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Abstract: In this paper, an efficient normal estimation and filtering method for depth images acquired
by Time-of-Flight (ToF) cameras is proposed. The method is based on a common feature pyramid
networks (FPN) architecture. The normal estimation method is called ToFNest, and the filtering
method ToFClean. Both of these low-level 3D point cloud processing methods start from the 2D depth
images, projecting the measured data into the 3D space and computing a task-specific loss function.
Despite the simplicity, the methods prove to be efficient in terms of robustness and runtime. In
order to validate the methods, extensive evaluations on public and custom datasets were performed.
Compared with the state-of-the-art methods, the ToFNest and ToFClean algorithms are faster by an
order of magnitude without losing precision on public datasets.

Keywords: normal estimation; filtering; depth image; point cloud; FPN

1. Introduction

With the evolution of 3D sensors in the robotics domain, the focus in the perception
shifted towards the 3D point cloud-based sensing. The main sensors used for capturing
such 3D data include LiDAR and RGB-D cameras, from which data are captured as a set of
discrete points. In contrast with the traditional 2D camera-based sensing, these 3D devices
capture also the geometric properties of the environment in a metric scale enabling a
richer interpretation of the environment. While for 2D image processing a large number of
convolutional neural networks (CNN)-based solutions exist, for the discrete 3D point clouds
the solutions are far less common due to the complexity of the convolutional operator in the
higher-dimensional space. The processing of 3D point clouds is computationally intensive,
thus the need for efficient data processing methods. For example, normal estimation and
filtering are in the research focus today.

One of the essential geometric features of a point cloud is the normal vectors, usually
computed for each point in the 3D data. Several advanced processing methods are based
on the normal vectors, such as object recognition [1], pose estimation [2] segmentation [3],
mesh generation [4,5], or visual ray-tracing [6]; therefore, the runtime and robustness
performance of this preliminary processing step is relevant in a complex 3D data process-
ing pipeline.

The level of noise that corrupts the 3D data is one of the primary problems of normal
estimation [7,8]. This can be reduced with advanced filtering methods, which are also
relevant for other components of a point cloud processing pipeline [9].

The spatial data filtering has several challenges due to the computational complexity
of the nearest-neighbor point searching required for the unorganized point clouds. This
is usually required by the standard statistical outlier-based filtering approaches, which
for a single point in the point cloud compute the statistical characteristics around its
neighborhood. The choice of the neighborhood size is nontrivial: with small size regions,
the noise can still persist in the point cloud, while a larger zone results in loss of small
scale features. The use of adaptive learning-based scale adjustments is a viable solution
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to this problem. These were recently addressed in several publications [10,11]. The idea
of adaptive scale is also present for the Feature Pyramid Networks, which we adopted in
our approach with the insight that they are able to mimic a multi-scale behaviour. These
methods showed that a considerable enhancement can be achieved by using recent deep
learning-based techniques for point clouds [12–19]. Even though the deep learning-based
methods require large amounts of training data, or may be prone to adversarial attacks
or have exhaustive runtime, they are continuously rising in popularity and they gained
appeal in low-level point cloud processing.

The contribution of this paper is summarized as follows. (1) We propose a novel
Feature Pyramid Network-based architecture for the point cloud normal estimation and
filtering. The main insight of using FPN is derived from its multi-stage processing char-
acteristics. (2) We solve the normal estimation problem at the training phase for the ToF
depth images by lifting the 2D points in the 3D space, thus directly operating on point
clouds. (3) We propose the adaptation of the 2D FPN to the 3D data filtering with a custom
3D loss function. (4) We created an efficient hardware solution operating on embedded
platforms. (5) We perform extensive testing of the algorithms based on publicly available
datasets as well as custom data.

A preliminary version of this work was published in [20]. Compared to that work,
the key methodological contributions here are including the extension of the FPN base
architecture towards the filtering, e.g., we now use the originally proposed normal esti-
mation network with a customized loss function for filtering. Some parts of the approach
are presented in more detail here, along with the comparison with the state-of-the-art for
normal estimation in Section 3.

