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Abstract: This paper presents a multi-sensor architecture to detect moving persons based on the
information aquired from a lidar and vision systems. The detection of the objects are performed relative
to the estimated robot position. For the lidar the Gaussian Mixture Model (GMM) classifier and for the
vision the AdaBoost classifier is used from which the outputs are combined with the Bayesian rule. The
estimated person positions are tracked via the Extended Kalman filter. The main aim of the paper was to
reduce the false positives in the detection process with the use of a sequentially combined classifiers.
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1. INTRODUCTION

The perception capabilities of the mobile robots can be im-
proved if multiple sensory information is fused in order to
gain more relevant information as a result of the combination
of several different sensors. This paper presents a multi-sensor
architecture for processing the mobile robot’s surrounding en-
vironment information for detecting moving persons in order
to avoid collision in an indoor environment. Examples of such
moving object may be people or other mobile robots (Mendes
et al., 2004).

In the proposed architecture two different object classifiers,
based on different sensors, are combined in order to gain a
higher level of inference and meaningful information to achieve
robustness in the classification process. A cooperative strategy
was adopted in order to establish the coordinate correspondence
between the lidar and the monocular vision camera to reduce
the field in which the object detection is performed. The robot
position estimation was based on dead-reckoning sensors and
the Kalman filtering algorithm (Borenstein et al., 1997).

The architecture of the system is composed from four subsys-
tems: the robot position estimator, the lidar based classifier,
the vision based classifier and the coordinate transformation
system for the global classification subsystems. Based on the
relative position information of the robot, the people relative to
the robot are detected by the lidar based system. Further on,
coordinates are transformed and used in the in the field of view
of the camera to refine the people detection (Neira et al., 1999).
Also the lidar can be used to measure the distance of the object
relative to the robot with a good accuracy (Lipton et al., 1998).

The people detection with lidar is based on the Gaussian Mix-
ture Model representations of the leg forms proposed by (Pre-
mebida and Nunes, 2006), and the detected person positions
are used to restrict the field of view (FOV) of the camera and
to extract the depth information of the detected person. The Ad-
aBoost classifier (Monteiro et al., 2006) is based on Haar-Like
features. The two classifiers are used sequentially in order to
reduce the false positives in the detection. The general overview
of the system is presented on the Figure 1.

Fig. 1. Classification system overview

2. RELATED WORK

The human detection and tracking is an essential part of the
human-robot interaction problem. This topic represents a major
interest in the autonomous vehicle research domain, see (Arras
and Mozos, 2009).

In general detecting different objects on a moving platform
using Lidar and vision, or both sensors at the same time, for
collision avoidance, mapping or SLAM is well reported subject
(Guivant et al., 2000) (Vandorpe et al., 1996).

Several research work have been performed using laser-
scanners in object classification and moving object tracking in-
cluding but not limited to localization and navigation proposed
in (Bellotto and Hu, 2005) application or guarding systems
shown in (Neira et al., 1999). For the object classification voting
schemes, multi-hypotheses tracking presented in (Streller and
Dietmayer, 2004) or even boosting approaches (Mozos et al.,
2007) were used. While the first two approaches lack the proper
mathematical description framework they still offer reasonable
performance.

The vision based systems are commonly used for object de-
tection and classification with or without lidar (Bertozzi and
Broggi, 2004). In certain light/ambient conditions the perfor-
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mance of the vision system can degrade and the range informa-
tion even if it is available is not appropriate. In such cases the
use of additional sensors like the laser range finders is highly
motivated.

Papageorgiu (Oren et al., 1997) introduced a trainable object
detection architecture based on wavelet templates that defines
the shape of an object by considering a subset of the wavelet
coefficients of the image. Based on this type of architecture in
(Viola and Jones, 2001) is proposed an algorithm for detection
of people, which can recognise a person through a possible con-
stellation of his body parts. These body parts are described by
Haar-like features (Freund and Schapire, 1995), so images are
processed at high rates. Moreover, an object classifier with good
performances is obtained using Adaboost algorithm (Monteiro
et al., 2006). Some extensions of the algorithm were developed
in (Zivkovic and Krose, 2007) and in (Schulz et al., 2007).
Zivkovic uses the algorithm in order to learn not just people
shapes, but appearance of upper and lower human body. Schulz
adds a new final stage to the Viola’s algorithm which consists of
a neural network which is trained to identify the false alarms.
The objec t detection with the monocular vision presented in
this paper is based on the approach proposed by Viola.

