
Active Perception for Object Manipulation
Ady-Daniel Mezei

Technical Univeristy of Cluj-Napoca
Cluj-Napoca, Romania

Email: adydani mezei@yahoo.com

Levente Tamas
Technical Univeristy of Cluj-Napoca

Cluj-Napoca, Romania
Email: Levente.Tamas@aut.utcluj.ro

Abstract—The active perception makes an important step
towards the integration of the sensing in the planning phase of
the object manipulation. It ensures the existence of uncertainty
in the perception phase, while with active planning helps to
reduce this in order to achieve a better results for scene parsing
and object manipulation applications. In this paper we show
the active perception concept using an industrial like scene with
different pipes which are sensed with a depth camera. The pose
information from the camera is used for a 7 degree of freedom
robotic arm mounted on a mobile base in order to perform the
planning for object manipulation purposes. For the whole active
perception pipeline we have implemented and successfully tested
the scene parsing using object parts decoupling and the planning
with the robot arm.

I. INTRODUCTION

Object pick and place applications in an industrial envi-
ronment are still an important research topic especially in
case of the applications without preset positions. The idea
of using a 3D camera with a stationary robotic arm for
object selecting is reported in several works including [1].
However the idea of using a mobile manipulator for this
task is not a solved problem in general [2], even though
the number of potential applications in the industrial area is
rather high. Mobile object pick and place became feasible
by integrating advanced concepts from robotics like object
detection, planning and navigation. Within this context, in this
paper we are focusing on the first part of this pipeline including
the scene parsing and object handling in an active perception
framework, i.e. planning in order to enrich the information for
the scene parsing.

The proposed setup includes a 7 degree of freedom Cyton
light-weight robotic arm mounted on a mobile base with a 3D
projected light depth sensor on it. The perceived scene includes
a box with cylindrical shaped pipes from which the robot is
performing the bin picking like operations. The experiments
were carried out both in a simulated environment as well as
on real life robot. The robot model that we developed for the
highly dexterous arm was already proved to be appropriate
in other planning application [3]. Compared to our previous
feature based recognition pipeline [4], in this paper we adopted
a object decomposition in geometric primitives technique
which parts are later on stored in a graph containing the
topology of the analysed object [5].

The main advantage of this approach is that even in case
of partially visible objects, one can reason about the position
of the hypothetically detected object and can give a next best

viewpoint. This next best view is useful in order to obtain the
information about the missing part of the object, thus making
the detection more reliable [6].

The current paper is validating the active perception idea
in an industrial scene with cylindrical objects. The structure
of the paper build around the main processing pipeline of
the experiments: first details about the scene camera-arm
calibration, data acquisition and scene registration is presented.
Next, the object decomposition in geometric primitives is
introduced with the object detection and manipulation part as
well. Finally the experimental results using synthetic and real
data are concluding the paper.

Fig. 1: Simulated test environment with the projective light
depth camera mounted on a Cyton robot arm

II. ACTIVE PERCEPTION PIPELINE

In this section the components of the active perception
pipeline are presented. The pipeline consists of several in-
terconnected modules, which are running in parallel in order
to perform the desired object pick and place. The pipeline is
similar to the one presented in the work of [7], but with the
a hand in eye camera configuration.

A. Hand-eye camera calibration for the arm

The hand eye camera calibration is a special case of the
external camera calibration performed with respect to a mobile
arm. The main aim is to get a common reference for the
camera and the end effector. This is a necessary step to be



performed in order to have the be able to pick a certain object
seen by the camera[8].

Usually with the inverse kinematic chain a spatial trans-
formation from the robot base to the gripper is available, thus
this can be also used for calibration purposes, however in case
of a slight error induced by the physical misalignment in the
arm, this can cause differences between the camera and the
gripper reference frame. In order to avoid this, we proposed
a marker based calibration method using an external camera
network system. The Optitrack camera system is able to
deliver position and orientation information about the markers
at high frequency and high spatial resolution. The later was
essential in our case, as the aim was retrieving a precise
enough calibration between the arm and the camera.

Fig. 2: Frames used for the calibration of the depth camera and
the end effector using and external camera network system for
pose estimation

With the configuration shown in Figure 2 the calibration
of the camera and end effector from the arm can be done in
an indirect manner: both the depth camera and the external
Optirack camera system observes a landmark (in our case a
checkboard), and based on the spatial transformation chain
between these observations, one can determine the external
calibration parameters of the depth camera with respect to
the gripper, denoted in the figure with TG

K . For the closed
transformation chain additional reflective markers were placed
on the end effector in order to localise it in the 3D space with
the external camera network.

We achieved with this calibration a precision will up to
0:5cm in translation and less than two degrees in rotation.
These values are fine for typical object manipulation scenarios.

B. Scene data acquisition and registration

Scene data acquisition is an important step of the active
perception process. For a robot in order to be able to ma-
nipulate objects from an environment the perception of the
environment has to be carried out. In our case, the scene
analysis is performed on data acquired using a projected light
type sensor from different views of the scene, more exactly
views around the box containing the objects that are to be
manipulated.