2. Background and Method
2.1. Related Work

In this section, we describe the related work, the ToFNest and ToFClean common
FPN-based architecture, as well as the details for the custom normal estimation and filtering
of the point clouds.

Common classification of point cloud processing can be done according to the tra-
ditional (or often called statistical) versus learning-based methods. The latter approach
is mainly based on the deep learning-specific solutions, while the classical approaches
make use of statistical characteristics of the point cloud in order to compute the normal or
to perform the filtering. In the following, we summarize these approaches related to 3D
normal estimation and filtering.

2.1.1. Normal Estimation

The normal estimation of the point clouds has a long history in the research community,
with publications on this topic dating back a long time [21], and it is still a hot topic
with a considerable amount of publications in the last year focusing on learning-based
methods [13,16,18,22].

The most common methods for normal estimation use the selection of a support
size for the patch attached to the point, the estimation of the geometric properties of
the patch (e.g., the parameters of the fitted plane), and the computation of the normal
vector concerning the estimated patch parameters, which are usually based on Principal
Component Analysis (PCA) [21].

Some implementations are based on the Voronoi cells of the 3D points [23–25]. Meth-
ods like those in [26–28] often require additional computational steps, thus increasing the
overall complexity [29].

The choice of the point neighbor patch size is not easy, despite the fact that these
approaches are runtime efficient. Small scale patches generally represent the fine grade
features of the objects and are prone to measurement artifacts. Bigger support sizes have
greater noise resilience but fail to encode small scale details, therefore an adaptive support
technique might improve normal estimation.
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The earliest methods relied on 2D pictures from point cloud projections or depth
images from ToF cameras [13–16,18]. The simplicity with which these methods employ
2D convolutional operators is their major benefit. The ordered point cloud or voxel-
based methods are computationally costly, with the complexity of these variations rapidly
increasing as the number of points in the point cloud increased.

The second class of approaches is focusing on unstructured point clouds. After the
appearance of the point-set approach proposed in [30], this was reused for normal estima-
tion in the works in [12,17] by introducing a multi-scale set oriented approach for normal
estimation. Later on, the multi-scale approach combined with Fischer vectors was proposed
in [19]. In this work, multiple expert networks for normal estimation were combined.

Closest to our ToFNest approach is the work in [19] with the supervised 3D normal
learning, the work in [31] which train in a discriminating manner the dense images to
obtain the surface normal, and the work in [32] as the architecture of the input network is
based on this work but adopted for the normal estimation task.

2.1.2. 3D Filtering

The 3D noise filtering roots back to the 1D and 2D signal processing domain [33].
For the point cloud data, the surface reconstruction applications were first tackling the noise
removal, for which a good overview can be found in [9,34]. The traditional methods were
focusing on statistical characteristics of the noise [35], while recently the learning-based
methods were brought into focus [10,11,36].

The traditional methods are mainly focusing on the statistical properties of the 3D
signal [35] or the surface characteristics being reconstructed from the discrete points [7,8].
A milestone for the noise filtering was the introduction of the non-local denoising tech-
niques [37]. For the surface reconstruction and rendering from point cloud sets the pio-
neering work in [8] proposed an efficient method. For the surface differential properties,
the work in [38] proposed polynomial fitting, while in [7] curve smoothing was introduced.

A special class of filtering methods is based on graph queries of the spatial
data [10,39–42]. A recent overview together with the traditional methods can be found
in [9].

Along with the traditional methods, there are also learning-based methods, which
started a new era in the field of noise removal, because they proved to bring considerable
achievements in this domain. While for the 2D image denoising several works exist in
the last years [43], for the point clouds the learning-based methods are becoming more
popular [10,11,36,44]. Although the learning-based methods need a considerable amount
of training data and they are prone to adversarial attacks or have exhaustive evaluation
runtime, they are still popular approaches today.

Closest to our ToFClean approach is the approach in [45], which makes use of depth
cameras with RGB data as well. We can also make use of IR data from our custom depth
camera, but the algorithm itself functions with depth data as well.