3. LIDAR BASED CLASSIFIER

In this section the lidar classifier is presented with the seg-
mentation, feature extraction and classification components.
Basically, the lidar measures bearing-range information about
the surrounding objects with a relative good accuracy (in the
performed experiments 1cm accuracy at a 10m range).

3.1 Scan Segmentation

The scan segmentation belongs to the primary modules of the
lidar architecture among with the data acquisition and pre-
filtering modules. The segmentation is the process of splitting a
scan into several coherent clusters, i.e. point clouds. The choice
of segmentation method is rather arbitrary and dependents on
other design choices as the alignment and covariance estimation
strategies (Borges and Aldon, 2004). The current strategy is
the one based on the simple assumption of Eucledean distances
between segments adopted from (Mozos et al., 2007).

The laser range scan information is a set of beams of the form
Z = {b1, ...,bL}. Each element b j of this set is a pair of (θ j,ρ j),
where θ j is the angle of the laser beam relative to the robot and
ρ j is the distance from the reflecting surface.

The scan Z can be split into subsets according to the distance
threshold computed for the segment. In case that the topolog-
ical distance between two segments is greater than a preset
threshold, than a new segment is considered. Even if there
are more sophisticated segmentation algorithms e.g. like the
one presented in (Premebida and Nunes, 2006), in the current
problem setup we found appropriate this approach.

The output of the splitting procedure is an angle ordered se-
quence P = {S1, ...,SM} of segments in such a way that∪

Si = Z. The elements of each segment S contain pairs Carte-
sian coordinates f = (x,y) which can be converted to polar
coordinates with x = ρ cos(θ) and y = ρ sin(θ).

A gating technique is applied in order to filter out the spurious
data which can be summarized as follows: if the innovation νk
is less than a gating threshold γk then a break point is observed.

3.2 Feature Extraction

This module extracts the relevant information from the seg-
mented data and ensures robustness in the algorithm. The ex-
tracted information is used later on in the classifier module and
can also be used for visualisation purposes too. The feature vec-
tor components may be chosen upon the required information
(Mozos et al., 2007). The basic set of feature which was used in
the experiments contained the following e1, e2 and e3 entries:

(1) e1: object centroid;
(2) e2: normalized Eucledian distances given by:

f 2 =
√

∆X2 +∆Y 2 (1)
(3) e3: the standard deviation of the point from the r centroid

computed for n points:

f 3 =

√
1

n−1 ∑ ||rn − x̄|| (2)

These components are essential to the classifier.

3.3 GMM Object Description

A Gaussian mixture model (GMM) is a weighted combination
of Gaussian probability density functions (pdf). These densities
are used to capture the particularities of an object. In a GMM
model the probability distribution of a x random variable is
defined as a sum of M weighted Gaussian probability density
functions:

p(x|Θ) =
M

∑
m=1

αm p(x|θm) (3)

where θ1, ...,θM are the parameter of the Gaussian distributions
and α1, ...,αM is a weighted vector such that ∑M

m=1 αm = 1.
A set of parameters for a mixture model is given by Θ =
(α ;θ1, ...,θM) where each parameter θm = (µm,Σm) represents
the mean and the covariance of the model with Gaussian pdf.
The likelihood of a feature vector Ω is given by the linear
combination of the Gaussian mixture probability density:

p(Ω|qi,Θi) =
M

∑
m=1

α i
m p(Ω|θ i

m) (4)

In this case each Gaussian density function for the two dimen-
sional and gives as:

p(Ω|qi,Θi)=
1√

(2π)2|Σi
m|

exp[−1
2
(Ω−µ i

m)
T (Σi

m)
−1(Ω−µ i

m)]

(5)

The Gaussian mixture parameters for each object of interest
was determined using the expectation-maximization (EM) al-
gorithm. For each set of feature vectors (ΩN = Ω1, ...,ΩN) the
EM algorithm computes M Gaussian parameter vectors that
maximizes the joint likelihood of the Gaussian density:

p(ΩN |qi,Θi) =
M

∏
j=1

p(Ω j|qi,Θi
m) (6)

3.4 Bayesian Classifier

After a Gaussian mixture pdf for classified object is available
a Ωk feature-vector is considered in order to classify which
category (qi) fits the current observation. Based on a Bayesian
decision framework the log-likelihood of the fitness is com-
puted.
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Fig. 2. Possible leg forms in the laser scan

Computing the log-likelihood has the advantage of reduced
computational effort by avoiding the computation of the ex-
ponential in the pdf (5) and by turning the product (6) into
sums. Furthermore, as the log-likelihood is a monotonically
increasing function allows it can be used the former directly
to classify the objects.

