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Abstract—Making sense out of human indoor environments is
an essential feature for robots. In this paper we present a system
for the classification of components inside these environments,
starting from our robotic platform to a simple yet robust labeling
process. Our method starts by acquiring multiple point clouds
which are then registered into one single dataset. An estimation
of principle axes is performed and the planar surfaces are seg-
mented out. Further on, quadrilateral-like shapes are estimated
for each detected plane, by making use of edges. And finally,
since our classification approach relies on physical features,
the method analyses the relationship between the previously
mentioned shapes, as well as their physical sizes. To validate
our approach, we tested the method on different datasets, which
were recorded inside our office environment.

I. INTRODUCTION

Modern robots are now capable of performing the most
intrinsic of tasks when it comes to indoor environments.
They can navigate and find their way around, grasp and pull
handles to open doors and cupboards, manipulate different
objects of daily use, and even interact with humans. All of
these relatively simple tasks require a considerable effort in
terms of computation. And since the current systems are not
always reliable and straightforward, there is still room for
improvements.

The work at hand is describing an integrated system for
classifying basic components of human indoor environments
based on their physical features. To be more concise, our
system records 3D point clouds and after processing assigns
a label to each point according to the class it belongs to. For
achieving this task we make use of a P3-AT1 (Pioneer 3 All
Terrain) robot, our 3D laser scanning system and a laptop.
In the following we give a comprehensive overview of the
proposed system.

We scan a certain scene from a couple of different view-
points. Then we register these point clouds using the ICP
(Iterative Closest Point) algorithm applied in two stages: (i)
initial alignment: only for filtered set of correspondences; and
(ii) refined alignment: using the complete datasets. We assume
that the registered cloud is not axis aligned, thus having
a random coordinate system. Since our approach relies on
accurate alignment with real-world axes, our method trans-
forms the cloud in two steps: (i) initial guess: using normals
of dominant planes to compute the axes; and (ii) correct
alignment: where basic features from indoor environments

1 www.mobilerobots.com/researchrobots/p3at.aspx

are used to determine the final axes. During this process
the planar surfaces are segmented and the boundary points
for each plane are computed. Quadrilateral shapes are then
fitted to each set of boundaries. These shapes will tell us
the positioning of walls and components such as doors and
windows. After inspecting the sizes of these rectangle-like
shapes and determining the relationships between them, the
method can start assigning a class to each point.

This system can be useful in different areas of the robotic
research. One would be the interpretation of registered clouds
taken from human indoor environments. Also it can be useful
to know where basic components, e.g. doors or windows, are
situated for certain SLAM (Simultaneous Localization And
Mapping) algorithms.

The main contributions presented in this material are:
• the construction of the 3D laser scanning system;
• a straightforward and reliable way of estimating the

principle axes of 3D indoor datasets;
• a procedure for estimating quadrilateral-like forms;
• a simple set of rules for classifying indoor components.

In the following section we give a short overview of related
works. Then we describe our robotic platform in Section III,
followed by the registration based on features in Section IV
and our classification method in Section V. We conclude in
Section VI and present our future research directions.

II. RELATED WORK

There are many possibilities to acquire 3D information
from the surrounding environment. The measurement methods
can be divided into three major categories based on applied
sensor and sensing technology: stereo vision with two or more
cameras, active triangulation and time-of-flight measurements
[1]. In order to get information from the third dimension, the
standard 2D laser scanners are often used with an auxiliary
rotary mechanical system. The 2D laser is then mounted on the
aforementioned system, obtaining the third degree of freedom
for the laser beam. Such an approach based on a servo actuator
system was used in [2].

The registration process is highly dependent on the char-
acteristics of the measured data including noise, sparseness
and robustness. Thus several techniques were developed for
registration according to different scenarios such as geometric
feature-based registration for urban scenes [3] or raw point



cloud registration for cluttered environments [4]. A common
approach is to use distinctive features for a set of points
between consecutive scans for initial alignment and the ICP
algorithm [5] for the fine-tuning of the registration.

In [6] the authors propose a so-called scene interpretation
method for labeling the walls, floor, and ceiling. This approach
relies only on the segmentation of planar patches using the
RANSAC (Random Sample Consensus) [7] algorithm. Further
identification of indoor components is obtained using a rather
complex recognition pipeline.