2.2. The Proposed FPN Based Architecture Details

With a fully convolutional method, the input size of this network may vary (depending
on the internal settings of the ToF camera), and the output is a proportionately larger normal
feature map with the input picture. The technique is generic in the sense that bespoke
variations for the convolutional architecture can be used. For the initialization phase, we
used the ResNets [46] as the backbone, using pre-trained weights from ImageNet.

The following is a bottom-up and top-down approach with lateral connections [32]
used to build these pyramids:

• Bottom-up path
The bottom-up construction involves a feedforward computation of the convolutional
neural network, that combines specific feature maps on each level. Pixel-shuffle with
bilinear interpolation was used for the upsampling, this is due to the inconsistency of
size of the feature maps. The information flows through the layers in a serial manner.
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ResNet yielded the usage of the feature activation output from the last residual block.
We denoted this with Ci at every i-th layer. Unlike the work in [32], we also used the 0
layer with the strides of {2, 4, 8} between the layers, to obtain the required resolution
for the output image. A stable output was achieved by using ReLU.

• Top-down path
The purpose of this path is to simulate higher resolution features. This is obtained
with upsampling the more descriptive, yet sparser feature maps, denoted with Pi.
Between the bottom-up and top-down paths, the lateral connections and upsampling
enforce the main features.
The connection among the different paths is shown in Figure 1.
Two 3 × 3 convolutional layers follow the last layers, which are used to process the
final feature map. Finally, there’s a Sigmoid activation function.

• Lateral connections
The Pi layers are connected through a 1 × 1 convolution with a 1 stride and by
element-wise addition. At every layer a traditional feature design is performed,
with the corresponding dimensions from the two paths, thus generating the Di layers.
We found this architecture to be relatively efficient as the runtime, although, other
architectures can be configured.
The predicted layer Pred1 summarizes the contribution of the individual Di layers
and the Pred2 upsamples the required output resolution (in our case being identical
with the input depth image resolution).

Figure 1. The connection diagram between the layers of the custom FPN used for low level point
loud processing: bottom-up path (gray), top-down layers (green), fused feature map with lateral
connections (mauve), two successive convolution operators (yellow) for the top layer, and the final
prediction-upsample portion (orange).

2.3. ToFNest Normal Estimation

As introduced in Section 1, a multi-scale approach can be the key insight for estimation.
This ability of the feature pyramid networks (FPN) [32] made it ideal to use as the base of
our normal estimation model as well. It completes the normal estimation for ToF cameras
with known intrinsic parameters well. Due to the specific depth measurement of these
cameras, the depth information is stored in 2D depth images, which can be easily projected
into the 3D space yielding an organized point cloud. Even though there is no one-to-one
mapping between the different pyramid levels and the normal support sizes in the point
cloud, these variable scales contribute to a multi-scale normal estimation in the reprojected
3D space. This intuition is supported by the way in which compact surfaces are measured
with ToF cameras: they are likely to be represented as compact patches in the depth image.
According to our knowledge, the FPN-based ToF-specific depth measurements were not
yet treated in the main literature, the major advantage of the proposed method being the
scalability and low runtime.
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The pipeline of our approach is shown in Figure 2 which describes the input 2D ToF
depth image stored on different channels for the FPN (either containing only the depth
images multiple times or optionally having other information such as infrared on other
channels); the ground truth normal estimations are encoded in the RGB space for the
training phase and converted to 3D normal vectors for the loss computation; point cloud
with normal generated in the evaluation phase. This allows us to operate on the 2D depth
images and perform the normal estimation in 3D space.

The encoding of the normal vectors into RGB space was straightforward. A vector
has three coordinates: x, y, z. Their values range between [−1, 1]; after normalization, we
can put these values in the range of {0, 255}. Simply put, in the depth image for each pixel,
there is a corresponding pixel in the RGB encoded normal image, thus storing the necessary
information. Here, we could think that we are losing precision as we are converting three
32 bit numbers into three 8-bit numbers. It might seem that 256 values are not enough to
represent 360 degrees, but the channels are not independent, and they are working together.
This means that the resolution is still considerably below 1 degree, after some conversions,
we observed that the average degree loss is about 0.2, while the maximum loss is about
0.5 degrees. Because most of the errors in the methods are at least 10 degrees, we can
consider this type of loss negligible.