By considering the features equipprobable, the logarithm of
the posterior probability log(P(Θi|Ω)) for all categories is
proportional to the sum of the log-likelihood of the logarithm
of the prior probability:

log(P(Θi|Ω))≈ log(p(Ω|Θi))+ log(P(Θi)) (7)

It is more convenient to use Bayes’ law to estimate the posterior
probability as it uses only the likelihoods and the prior prob-
ability. The former pdf is computed at each scan, which will
become in the next scan the last estimated posterior. Therefore
the prior probability is updated dynamically as:

P(Θi
k) = P(Θi|Ωk−1) (8)

In order to decide which is the most likely class of object qi
for the segment S j a decision rule of the following form was
adopted:

S j ∈ qi i f log(P(Θi|Ωk)) = max(log(P(Θu|Ωk))) (9)
where u spans from 1 to the number of classes.

3.5 Extended Kalman Filter for Tracking

A large number of mobile robots use position estimation based
on the Kalman filters. Originally the theoretical backgrounds
were formulated by Rudolf Kalman in 1960 and later on sev-
eral extensions were developed (Borenstein et al., 1997). The
Kalman filter is an optimal recursive data processing algorithm
for linear systems corrupted by noise.

The Extended Kalman filter (EKF) (Maybeck, 1979) uses a
model to describe a discrete-time state transition. The filtering
algorithm can be described in two steps: prediction and update.
The prediction step is done at time instant k−1, before the in-
formation from the measurement is available and it is based on
the previous state estimate x+k−1. The update step is performed
after the measurement from the time step k is available, and
includes this information as a correction for the predicted state.

3.6 The Motion Models for Humans

Two motion models were adopted for people tracking. For both
models the measured state variables were the positions in the
Cartesian coordinates (xk,yk).

Position-velocity-heading (PVH) Model – used to estimate the
human motion with constant velocity model. In our experi-
ments this model was extended with the orientation ϕk and
velocity vk according to (Bellotto and Hu, 2005) as follows:

xk = xk−1 +δkvk−1cosϕk−1
yk = yk−1 +δkvk−1sinϕk−1

ϕk = ϕk−1 +nϕ
k−1

vk = vk−1 +nv
k−1

(10)

with δk being the sampling time, nϕ
k−1 and nv

k−1 the zero-mean
Gaussian noises with σϕ = π

16 and σv = 0.05ms−1.

Position-velocity-acceleration (PVA) Model – or referred as the
α − β − γ filter (Bar-Shalom and Li, 1993) is the model of a
Newtonian system represented in 2D coordinate system. Along
a single axes the motion equations are given as follows:

xk =

 1 δk δ 2
k /2

0 1 δk
0 0 1

xk−1 +

 δ 2
k /2
δk
1

nk−1 (11)

The same equations are valid for the yk coordinates. When using
this model special care must be taken for computing the model
noise, which is a function of the sampling rate δk. Additional
information on filter tuning can be found in (Durrant-Whyte,
2006).

In both cases the legs position are measured as bearing-range
information with relative to the robot’s position (xR

k ,y
R
k ,ϕ

R
k ) as

follows: 
bk = tan−1

(
yk − yl

xk − xl

)
−ϕ R

k +nb
k

rk =

√
(xk − xl)

2 +(yk − yl)
2 +nr

k

(12)

where (xl ,yl) are the offset of the laser device with respect to
the robot. The noises nb

k and nr
k are device specific measurement

Gaussian noises, considered for the experimental part σb =
π
32

and σr = 0.05m.

3.7 Motion Model Comparison for Tracking

To compare the two models, the EKF was used to estimate the
position of the detected person with respect to the robot posi-
tion. The same dataset was tested checking the computational
effort and the standard deviation of the innovation along the x
and y axes during the experiments. The results are summarised
in Table 1.

Table 1. Comparison of the PVH and PVA models

Criteria PVH Model PVA Model

Runtime (s) 6.2 7.9
XStd(cm) 171 112
YStd(cm) 78 23

As it can be seen in Table 1, the PVH model runs faster, but it
gives larger standard deviation along the axis compared to PVA.
This should be expected as in the case of PVA there are 6 states
compared to PVH with only 4 state variables.
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4. VISION BASED CLASSIFIER

The vision-based system is used in this paper to estimate the
positions of the people. A special attention is paid to the
reduction of computing time with respect for a good detection
rate, therefore the detection algorithm can work in a dynamic
environment in real time. The detection procedure uses the
gradient based segmentation algorithm for the reduction of the
interest regions in images and also the AdaBoost classification
algorithm (Freund and Schapire, 1995).

