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Abstract. This paper presents a novel approach for the extrinsic param-
eter estimation of omnidirectional cameras with respect to a 3D Lidar co-
ordinate frame. The method works without specific setup and calibration
targets, using only a pair of 2D-3D data. Pose estimation is formulated
as a 2D-3D nonlinear shape registration task which is solved without
point correspondences or complex similarity metrics. It relies on a set
of corresponding regions, and pose parameters are obtained by solving
a small system of nonlinear equations. The efficiency and robustness of
the proposed method was confirmed on both synthetic and real data in
urban environment.
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1 Introduction

There is a considerable research effort invested in autonomous car driving projects
both at academic and industrial levels. While for special scenarios, such as high-
ways, there are a number of successful applications, there is still no general
solution for complex environments such as urban areas [4,10]. Recent develop-
ments in autonomous driving in urban environment rely on a great variety of
close-to-market visual sensors, which requires the fusion of the visual information
provided by these sensors [3].

One of the most challenging issues is the fusion of 2D RGB imagery with
other 3D range sensing modalities (e.g. Lidar) which can also be formulated as a
camera calibration task. Internal calibration refers to the self parameters of the
camera, while external parameters describe the pose of the camera with respect
to a world coordinate frame. The problem becomes more difficult, when the
RGB image is recorded with a non-conventional camera, such as central cata-
dioptric or dioptric (e.g. fish-eye) panoramic cameras. Although such lenses have
a more complex geometric model, their calibration also involves internal param-
eters and external pose. Recently, the geometric formulation of omnidirectional
systems were extensively studied [16,1,5,13,23,24]. The internal calibration of
such cameras depends on these geometric models. Although different calibration
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methods and toolboxes exist [23,9,11] this problem is by far not trivial and is
still in focus [24].

While internal calibration can be solved in a controlled environment, us-
ing special calibration patterns, pose estimation must rely on the actual images
taken in a real environment. There are popular methods dealing with point cor-
respondence estimation such as [23] or other fiducial marker images suggested
in [9], which may be cumbersome to use in real life situations. This is especially
true in a multimodal setting, when omnidirectional images need to be combined
with other non-conventional sensors like lidar scans providing only range data.
The Lidar-omnidirectional camera calibration problem was analyzed from differ-
ent perspectives: in [21], the calibration is performed in natural scenes, however
the point correspondences between the 2D-3D images are selected in a semi-
supervised manner. [14] tackles calibration as an observability problem using a
(planar) fiducial marker as calibration pattern. In [18], a fully automatic method
is proposed based on mutual information (MI) between the intensity information
from the depth sensor and the omnidirectional camera. Also based on MI, [27]
performs the calibration using particle filtering. However, these methods require
a range data with recorded intensity values, which is not always possible and
often challenged by real-life lighting conditions.

This paper introduces a novel region based calibration framework for non-
conventional 2D cameras and 3D lidar. Instead of establishing point matches
or relying on artificial markers or recorded intensity values, we propose a pose
estimation algorithm which works on segmented planar patches. Since segmen-
tation is required anyway in many real-life image analysis tasks, such regions
may be available or straightforward to detect. The main advantage of the pro-
posed method is the use of regions instead of point correspondence and a generic
problem formulation which allows to treat several types of cameras in the same
framework. We reformulate pose estimation as a shape alignment problem, which
is accomplished by solving a system of nonlinear equations based on the idea
of [2]. However, the equations are constructed in a different way here due to the
different dimensionality of the lidar and camera coordinate frames as well as the
different camera model used for omnidirectional sensors. The method has been
quantitatively evaluated on a large synthetic dataset and it proved to be robust
and efficient in real-life situations.