Figure 2. The ToFNest algorithm is trained as follows: information is encoded in depth and if
required, in the input IR; the custom FPN is detailed in Figure 1; the FPN returns the prediction about
the normals (Evaluation); the particular loss function compares it to the ground truth (GT) encoded
in RGB space; and the loss is given back to train the model (Training).

2.3.1. Normal Loss Function

For the normal loss function, we investigated several variants as well as gradient,
curvature loss, or the direct normal difference lost in order to cover challenging cases such
as normal at the object edges. The latter seemed to be the most efficient in terms of the
normal estimation robustness. Starting from the normalized loss computation [19], we
adopted the following loss function:

Lnormal =
1
M

M

∑
1

(
‖~Ni × ~NGT‖
‖~Ni‖ · ‖ ~NGT‖

)
(1)

where:
M—the number of points in the point cloud
~Ni—the normal estimate
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~NGT—the ground truth normal value
The absolute error angle between the ground truth and the projected normal was

employed in the assessment phase of the proposed architecture.

2.3.2. Training Details

To be fair to the various learning-based training techniques in our comparison, we
generally trained our models for 10 epochs with a learning rate beginning at 1 ×10−3.
The model assessed all of the data from the dataset at each epoch, and a loss was deter-
mined after each batch. PyTorch was used to implement our approach. The benchmark
comparisons were performed with an Nvidia RTX 3080 GPU and an Intel i9-10900K com-
mercial PC with 64 GB RAM.

At each iteration, a Stochastic Gradient Descent (SGD) optimizer was used. An SGD is
stochastic approximation that replaces the actual gradient calculated for the entire dataset.
This optimization technique is used because it significantly speeds up complex calculations
while training a model.

The method itself is generic to accept additional information besides the depth image:
the input consists of three levels, for which one is used for point cloud normal estimation,
while the two additional layers enable encoding camera-specific information such as IR
intensity or color data, as well. According to our findings, these influence on limited
manners the normal estimation, but allow the extension of the method.

2.4. ToFClean Filtering

We employed the FPN [32] architecture for point cloud filtering purposes, built on the
FPN architecture presented in Section 2.2. In the first phase, the depth information is stored
as a 2D image, from where we can reproduce a point cloud in the 3D space. Intuitively,
each pyramid can be interpreted as a different level of support for noise computation,
making this design suitable for a multi-scale approach.

In Figure 3, we can observe the difference between a very noisy point cloud and
another one that was filtered by our method. Here, we can see that even for a higher signal
to noise ratio, the smoothing returns quite good results.

2.4.1. Loss Function

The loss function is the product between the logarithmic root mean square error
(RMSE) of the pixel values in the depth images and the Euclidean distance from the points
in the ground truth clean point clouds to the points in the predicted point clouds.

The RMSE_logZ loss function is described as

LRMSE_logZ =
1
N

N

∑
1
((log(‖GTZ‖)− log(‖PredZ‖))2) (2)

The Euclidean loss function is described as

LEuclidean =
1
N

N

∑
1
‖GTXYZ − PredXYZ‖ (3)

Furthermore, for comparing different methods we used the Chamfer distance between
points:

LCham f er(S1, S2) =
1
|S1| ∑

x∈S1

min
y∈S2
‖x− y‖2

2 +
1
|S2| ∑

x∈S2

min
y∈S1
‖x− y‖2

2 (4)

in the above equations the following notations were used:
N—number of points
GTZ—pixel value of the ground truth image
PredZ—pixel value of the predicted image
GTXYZ—coordinates of a point from the ground truth point cloud
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PredXYZ—coordinates of a point from the predicted point cloud
S1andS2—the two point clouds that are compared

(a) Noisy point cloud. (b) The predicted filtered point cloud.

(c) Overlap of the original noisy point cloud and the filtered one. (Blue: original, Red: Filtered)
Figure 3. Comparison of noisy point clouds with the smoothed one.