4.1 Gradient Based Segmentation

The gradient segmentation used in this paper is based on
clustering horizontal gradients (Jaap, 2006). The structures of
people appearances in images denote that these gradients can be
useful for the reduction of searching area for people detection.
When applying the horizontal gradients on an image, vertical
edges are highlighted while the horizontal ones are masked,
so that vertical structures can be clustered. The regions of
interest from the images are considered those regions which
accommodate the vertical structures with respect to a ratio
between the region’s height and width.

4.2 The Object Classifier

In (Viola and Jones, 2004) is proposed a multilevel classifica-
tion procedure, using Haar features and Adaboost algorithm.
Haar-like features are preferred to other features based on pixel
values because they are computed in constant time, speeding up
the detection process. Moreover, they codify domain datasets,
which are difficult to extract from a finite input with other
methods, so the classification becomes easier. The Adaboost
algorithm is used to train a classifier f (P) in order to split a
dataset D into homogeneous partitions. The classifier is com-
puted as a linear combination of some less discriminating clas-
sifiers, named weak classifiers ht(P), weighted according to
their classification error. The algorithm has T iterations. A new
weak classifier is determined at each iteration, being described
by a feature’s type and size, parity and a threshold value which
splits the data set into partitions as homogeneous as possible
(Wiegersma, 2006).

ht
a,p,µ (x) =

{
+1, i f p ·a(x)< p ·µ
0, otherwise (13)

where: p takes values in the {−1,1} set and µ ∈ X ,X =
{a(x)|x ∈ D}
The accuracy of the classifier proposed by Viola depends on
the training datasets completeness and on the features used for
classification. It is not a trivial task to endow the classifier with
complete datasets for training. The dataset of positive images
(those which contain people) has to include examples with
front view and side view of different human body shapes and
different body positions. A complete dataset of negative exam-
ples is much harder, almost impossible, to provide because the
high number of object structures which could be found in the
images and which could have some people-like features. Hence,
there will be always a number of false positive detections. The
attempt to reduce this number modifying the classical algorithm
parameters may lead to the rise of the number of missclassified
examples. The method for people detection presented in (Popa

et al., 2009) should reduce the number of false positive detec-
tions, by implementing a new weight assignment mechanism
for the features of the classifier, with a slight modification of
the algorithm training phase.

The Adaboost algorithm is provided with one positive and mul-
tiple negative image sets for training, and for each image, it
computes a weak classifier. After the training phase, for each
feature type there are multiple weak classifiers with different
threshold values, chosen in such a way that they constitute
some feature poles which minimize the classification errors.
Having this information, a finite interval defined by two thresh-
olds can be found for any new feature value computed in the
classification phase. The weight assignment mechanism used
in this work computes the weights αi of the weak classifier
according to the classification errors at the interval limits and
with interval’s length, see Figure 3.

Fig. 3. Weight assignment function

This mechanism makes the classification less dependent of the
negative image training dataset and raises the importance of
providing a complete positive one, which reduces the depen-
dence of the classifier performance by the environment. By
training the classifier with outdoor image datasets and testing
it indoor, it can be seen that the false positive alarm rate is
maintained low. To compensate the variations in illumination
which are more frequent indoor, a parameter ci is computed
according to the image histogram. Its role is to relax the clas-
sification process in case of low level of illumination or low
contrast. So, the classification decision is taken in this work
with the following formula:

f (P) =

{
1, if ∑a∈A αaha(x)≥

1
2 ∑a∈A αaci

0, otherwise
(14)

where the classification weights αi are computed with the
mechanism described above and ci is a image histogram pa-
rameter, and ha represents the week classifier function.

5. COMBINED CLASSIFIERS

The basic idea of the combined object classifiers is presented
in Figure 1. The information from the laser and camera is used
as input to two different kinds of classifiers in order to enhance
the robustness of the moving person detection. First of all the
information is structured in segments and then it is introduced
to the classifier (Wang et al., 2003).

5.1 Calibration

The lidar and camera calibration is important to perform in
order to transform the point coordinates from the camera {C}
frame to the laser reference {L}. For avoiding overwhelming
computations, the camera and the laser are aligned ”ideally”
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in the same plane parallel to the robot displacement plane. 2
In order to obtain the transformation matrix between the two
coordinate systems, a special measurement set was considered,
and the geometric transformation matrix was obtained by least
squares error minimization technique.