The authors of [8] are presenting a similar approach to ours.
They also use 2D quadrilaterals to detect rectangular shapes,
but under the assumption that the points are axes aligned,
making it easier to determine the floor and ceiling. Also, from
the article we understood that the so-called cuboid fitting was
applied only for that particular kitchen datasets, casting doubts
about its reliability and accuracy.

Regarding to door detection there has been done some very
interesting work, such as [9] where authors use computer
vision to classify pixels using a somehow smaller set of classes
that the one presented in this paper. Although the results
look good, the performance can be easily affected by chang-
ing light conditions. Also by using only image processing,
robotic applications which require 3D information cannot be
supported. Another work on door detection is [10] where the
developed system is accurately detecting and opening doors.
Unfortunately, the authors have applied it only on doors and
handles that are conform to ADA (American Disability Act)
U.S. law, thus suggesting that the system might not comply
for other types of doors.

In addition, there was very little to be found on indoor
window detection, this application being more common for
outdoor processing of buildings. Nevertheless in [11] a method
is presented for detecting windows from outdoor scans, using
indoor points. The authors also rely on the detection of
dominant planes, being considered most representative. Using
the indoor points, meaning the points which lie inside the
buildings, and which were obtained by the laser beam going
through the windows into the building, the authors estimate
the positions of windows.

III. 3D LASER RANGE FINDER ON A MOBILE ROBOT

This section presents the design and construction details
regarding the 3D laser scanner module mounted on a mobile
robot platform. This module is based on a commercial Sick
LMS200 2D laser product for which an auxiliary mechanical
part was constructed in order to earn a 3rd degree of freedom.
The actuated laser scanner was mounted on a P3-AT mobile
robot, and the data acquisition was performed using the ROS2

(Robot Operating System) environment.

A. Actuated 2D Laser Range Finder

The key component of the 3D sensor is the 2D commercial
laser scanner for which a custom rotary platform was designed.

2 http://www.ros.org/wiki/

There are several possibilities to rotate the laser scanner, i.e.
around the yaw, pitch and roll axes, thus achieving a yawing,
pitching or rolling of the 3D sensor [1]. Each of these setups
has its own advantage/disadvantage. Since for the mobile
robots the most common approach is the pitching scan, it was
adopted for the current design. The mechanical design and the
product prototype are presented in Figure 1. The mechanical
design shown has two parts: one fixed, containing the driving
servo motor (left) and the rotation encoder (right); and one
mobile, on which the Sick LMS200 is placed. The prototype
was built using an iron frame both for the fixed and for the
mobile part.

Fig. 1. The CAD model [left] and final prototype [right] of the actuated
3D sensing device used for collecting data.

As the driving motor a Hitachi 12V servo motor was chosen,
having a minimum rotation step of 0.45◦, while for the rotation
sensor a high resolution encoder was considered. The motor
control and the serial interface to the PC were solved using
a Cerebot2 electronic board with an AVR micro-controller.
This type of board as well as the other mechanical and
electrical components of the prototype are low cost products.
The Sick LMS200 has a depth resolution of 1cm and an
angular resolution of 0.25◦, 0.5◦, or 1◦ depending on the
configuration. The scanning cone of the device can be set to
either 100◦ or 180◦, depending on the actual needs, while the
maximum range of readings is up to 80m. The scanning time
is around 15ms, and additional time is required to send the
data to the PC at 9600, 19200, 38400 or 500000 kb/s. Thus
a complete 3D scan may require seconds depending on the
actual configuration used for the scanning.

For a scanner with pitching actuator the 3rd information
about a point is from the pitch angle information. The coordi-
nates of a 3D point result from the distance to the surface, the
yaw angle of the beam, and the pitch angle of the actuated
mechanical part. Thus a scan point can be represented as a
tuple of the form (ρi; θi, γi) where ρi represents the depth
information from the laser scanner and θi, γi the yaw and pitch
measurements. The forward kinematic transformation taking
as original coordinate system the laser base link is given by:
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0 1 0
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ρ sin θ

0
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where p is a point in the Cartesian space with the coordinates
xn, yn and zn.