2.4.2. Derived Test Cases

Here, note that our method rather smooths the noise and moves it to the actual surface
than removes the outliers. Thus, the size of the predicted point cloud is the same as the size
of the input point cloud, rendering the loss calculation easier, and also the image resolution
would not drop.

For removing points, we experimented with various other architectures and losses
with limited efficiency. As alternative architectures we tried the U-Net architecture [47]
or the autoencoders [48]. In some ways they are similar to the FPN architecture, i.e., they
have a smoothing effect. The idea was that on each level we gather different specifications
from the images. Then, starting from the information we reconstruct a new depth image,
where we extracted the noisy points. Due to their inherited characteristics, these models
returned still noisy depth images in the close range of the sensor.

Another approach for this task was to generate mask images containing zeros and
ones, rather than a complex depth image. With some parameter tuning, we were able
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to delete some large areas that did not contain any points in the input point cloud. We
experimented with different loss types, like Binary Cross-Entropy, or some variations of
Root Mean Squared errors.

This may result in an architecture that detects individual outliers rapidly using depth
images. However, we still have to improve this technique. This may be a future effort to
pursue such an algorithm.

3. Tests and Results
3.1. Comparing ToFNest to Other Methods

For the validation of the proposed method, a large scale dataset was considered.
The method was also compared to traditional and learning-based methods in terms of nor-
mal robustness and runtime. We also looked into the impact of noise on depth data, which
is a typical issue with depth measurements, particularly for outdoor ToF camera images.

3.1.1. Dataset Used for Evaluation

As a public reference dataset, the indoor NYU_V2 one [49] with normals based on the
work in [13] as ground truth was considered as ground truth, while for custom testing
we created indoor and outdoor data with RGB-D data from ADI ToF camera with ground
truth data generated with a multiscale PCL [50]. These two datasets were generated with
a camera and not from a simulated model, which resulted in a realistic dataset, that is
somewhat noisy from the start.

The simulated model was created using Isaac Sim [51], which is a library in the
Omniverse application created by Nvidia.

Until this point, all of our datasets were based upon depth cameras; thus, we briefly
tested a LiDAR-based public dataset, named KITTI [52]. The point clouds created with this
dataset are much sparser than a dataset recorded with an RGB-D camera.

3.1.2. Performance Evaluation and Comparison

To efficiently encode the normal information for the training, we encoded the normal
vectors into the RGB space which we, subsequently, converted at the output to point clouds
with the normal vectors. These normal vectors were then compared to the normal vectors
of the ground truth point clouds in terms of absolute normal orientation errors. All of
these methods returned un-oriented normal vectors, i.e., we considered the orientations
vectors the same for the flipped ones. At the output visualization of our estimate, we
considered the heat map of the absolute error of the normal orientation, such as this is
visible in Figure 4. On this image, we can also see that the predicted normals seem to be
slightly blurred at the edges. This could come from the fact that although the FPN works
with many different layer sizes, it is not capable of per-pixel normal estimation, which
means that in some cases it has a smoothing effect, especially at the edges.

For training purposes, the original NYU_V2 dataset containing 1449 depth images
was augmented with simple horizontal and vertical flips as well as adding some Gaussian
noise to the depth images. With this augmentation, we managed to cover the surface
orientations, which are rarely present in the indoor scenes, thus yielding to more generic
training. For the training dataset, we used more than 7.5K images, with an average point
cloud size of 200K per depth image, while we used about 3.5K for testing and the original
1449 images as the evaluation dataset.

The mean absolute difference of the angle errors in deg between the estimated and
the ground truth normal, as well as the average histogram of the test cases computed
in percentage as the dot product between the two vectors, were used as main metrics
for performance evaluation. The runtime of the algorithms as well as the quality of the
normal estimation was measured, as this is a key criteria in the processing chain of various
techniques that rely on normal estimation.