The camera intrinsic and extrinsic parameters were approxi-
mated based on the online camera calibration toolbox (Caltech,
2005), and in this way it can be easily achieved the transforma-
tion between the image frame and the camera {C} frame.

5.2 Classifier Combination

After the region of interest(ROI) is detected by the laser ranger
based on the Bayesina classifier applied to the trained GMM
forms, this information is transmitted to the camera module.
This module transforms the coordinates from the laser device to
the camera frame (if they at least partially overlap) and searches
only in the common ROI for possible targets.

Even though with the lidar it is possible to obtain only a single
horizontal information about the object, this is with rather
superior accuracy compared to the position information from
the camera. With the combination of the two sensors and by
assuming that the vehicle moves on a flat surface the bottom
limit of the detected object can be easily found out, while the
height it can estimated from the size on the image.

As it was observed in the experimental part, the camera captures
the entire human body from distances larger than 3m. On the
other hand, the laser detects with a better detection rate the
leg pairs which are closer than 5m as the number of points
representing the leg pair is greater. Based on this observation,
for distances less than 3m only the laser leg classifier is used,
while for distances larger than 3m the combined laser&camera
classifier is employed with the ROI transmitted from laser to
camera. Also at this phase, the tracking information from the
laser is used to give ROI hints to the camera in case that the
laser temporarily lost a target. For distances above 6m only the
camera classifier is used.

5.3 Experimental Results

The experiment setup contained a P3 skid-steered mobile robot
equipped with a LMS200 laser range finder and a camera
connected to a PIV laptop.

Before performing the main experiments in the indoor some
preliminary test were done. The position estimation of the robot
was observed to be more reliable at low turning speed as the ac-
celerations were not explicitly introduced in the process model.
The camera was also tested in different light/background con-
ditions and the best hit rate was achieved with the imagines
containing high contrast parts especially about the people (like
striped colorful clothes). For regions with similar background
to the clothes of the people, the only information which could
be used was the one from the laser ranger classifier.

The lidar measurement were negatively influenced only by the
surrounding objects in the laboratory which have very similar
forms to the human legs.

The people detection was performed using data sequences in
different positions and lighting conditions. The detection was
done by applying the gradient segmentation to reduce the
interest area from images and then labelling regions from this

area, which contain people, with a strong classifier obtained
from AdaBoost algorithm.

The strong classifier is trained on a 6000 images set, 3000 of
them as positive examples (containing people), with the feature
resolution choosen to be 30x30 pixels. A typical measurement
output from the camera is shown in Figure 4. The high contrast
background enables the detection of the full body in the test
case.

Fig. 4. The selected region classified as people

The same observation from the laser scanner is shown in
Figure 5. Although there are similar regions to human legs
on the laser scan which may give false alarms, the narrowed
ROI by the camera enables to classify the correct segment as a
human leg.
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Fig. 5. The selected segment classified as people

In most of the vision based classifier achieved better results than
the GMM classifier in terms of the hit rate, but this situation
changes drastically in case of reduced camera visibility cases
(extreme light conditions). Also for side view of the persons,
the vision system performs better, as for the lidar a single leg
looks similar to many common objects (like refuse bean) in an
indoor environment.

A test bench on three different data sets was performed in an
uncluttered environment to test the human detection rate (DR)
of the different classifiers. The results of the benchmark are
presented in Table 2.

As expected best detection rate can be achieved with the com-
bined classifier. Another remark regarding the detection rate is,
although this is not so high as the ones reported in the literature
review, the false positive rate is very low, i.e. the tuning of both
classifiers were performed in such a way to reduce as much as
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Table 2. Comparison of the different classifiers

Classifier Avg Detection Rate (%) Avg False Positive (%)

Laser 52 2
Camera 55 0.8

Laser&Camera 68 0.5

possible the false positive rate. The runtime for the combined
classifier is also better than the runtime of the camera, as the
search for the ROI is reduced by the information from the laser
classifier.

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

A multi-sensor object classifier was presented in this paper
including a tracking of the detected objects. A cooperative
technique was adopted to combine the information from the
lidar and the visual systems. Details regarding the classification
algorithms were presented for the both approaches. The com-
puted coordinates of the moving human objects were used to
track them in an indoor environment.

6.2 Future Work

We intended to test and validate against other classification
algorithms the presented ones, and to extend the object detec-
tion of object tracking to multi person tracking and occlusion
handling. Further on, the mapping problem based on landmark
detection and classification is intended to be included. As an
alternative information source, the stereo-vision camera system
is proposed to be introduced.
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