In (1) the displacement between the center of the robot
and the 3D sensor was not taken into account. This can
be introduced into the mathematical model by means of an
additional translation term. Also, the error induced by the
misalignment between the rotation axis of the laser mirror and
the pitching axis is not taken into account. This introduces a
systematic error which can be detected by tests and eliminated
by considering a constant term. A more detailed discussion
regarding the error budget can be found in [12].

IV. FEATURE BASED MAP REGISTRATION

Several range scans are necessary in order to build a 3D map
of the environment. To use these scans as a coherent dataset,
they have to be unified in a common coordinate frame. Unless
the position and orientation of the mapping robot is accurately
known, the range scan registration needs to be done using
registration algorithms. Since in our case the robot position
could not be determined with sufficient accuracy between the
measurement steps, the registration algorithms were employed
for creating the elevation maps.

A. 3D Data Acquisition

The data acquisition was performed with the laser scanner
presented in Figure 2 which was mounted on a P3-AT mobile
robot in order to perform both indoor and outdoor scans.
The scan area was of 180◦(h) x 100◦(v) with a horizontal
resolution of 361 and a vertical one of 200 steps. This
configuration ensured an optimal resolution and density of the
point cloud for further processing of the data. The scanning
of the environment with the mobile robot was performed
in a stop-scan-go fashion, a single scan taking up to 30
seconds depending on the used configuration. All the measured
data was integrated in the common software environment
where each logging was timestamped for an easier off-line
processing.

Fig. 2. The 3D laser scanning system mounted on our P3-AT robot and
ready to record point clouds.

B. Multiple Scan Merging

The structure of the adopted registration algorithm follows
the 3D mapping techniques commonly used in similar ap-
plications in the way it tackles the frame-to-frame matching.
As the number of scans to be merged increases, so does the
computational complexity [13].

Thus several problem-specific solutions were adopted in
order to have an acceptable compromise between speed and
accuracy. Such solutions include the scanned data filtering,
key-point detection, and in some cases the odometry infor-
mation fusion for the initial alignment. In our approach, the
voxel grid filter was used with a downsampling factor of
5 to 10 for different datasets. Within this range the best
compromise between the computational speed and merging
accuracy was obtained. The initial pairwise alignment, for the
two datasets, and the refined alignment were computed using
the downsampled dataset and the estimated correspondences.

The initial alignment is performed using ICP only for the
filtered set of correspondences. This step therefore involves
only a few points to be aligned and is performed relatively
fast. For the refined alignment, please see Figure 3, the whole
point clouds were used as input for the ICP, thus this step of
the registration needs several times more computational effort
than the initial alignment phase.

Fig. 3. Registration based on features: result of refined alignment. The point
cloud represents an office area where three windows are present.

The initial alignment in this case is done with a rather
good accuracy, although the refined alignment reduces the
fitness score of alignment 5 times. The alignment errors are
especially visible at the corners of the rectangles in the dataset,
e.g. in the case of windows. The computational time of the
refined alignment can be reduced by tuning the registration
parameters, i.e. the maximum distance in the search space and
the error threshold for the stopping criterion.

Further optimization of the registration can be performed by
taking the global optimization of the registered point clouds
or by using the loop closure, whenever it is possible, in order
to reduce the accumulating errors during the multiple scan
registration [14].



An example of the pairwise registration output is shown in
Figure 4. This map is obtained combining several scans from
different view-points.

Fig. 4. Pairwise registered map of our office.

For outdoor datasets the geometric constrains were also
included in the initial alignment phase, i.e. during the in-
cremental registration the consecutive scans could be aligned
only within a certain region of the global scan. In the worst
cases, when the initial alignment failed due to less distinctive
features, the same dynamics of motion was performed between
the last pair of frames, as in the case of the previous frame
registration.