The data has been acquired both from a simulated environ-
ment as well as from a real sensor. In both cases, the acquired
data from different view points needs to be registered in order
to have a consistent analysis model of the environment. The
pointclouds are registered using the iterative closest point
(ICP) algorithm [9]. The ICP algorithm, first tries to find
corresponding points in the input pointclouds, then computes
rigid transformations needed to align the input pointclouds
with respect to a global coordinate framework. Once the
registration process is performed a consistent model of the
environment from the input pointclouds is obtained.

The initialisation of the registration is done using the rough
sensor position returned from the inverse kinematic model of
the arm. As in our case the robot joints and physical structure
is not a perfect one, the position is prune to errors. Also
another error source in this case is the one due the hand-
eye calibration. With these errors a typical scanning from two
different viewpoints will be registered as shown in Figure 3.

Fig. 3: The pointcloud alignment from different views(from
left to right): input clouds (red-green), intermediate step during
the registration and final registered variant

The dense pointcloud obtained from the ICP registration
is filtered with a voxel filter in order to obtain a uniformly
distributed cloud needed for the segmentation part of the
pipeline.

C. Object decomposition in primitives

Once the registered input data is available, the next step of
the processing chain involves the planar surface segmentation.
This step typically removes the wall of the box containing the
objects of interest. In our approach we used the Euclidean clus-
ter extraction segmentation [10] which groups the regions of a
pointcloud in consistent sets according the the metric distance
among the points. For this algorithm two important tuning
parameters have to chosen: the maximum distance threshold
between the connected points as well as the difference of
normal angles at the edges of the objects. A typical output
in our case for these steps of the processing chain is shown
in Figure 4.

Further on each object further decomposed into shape
primitives and inserted into a graph model. Due to the fact that
pipes have cylindrical shapes, in our experiments the objects
are decompose into cylindrical shapes. The cylinder fitting is



Fig. 4: Segmenting out the major planes from the data and dividing into objects(from left to right): input data, planes segmented
out, segmented object of interest

done in using a sample consensus approach from the Point
Cloud Library (PCL).

From the detected cylindrical primitive shapes a graph is
built keeping the topological structure of the pointcloud. The
centroid of the each primitive is computed and is inserted into
the graph and connected to the closest candidate that is already
present in the graph. Thus for each object from the pointcloud
a topological graph representation is obtained after this step.

A typical decomposition is shown in Figure 5, containing
the input object, the partially decomposed variant and the
graph representation of the extracted pointcloud sets.

In the next part the robustness of the proposed pipeline is
analysed using synthetic and real data too.

D. Object detection

The next step of the processing chain is the object model
recognition for the segmented objects. For this step the graph
based model of the object is used in order the recognise the
same object in the environment. Once each object of interest
is decomposed into primitives and has a template graph based
representation this can be searched later on in the observations.

In order to match an template graph model against ob-
servation one, first a random node from the template graph
is selected and is compared with all the nodes from the
observation graph.

The comparison is done taking into account the radius and
the size of the underlying primitive components. If this step
is successful, the next step is to compare the distances to the
connected nodes, looking for similar distances. Theses two
tasks are repeated until similarities between the two graphs
are found. Pipe objects consists of small numbers of basic
shape primitives, thus this graph matching process is a proper
approach for this particular case. The summary of the proposed
detection algorithm is described in Algorithm 1.

Algorithm 1 The proposed algorithm for component matching

Require: Scene model graph and query graph
Ensure: Detected object

1: Select random node from query graph
2: Find most similar node from model graph
3: Find similar edges of the two matched nodes
4: Repeat steps 2,3 until all nodes from the query graph are

visited or no similar nodes are found

III. RESULTS

This section contains the results of the test cases for the
pipeline presented till now. The data has been acquired both
from a simulated environment and a real one too. The Blensor
simulation toolbox [11] has been used for the generating
synthetic data. Blensor is developed on top of the 3d graphics
tool, Blender having the capability of simulating a multitude
of sensing devices such as:

• Velodyne
• Kinect
• Time of flight cameras
• Generic LIDAR
• Ibeo LUX

For our experiments the simulated Kinect sensor from
Blensor was considered, as a similar sensor was available
for the real data test cases too. For the data capturing the
real environment, the pointclouds have been acquired using
an ASUS Xtion PRO Live 3D sensor. In this case the same
CAD T shaped model was printed out on a 3D printer in order
to test the detection on the same template form. A typical test
case is presented both for the synthetic and real cases in Figure
6.

The proposed pipeline has been tested in different test cases,
where both the template data and the observation data has
a certain level of noise corruption and comes both from a
simulated as well as a real environment.

A. Noise free template–Noise free observations

In this case, both the training and query data comes from
a simulated environment and are not affected by noise. The T
shaped pipe is the object of interest for detection and for this
object are presented the plots in Figure 7.

B. Noise free template–Noisy observations

In this test case, the same model built from a noise free
data is matched against models constructed from data having
different noise levels. The generated data has been affected
by Gaussian noise of different scales means such as 0:1, 0:16,
0:19.

The results of this test case is shown in Figure 8. As it can
be seen from this figure, the method is detecting even in case
of high level noise the template object in the observation list.