2 Omnidirectional camera model

A unified model for central omnidirectional cameras was proposed by Geyer
and Daniilidis [5], which represents central panoramic cameras as a projection
onto the surface of a unit sphere. This formalism has been adopted and models
for the internal projection function have been proposed by Micusik [13,12] and
subsequently by Scaramuzza [22] who derived a general polynomial form of the
internal projection valid for any type of omnidirectional camera. In this work,
we will use the latter representation.
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Fig. 1. Omnidirectional camera model

Let us first see the relationship between a point x in the omnidirectional
image I and its representation on the unit sphere S (see Fig. 1). Note that
only the half sphere on the image plane side is actually used, as the other half
is not visible from image points. Following [23,22], we assume that the camera
coordinate system is in S, the origin (which is also the center of the sphere)
is the projection center of the camera and the z axis is the optical axis of the
camera which intersects the image plane in the principal point. To represent the
nonlinear (but symmetric) distortion of central omnidirectional optics, [23,22]
places a surface g between the image plane and the unit sphere S, which is
rotationally symmetric around z. The details of the derivation of g can be found
in [23,22]. Herein, as suggested by [23], we will use a fourth order polynomial
g( |x‖) = a0 + a2‖x‖

2 + a3‖x‖
3 + a4‖x‖

4 which has 4 parameters representing
the internal parameters (a0, a2, a3, a4) of the camera (only 4 parameters as a1
is always 0 [23]). The bijective mapping Φ : I → S is composed of 1) lifting the
image point x ∈ I onto the g surface by an orthographic projection

xg =

[

x

a0 + a2‖x‖
2 + a3‖x‖

3 + a4‖x‖
4

]

(1)

and then 2) centrally projecting the lifted point xg onto the surface of the unit
sphere S:

xS = Φ(x) =
xg

‖xg‖
(2)

Thus the omnidirectional camera projection is fully described by means of unit
vectors xS in the half space of R3.

Let us see now how a 3D world point X ∈ R
3 is projected onto S. This is

basically a traditional central projection onto S taking into account the extrin-
sic pose parameters, rotation R and translation t, acting between the camera
(represented by S) and world coordinate system. Thus for a world point X and
its image x in the omnidirectional camera, the following holds on the surface of
S:

Φ(x) = xS = Ψ(X) =
RX+ t

‖RX+ t‖
(3)
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3 Pose Estimation

Consider a Lidar camera with a 3D coordinate system having its origin in the
center of laser sensor rotation, x and y axes pointing to the right and down,
respectively, while z is pointing away from the sensor. Setting the world coor-
dinate system to the Lidar’s coordinate system, we can relate a 3D Lidar point
X with its image x in the omnidirectional camera using (3). In practical ap-
plications, like robot navigation or data fusion, the omnidirectional camera is
usually calibrated (i.e. its intrinsic parameters (a0, a2, a3, a4) are known) and
the relative pose (R, t) has to be estimated. Inspired by [25], we will reformulate
pose estimation as a 2D-3D shape alignment problem. Our solution is based on
the correspondence-less 2D shape registration approach of Domokos et al. [2],
where non-linear shape deformations are recovered via the solution of a nonlin-
ear system of equations. This method was successfully applied for a number of
registration problems in different domains such as volume [20] or medical [15]
image registration. In our case, however, the registration has to be done on
the spherical surface S, which requires a completely different way to construct
equations.

Any corresponding (X,x) Lidar-omni point pair satisfies (3). Thus a classi-
cal solution of the pose estimation problem is to establish a set of such point
matches using e.g. a special calibration target or, if lidar points contain also the
laser reflectivity value, by standard intensity-based point matching, and solve
for (R, t). However, we are interested in a solution without a calibration target
or correspondences because in many practical applications (e.g. infield mobile
robot, autonomous driving systems), it is not possible to use a calibration target
and most lidar sensors will only record depth information. Furthermore, lidar
and camera images might be taken at different times and they need to be fused
later based solely on the image content.