V. CLASSIFICATION PROCESS

With the method described in this section we implemented
a simple yet robust classification process which can be easily
extended with additional component classes if necessary. We
also wanted for the method not to rely on any training
process but rather use common sense knowledge to label 3D
points. To give you some examples of what we understand as
common sense about indoor human environments please read
the following list:

• in the majority of cases the walls inside houses and
buildings form rectangular shapes;

• by considering also the floors and ceilings we would get
cuboid shapes;

• doors are always positioned on the edge of a wall, very
close to the floor;

• and if closed, a door is always parallel to its supporting
wall; the same for windows;

• windows are always located higher from the floor, and
closer to the ceiling;

• furniture pieces are usually placed right against the walls,
thus being also aligned accordingly.

For the time being, our classification procedure uses eight
classes, which are also called labels: (1) floor; (2) ceiling; (3)
walls; (4) door frame; (5) door; (6) window frame; and (7)
window. It might seem redundant to have such similar classes,
e.g. (4) with (5), and (6) with (7), but some components are
not rigid and are constantly manipulated. Therefore, it is useful
to have a system which can determine the places of those
components. The method might not detect the actual door or
window, but will identify the location where it should be when
closed.

A. Estimation of Principle Axes
In this subsection we describe our technique for estimating

the principles axes of indoor point cloud data. First we fit
planes using the RANSAC [7] algorithm, by segmenting the
inliers of each plane out of the point cloud. For an example of
the final fitted planes, please look at Figure 5. This is repeated
until the remaining points in the cloud fall under a certain
threshold. The mentioned threshold is set to an empirical value
of 2500 point inliers.

Fig. 5. Segmentation of planar surfaces. We can observe that all major planes
are segmented correctly, including the two doors. Please also notice that the
coordinate system is not correct, thus having the axes (X [red], Y [green], Z
[blue]) randomly tilted in 3D space.

As expected, RANSAC always finds the dominant planes
first, meaning the planes with the biggest number of inliers.
Also in many indoor environments most of the surface normals
coincide with one of the three main axes of the room. This is
because most of the walls and furniture façades are parallel and
perpendicular to each other. So the idea behind estimating the
principle axes is to find three planes, which can form a right
angle between each others normals. We start by comparing
the normal of the most significant plane with the normal of
the second most significant plane and so on. When we find
a match, we mark those plane normals as axes for the new
coordinate system. After we found those three planes, and
their corresponding normals, we transform the point cloud in
the new coordinate system. This was the initial guess stage of
our estimation procedure.



Although now the points are aligned with the real-world
Cartesian system of coordinates, the orientation of the three
vectors representing the axes are most probably incorrect, as
it can be seen in Figure 6. But the method will correct the
axes in the second step, which is described in the following
subsection. Also, it is important to mention that we normally
need only two normal planes which are at a right angle, since
the cross product between the two mentioned normals returns
the third axis.

Fig. 6. Axes are aligned with the real-world, but the coordinate system is not
correct, meaning that the Z-axis [blue] for example should point upwards, and
not point towards the reader. In this figure we can also visualize the computed
boundary points for each planar surface.

B. Quadrilateral Detection and Classification Reasoning

Here we present our strategy for detecting quadrilateral-
like shapes and explain the reasoning behind the classification
process used.

Our method uses these quadrilaterals to classify points
which belong to doors, windows, or frames, based on their
physical sizes and positioning inside the scene. By using this
approach, the classification can be effortlessly extended for
other rectangular-shaped components, e.g. furniture pieces,
radiators, or trash bins. But in order to perform quadrilateral
fitting, the method would need to execute these steps:

1. compute boundary points for each segmented plane
previously found;

2. detect line models inside the sets of boundary points
using the RANSAC algorithm;

3. analyze line segments to find candidates which can form
rectangular-like shapes.

We estimate the planar boundary points by using the PCL3

(Point Cloud Library) project. For visualizing the boundaries
please take a look at Figure 6, where each plane has its
boundaries colored differently. Then we continue by fitting
lines much similar to the plane segmentation routine presented

3 http://pointclouds.org/

in the previous subsection. Whereas here the threshold for
lines is set to 25 point inliers, which is also a value deduced
empirically.