Based on these criteria, using the public dataset, we compared our method against the
Nesti-Net [19], PCPNet [17] with single and multiple scales [17], the single threaded normal
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estimation used in the Point Cloud Library (PCL) [50] as well as the Hough transform
based normal estimation [53], and at last the method of Ladicky et. al [31]. In order for the
PCL comparison to being fair, we considered the average of the error from different support
sizes used for normal estimation (from 2 to 10 cm, regarding the accuracy, the 4 cm support
size was the closest to the average). The histogram dispersion of the quality indicator for
the tested methods is presented in Figure 5.

(a) Input encoded in the RGB space (b) Error distribution of the estimated output
Figure 4. The absolute normal orientation error as represented by our technique as a heat map.

Histogram of normal estimation methods
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Figure 5. The histogram of the normal estimation for different methods. It can be see the distribution
of quality across the data. (For example, for our method, from the analyzed dataset, approximately
52% of the data returned a quality value between 95 and 100).

The results of the comparison are summarized in Table 1. The best normal estimation
performance measured as mean angle error was achieved by our method. The Nesti-Net
was in the same range of absolute error, however this method had far the longest evaluation
time required for an estimate. In terms of runtime, the PCL and Hough methods were close
to our algorithm running on CPU. Although, for PCL we could use the multi threaded
PCL, which was ~7 times faster, at least in our case. We also tested the Integral Image
method from PCL, and although it was about as fast, or even faster than our method,
it produced poor results only around 0.82. Unfortunately, we were not able to find the
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code for Ladicky [31], only the results for normal estimation on the public dataset used
for comparison, so the run time for this method is unknown for us. We would like to note
that the runtime of the method used for ground truth [13] is 19.4 s per image. A visual
comparison of a typical output for other methods tested in our experiments is visible in
Figure 6, for the same point cloud visualized in Figure 4.

Table 1. Summary of the comparison with other methods.

Comparison between the Normal Estimation Methods on Public Dataset

Own Nesti-Net [19] PCPNet ss [17] PCPNet ms [17] PCL [50] Hough [53] Ladicky [31]

Avg. hist. [%] 0.94 0.93 0.89 0.91 0.90 0.85 0.90
Abs. angle [deg] 19.61 21.25 27.75 24.35 25.31 31.90 26.23
Avg. runtime [s] 0.02 1200.00 234.00 596.00 7.09 2.70 -

(a) Nesti-Net [19] (b) Ladicky [31]

(c) PCPNet Single Scale [17] (d) PCPNet Multi Scale [17]

(e) PCL [50] (f) Hough [53]
Figure 6. Comparison of the output of the methods on the same data.
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3.1.3. Performance Evaluation on Noisy Data

The normal estimation was evaluated in the presence of varying degrees of Gaussian
noise contaminating the depth data to assess ToFNest’s resilience. To do so, we created
noisy data from depth pictures with extra Gaussian noise, with a range from 1 to 10 cm,
and compared it to the normal ground truth of the clean data.

The comparison in terms of average histogram for the different methods is shown
in Figure 7. The best performance against the noise robustness was achieved by ToFNest
followed by the Nesti-Net [19], while the most affected method was the one based on
Hough transforms [53] and the multiscale PCPNet [17].
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Figure 7. The effect of noisy data for different normal estimation methods.

3.1.4. Runtime Performance Evaluation on Different Platforms

As for many applications, the runtime is relevant; we tested the performance of our
method on different platforms ranging from embedded devices to cloud servers. For the
embedded devices, we considered the Jetson family from Nvidia with the NX and AGX
variants, while for the cloud solution we used the Google Colab. As a baseline, we
considered a commercial grade RTX 3080 GPU-enabled PC.

The results of the comparison are summarized in Table 2. As it can be seen in this
summary, our method runs with 4 Fps even on embedded devices, thus yielding an efficient
runtime solution also for mobile robot applications.

Table 2. Summary of the runtime comparison for different devices with our method.

Runtime Comparison on Different Platforms

Device RTX 3080 Jetson NX Jetson AGX GTX 1060 Colab

Time [s] 0.02 0.31 0.23 0.05 0.11

3.1.5. Performance Evaluation on Custom Data

For our custom training and testing, we considered two datasets: a real one and a
synthetic one.