We will show that by identifying a single planar region both in the lidar and
omni camera image, the extrinsic calibration can be solved. Since point corre-
spondences are not available, (3) cannot be used directly. However, individual
point matches can be integrated out yielding the following integral equation on
the sphere S:

∫∫

DS

xS dDS =

∫∫

FS

zS dFS (4)

DS and FS denote the surface patches on S corresponding to the omni and
lidar planar regions D and F , respectively. The above equation corresponds to
a system of 2 equations, because a point on the surface S has only 2 indepen-
dent components. However, we have 6 pose parameters (3 rotation angles and
3 translation components). To construct a new set of equations, we adopt the
general mechanism from [2] and apply a function ω : R3 → R to both sides of
the equation, yielding

∫∫

DS

ω(xS) dDS =

∫∫

FS

ω(zS) dFS (5)
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To get an explicit formula for the above integrals, the surface patches DS and
FS can be naturally parameterized via Φ and Ψ over the planar regions D and
F . Without loss of generality, we can assume that the third coordinate of X ∈ F
is 0, hence D ⊂ R

2, F ⊂ R
2; and ∀xS ∈ DS : xS = Φ(x),x ∈ D as well as

∀zS ∈ FS : zS = Ψ(X),X ∈ F yielding the following form of (5):

∫∫

D

ω(Φ(x))

∥

∥

∥

∥

∂Φ

∂x1

×
∂Φ

∂x2

∥

∥

∥

∥

dx1 dx2 =

∫∫

F

ω(Ψ(X))

∥

∥

∥

∥

∂Ψ

∂X1

×
∂Ψ

∂X2

∥

∥

∥

∥

dX1 dX2 (6)

where the magnitude of the cross product of the partial derivatives is known as
the surface element. Adopting a set of nonlinear functions {ωi}

ℓ
i=1

, each ωi gen-
erates a new equation yielding a system of ℓ independent equations. Although
arbitrary ωi functions could be used, power functions are computationally fa-
vorable [2] as these can be computed in a recursive manner:

ωi(xS) = xli
1
xmi

2
xni

3
, with 0 ≤ li,mi, ni ≤ 2 and li +mi + ni ≤ 3 (7)

Algorithm 1 The proposed calibration algorithm.

Input: 3D point cloud and 2D omnidirectional binary image representing the same
region, and the g coefficients

Output: External Parameters of the camera as R and t

1: Back-project the 2D image onto the unit sphere.
2: Back-project the 3D template onto the unit sphere.
3: Initialize the rotation matrix R from the centroids of the shapes on the sphere.
4: Initialize the translation t by translating F in the direction of its centroid until the

area of FS and DS on the unit sphere are approximately equal.
5: Construct the system of equations of (4) with the polynomial ωi functions.
6: Solve the set of nonlinear system of equations in (6) using the Levenberg-Marquardt

algorithm

Hence we are able to construct an overdetermined system of 15 equations,
which can be solved in the least squares sense via a standard Levenberg-Marquardt

algorithm. The solution directly provides the pose parameters of the omni cam-
era. To guarantee an optimal solution, initialization is also important. In our
case, a good initialization ensures that the surface patches DS and FS overlap
as much as possible. This is achieved by computing the centroids of the surface
patches DS and FS respectively, and initializing R as the rotation between them.
Translation of the planar region F will cause a scaling of FS on the spherical
surface. Hence an initial t is determined by translating F along the axis go-
ing through the centroid of FS such that the area of FS becomes approximately
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Noise: 0% 8% 15% 10% 20%

δ: 2.4% 4.1% 5.5% 2.9% 3.7%

Fig. 2. Examples of various amount of simulated segmentation errors. First column
contains a result without such errors, the next two show segmentation errors on the
omnidirectional image, while the last two on the 3D planar region. The second row
shows the δ error and the backprojected shapes overlayed in green and red colors.(best
viewed in color)

equal to that of DS . The summary of the proposed algorithm with the projection
on the unit sphere is presented in Algorithm 1.

4 Evaluation on synthetic data

For the quantitative evaluation of the proposed method, we generated a bench-
mark set using 30 different shapes as 3D planar regions and their omnidirectional
images taken by a virtual camera, a total of 150 2D-3D data pairs. The synthetic
omni images were generated by a virtual camera being randomly rotated in the
range of (−40◦ · · · 40◦) and randomly translated in the range of (0 · · · 200). As-
suming that the planar shape on the 800 × 800 template image represents a
5m × 5m planar patch in 3D space, the (0 · · · 200) translation is equivalent to
(0 · · · 1.25) meter in metric coordinates.