Quadrilateral fitting is performed by comparing lines be-
tween each other to determine if formations of rectangular-like
shapes are possible. Finding quadrilateral-like forms which
have right angles is done in an iterative fashion. Each iteration,
a new line segment is checked and if it satisfies certain
conditions, it is added to a quadrilateral configuration. A line
is added to a current shape, i.e. rectangular, if two conditions
are fulfilled:

(a) at least one, if not both, of the segment’s ends is in
proximity to either one of the shape’s ends;

(b) the angle between the newly added segment and the
existing one, is of approximately 90◦, give or take 5◦.

A quadrilateral configuration is obtained when a maximum
of four line segments are found making up a rectangular shape.
On the other hand, shapes which have less then three line
segments are rejected. This routine stops when there are no
more line segments to be analyzed. For a better understanding
please consider Algorithm 1. Naturally, the results of this
routine are influenced by the point cloud density, hence more
points result in a better accuracy.

Algorithm 1 Estimating the quadrilateral-like shapes
Input: N // Number of fitted lines
Input: S = {l1, l2, ..., lN} // Set of line models
Input: T = ∅ // Empty quadrilateral set

1: repeat
2: l = S(0) // Start with first line
3: q = ∅ // Create empty quadrilateral
4: repeat
5: if (q == ∅) then // First edge of quadrilateral
6: add l to q
7: delete l from S
8: update N
9: l = S(0) // Restart at first line

10: else
11: if ((a) and (b)) then // Check the two conditions
12: add l to q
13: delete l from S
14: update N
15: l = S(0) // Restart at first line
16: else
17: l = S(l + 1) // Continue with next line
18: end if
19: end if
20: until ((l ≤ N) or (q ≤ 4))
21: if (q > 2) then // More than two lines
22: add q to T
23: end if
24: until (S 6= ∅) // No more lines in set
Output: T = {q1, q2, ..., qM} // Detected quadrilaterals

After we find the 2D rectangular shapes, the method checks
their sizes, to see if there are any doors or windows. Usually,
the doors we encountered so far where around 2000mm by
800mm, and windows around 1200mm by 600mm, whereas



walls have a height of around 3000mm. Also, this is not
the only criterion by which rectangles are classified as doors
or windows. There is also the positioning of those rectan-
gles in their supporting quadrilateral, thus being usually the
walls. Therefore, our method checks also for the relationships
between rectangles, i.e. the relative position in comparison
with one another. With the help of this information we can
determine the correct alignment – please see Figure 7 – of
our coordinate system.

Fig. 7. Classification results where we can see the floor [red], ceiling
[yellow], walls [green], door frames [cyan], and doors [blue]. There is also
a color scaling visible. Also please notice that the axes (X [red], Y [green],
Z [blue]) are now aligned as in the real-world environment.

As an example, think of a smaller rectangle, which is
very close to one of the edges of a bigger rectangle. If that
smaller rectangle within the bigger rectangle has a size close
to the system’s thresholds, then we can assert that the smaller
rectangle is a door, which lies on the floor, and that the Z-axis
should be oriented upwards in the door’s direction.

If we then consider the normal of the door, as for example
Y-axis, which is at a right angle with our newly found Z-axis,
we then can compute the cross product and obtain our X-axis.
The point clouds is transformed according to the new axes,
and the correction of alignment has been fulfilled. Thus having
the real-world coordinate system, we can easily determine the
floor, ceiling, and walls, as shown in Figure 7, by using a pass
through filter along the Z-axis.

VI. CONCLUSIONS AND FUTURE WORK

We presented a system for labeling 3D point clouds taken
from human indoor environments by relying on physical
features. The labeling classes are as follows: floor, ceiling,
walls, door frame, door, window frame, and window. We also
described a technique for estimating the principle axes while
dealing with 3D indoor datasets. From our observations, the
presented approach is relatively robust to noise and easy to
compute. The method was tested on different datasets with
promising results.

As research perspectives there are a number of ways to
improve this work, both short-term and long-term. In short-

term we intend on enlarging our classification, i.e. by adding
new classes to our pipeline, e.g. heating radiators and furniture
pieces. And for long-term we can improve the perception by
incorporating vision into the process, thus contributing to the
overall robustness. We also take into consideration using the
Hough transform instead of the RANSAC algorithm. Despite
its lack of randomness, by using the Hough transform we will
obtain the best possible fitted shapes, every time we run the
classification pipeline.
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