First we describe the real one. We created the datasets using a Pico Zense DCAM710
which is built on the ADDI9036 CCD ToF Signal Processor. Using this camera we could
record the infrared and RGB images along with the depth images, as well. We recorded
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several types of environments along with office, hallway and laboratory workspace. We
also augmented these images acquiring about 10K images that were split into training and
testing datasets, 66–33 rates.

For the outdoor dataset, we acquired with the same camera but with tuned noise
reduction parameters images in normal daylight conditions. As ground truth for these
datasets, we used manually scale tuned PCL method, nevertheless this can be replaced with
an arbitrary method. We considered PCL because it runs faster, and tuning the support
size it can give us fair results.

In Figure 8, one can see typical results from the indoor and outdoor scenes, as well
as the normal estimate and difference heat maps. The findings of the indoor and outdoor
evaluations are reported in Table 3 with the indoor data yielding superior results due to
measurement artifacts in the outside dataset.

RGB Prediction GT Di f f
Figure 8. Indoor and outdoor results on custom data.

Table 3. Summary of the custom Indoor/Outdoor evaluation for normal estimation.

Custom Dataset Performance

Indoor Outdoor

Avg. hist. [%] 0.959 0.952

Abs. angle [deg] 16.46 17.82

Blender was used to build a synthetic dataset to cover as many tests as feasible. For this
dataset, we have trained our model. The dataset was divided into two batches: one for
training (8K) and the other for testing (4K). Quality of the result was 0.99, indicating that
the dataset’s components are too uniform in terms of surface smoothness.

3.1.6. Cross-Validation

In this part, we are going to present how our method behaved when it was trained for
a specific dataset, and tested on another dataset but with different specifications. We used
mainly one model for all test cases, which was trained using the NYU_V2 dataset, but if
other training dataset was used, it is specified.

First, we ran this model upon our dataset created with the Pico Zense camera, and the
average quality was 0.901, while with the native model the average quality was 0.959.
This can happen because the camera that we used was different intrinsic characteristics.
However, if we compare this result to the NYU_V2 evaluation (average quality is 0.94), we
can consider it acceptable.

In addition, we ran the model on the dataset created by Isaac Sim, and the average
quality was 0.96. However, when we used the synthetic data to train the model and then
applied it to the NYU V2 dataset, the outcome was approximately 0.8. This could be
because there were few irregular forms in the synthetic data from which it could learn,
but the NYU V2 dataset does not actually include regular shapes because it is a recording
of a real environment.
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From these results, we concluded that one can train the proposed model on a specific
dataset and validate it on another one. However, the camera intrinsic parameters should
be similar, and special attention is needed for the building of the training datasets.

Furthermore, we were interested in the performance of ToFNest on a sparse dataset,
such as the KITTI [52]. Unfortunately, the images were so sparse, that our method remained
at 0.8 in any combination. This proves that by increasing the number of points, the ToFNest
improves significantly.

3.2. Comparing ToFClean to Other Methods

For the evaluation phase, we considered the same public indoor NYU_V2 dataset [49]
used in the Section 3.1.6. In this dataset, we had the raw depth images, which were
smoothed with PointCleanNet [44], that we used to make the ground truth point clouds.
For these raw depth images, we added Gaussian noise with a standard deviation of
5 cm and 10 cm. Then, we ran two traditional denoiser, PCL-SOR [50], and MatLab
denoise function, in addition to some learning-based methods, PointCleanNet [44] and
DeepDepthDenoising (DDD) [54], to obtain the predictions.

As an error metric, the average Chamfer distance between the points of the predicted
point cloud was considered, and the nearest point in the ground truth point cloud. The dis-
tance between the two closest points between two point clouds was done with nearest the
K search.

3.2.1. Performance Evaluation and Comparison

The main performance metric was the previously mentioned Chamfer distance be-
tween the nearest points in the two point clouds. We also analyzed the runtime of these
methods. We gathered the testing results, and compared the performance of our method
against the PCL-Sor [50], Matlab [55], PointCleanNet (or PCN) [44], and DDD [54] in
Table 4 for the Chamfer distances, and in Table 5 for runtime comparison. Here, we note
that although for the ground truth we used the PointCleanNet [44] noise removal module
when we were comparing this method to others, we also performed the outlier removal
module in tandem with the noise removal module.

