leg pair
forms.
For the detection of different leg pair forms, one option
was to consider several leg pair con gurations in theGMM
training phase. This option has the folloing main advan-
tage: the leg pairs with different distances between the legs
(i.e. during walking) can be classi ed correctly. On the
other hand, the main disadvantage of this type of classi er
is that the recognized object space grows, thus the number
of false positives also grows.
This is especially true in an of ce environment, where ob-
jects like chairs with thicker legs or trash bins can be easily
classi ed as human leg pairs if the classi er is trained to
recognize a wide range of leg pair con gurations [20].
The experiment setup contained a P3 skid-steered mobile
robot equipped with a LMS200 laser range nder and a
camera connected to a PIV laptop.
Before performing the main experiments in the indoor
some preliminary test were done. The position estimation
of the robot was observed to be more reliable at low turning
speed as the accelerations were not explicitly introduced in
the process model. The camera was also tested in differ-
ent light/background conditions and the best hit rate was
achieved with the imagines containing high contrast parts
especially about the people (like striped colorful clothes).
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Figure 5: The detected laser leg forms

The lidar measurement were negatively in uenced only by
the surrounding objects in the laboratory which have very
similar forms to the human legs. The a-prior map of the
indoor environment was measured in a separate measure-
ment process thereby decoupling the mapping and local-
ization problem.

The observation of a leg form from the laser scanner is
shown onn Figure 5. As it can be seen, the leg pair can be
distinguished in case that is not too close to other objects.
A typical output of the Bayesian classi er is shown in Fig-
ure 6. The classi cation is done rst by taking the points
likely to be part of the GMM leg models considered ear-
lier. Further on, a pdf value density quantile for each point
is generated in order to evaluate the distribution density
quantiles.
In order to decide whether a point is an outlier from
the Bayesian model, a threshold pd f value is considered
(around 0.9) and the decision is taken upon the previously
computed density quantile for each point.
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Figure 6: The classi ed leg points

A test bench on three different data sets was performed in
an uncluttered environment and cluttered environement to
test the human detection rate(DR) of the different classi-
ers. The results of the benchmark are presented in Ta-
ble 2.

Table 2: Comparison of the different classi ers

Exp. Avg. DR (%) Avg FP (%)
Uncluttered 72 2
Cluttered 53 4

As expected best detection rate can be achieved in case
of the uncluttered environment. Another remark regarding
the detection rate is, although this is not so high as the ones
reported in the literature review, the false positive rate is
very low, i.e. the tuning of the classi er was performed in
such a way to reduce as much as possible the false positive
rate.
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6 Conclusions and Future Work

6.1 Conclusions
Amulti-sensor object classi er was presented in this paper
including a tracking of the detected objects. A cooperative
technique was adopted to combine the information from
the lidar. Details regarding the classi cation algorithms
were presented for the both approaches. The computed co-
ordinates of the moving human objects were used to track
them in an indoor environment.

6.2 Future Work
We intended to test and validate against other classi cation
algorithms the presented ones, and to extend the object de-
tection of object tracking to multi person tracking and oc-
clusion handling. Further on, the condition of the prior
existent map can be relaxed, and the localization or the
people detection can be performed simultaneously with the
mapping task. This is referred as the Simultaneous Local-
ization and Mapping and Simultaneous Localization and
People Tracking [21] . Both of the problems require the
idea of running the localization task in parallel with either
the mapping or the detection task.
As an alternative information source, the stereo-vision
camera system is proposed to be introduced.
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