Table 4. Summary of the comparison with other methods on different noise levels.

Average Chamfer Distance [m]

Noise [cm] Base Own PCL-SOR [50] MatLab [55] PointCleanNet [44] DDD [54]

0.00 0.0027 0.0334 0.0137 0.0031 0.0007 0.0449
0.05 0.0313 0.0289 0.0330 0.0298 0.0268 0.0441
0.10 0.0555 0.0333 0.0530 0.0520 0.0479 0.0453

Table 5. Summary of the filtering runtime comparison with other methods.

Runtime Comparison between the Denoising Methods [s]

Own PCL-SOR [50] MatLab [55] PointCleanNet [44] DDD [54]

0.015 0.6 0.9 300 0.01

3.2.2. Runtime Performance Analysis

From the aspect of runtime, the DDD method was proven to be the fastest, although it
was followed closely by our method. These two methods are very similar, both are working
with depth images, but with different architectures. The PCL-SOR and the Matlab are
approximately the same, while the PointCleanNet falls back significantly.

While the PCL-SOR and Matlab remove the outliers from the point cloud, our method
and DDD does not delete any of the points, but rather moves them to a position which
results in a smoother surface. In the case of PointCleanNet [44], there are two modules:
the noise removal module and the outlier removal module. The noise removal module does
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not remove the points, it reallocates them, while the outlier removal module removes the
points, but it does not change their position. In the comparison, we used these two modules
together, but they can be used separately, like in the case of calculation of ground truth.

Analyzing the quality of the data in Table 4, we can see that our method and DDD
performing remarkably better with noisy depth images. We can visualize the performance
of the modules with no extra noise in Figure 9. Figure 10 shown the results of adding 5 cm
of noise, while Figure 11 shows the effects of adding 10 cm of noise.
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Figure 9. Without additional noise, just the raw data. The distribution of errors over the dataset.
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Figure 10. Noise level is 5 cm. The distribution of errors over the dataset.
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Figure 11. Noise level is 10 cm. The distribution of errors over the dataset.

Here, we can also observe that our method and the DDD method suffer from incon-
sistency when the prediction is way off. This can be because in these cases the data is
normalized, and the denormalization can introduce bias and thus the point cloud can shift.

As already observed, the filtering method using the FPN architecture had a smoothing
effect; this is why when we ran our two methods in tandem the results were similar, as the
smoothing effect was also already present at the normal estimation phase.

3.2.3. Integration into the PCN Pipeline

Furthermore, we tested our method with the outlier removal tool of PointCleanNet [44],
meaning that our method smooths the input depth image, then we removed the outliers
using PointCleanNet, but the results were almost identical to those of using only our method,
without the outlier removal tool. The outcomes were also considerably worse when we
switched the order of procedures. This can be related to one of our method’s drawbacks: it
is less effective with sparser depth images, and as we removed certain points, our method
was not able to perform a robust normal estimation due to the sparsity of the data.

4. Conclusions

In this paper, we presented a unified FPN-based architecture for normal estimation
and point cloud filtering. Both methods make use of custom-tailored networks to the
ToF specific depth images with loss functions being computed in 3D for absolute normal
orientation difference and the difference between points, respectively. The method proved
to be runtime efficient and robust against sensor noise. We evaluated our methods against
the traditional and learning-based variants on large-scale public, custom, and synthetic
datasets, our methods show similar performance with the methods from the main literature
but with orders of magnitudes being faster, running efficiently even on embedded devices.
The method is generic enough for any central projective camera type with known intrinsic
parameters returning radial information.

As future work, we intend to extend our point cloud processing pipeline with ad-
ditional sensor data, such as RGB or infrared images. Furthermore, we would like to
implement a point removal aspect in the filtering pipeline in order to make our filtering
more generic. Another extension variant is to create a filling method for sparse point
clouds, in order to improve the performance of FPN based low level processing on sparse
point cloud data as well.
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