In practice, the planar regions used for calibration are segmented out from
the lidar and omni images. In either case, we cannot produce perfect shapes,
therefore robustness against segmentation errors was also evaluated on simulated
data (see samples in Fig. 2): we randomly added or removed squares uniformly
around the boundary of the shapes, both in the omni images and on the 3D
planar regions, yielding a segmentation error of 5% -20% of the original shape.

The algorithm was implemented in Matlab and all experiments were run
on a standard quad-core PC. Quantitative comparisons in terms of the various
error plots are shown in Fig. 3, Fig. 4, and Fig. 5 (each test case is sorted
independently in a best-to-worst sense). Calibration errors were characterized in
terms of the percentage of non-overlapping area of the reference 3D shape and
the backprojected omni image (denoted by δ in Fig. 5), as well as the error in
each of the estimated pose parameters given in degrees in Fig. 4 and in cm in
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Fig. 3. Note that our method is quite robust against segmentation errors up to
15% error level.
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Fig. 3. Translation errors in cm along the x, y, and z axis. m denotes median error,
Omni noise and Lidar noise stand for segmentation error on the omni and 3D regions,
respectively (best viewed in color).

5 Experimental validation

For the experimental validation of the proposed algorithm, two different omnidi-
rectional camera setups are shown. In order to fuse the omnidirectional camera
data and the lidar scan both the internal and external parameters are needed.
The internal parameters of the omnidirectional camera were determined using
the toolbox of [23]. Note that this internal calibration needs to be performed
only once for a camera. The external parameters are then computed using the
proposed algorithm.

5.1 Region segmentation

In order to make the pose estimation user friendly, the region selection both in
2D and 3D was automated with efficient segmentation algorithms.

There are several automated or semi-automated 2D segmentation algorithms
in the literature including clustering, histogram thresholding, energy based or
region growing variants [28]. In this work we used a simple region growing algo-
rithm which proved to be robust enough in urban environment [19].

For the 3D segmentation a number of point cloud segmentation methods
are available, including robust segmentation [17] or difference of normals based



8 Levente Tamas, Robert Frohlich, Zoltan Kato

0 50 100 150
0

5

10

15

20

25

30

Test case

R
x e

rr
or

 [d
eg

]

 

 

Without noise, m=0.65
Omni. noise 8%, m=1.76
Omni. noise 15%, m=2.41
Lidar. noise 10%, m=0.89
Lidar. noise 20%, m=1.02

0 50 100 150
0

5

10

15

20

25

30

Test case

R
y e

rr
or

 [d
eg

]

 

 

Without noise, m=0.48
Omni. noise 8%, m=1.11
Omni. noise 15%, m=1.38
Lidar. noise 10%, m=0.73
Lidar. noise 20%, m=1.11

0 50 100 150
0

5

10

15

20

25

30

Test case

R
z e

rr
or

 [d
eg

]

 

 

Without noise, m=0.28
Omni. noise 8%, m=1.03
Omni. noise 15%, m=1.73
Lidar. noise 10%, m=0.79
Lidar. noise 20%, m=0.97

Fig. 4. Rotation errors in degrees along the x, y, and z axis. m denotes median error,
Omni noise and Lidar noise stand for segmentation error on the omni and 3D regions,
respectively (best viewed in color).

segmentation[7]. Like in 2D, region growing gave stable results in our test cases
thus it was suitable for the fusion algorithm as to extract planar input regions.
This segmentation algorithm is based on a set composition principle, i.e. an ini-
tial starting point (seed) is selected from the original point cloud, and iteratively
the set is completed with neighbor points which have similar normal (within a
certain threshold limit cθ), or their curvature is less than a specified curvature
threshold ct.

Considering the correspondence establishment between the segmented 2D
and 3D regions as minimal one-click user intervention, this aspect represents
the only human interaction in the current procedure. After the first 2D-3D re-
gion pair establishment, further ones can easily be added by searching with a
sample consensus approach for the neighbor plain patches. We remark, that a
fully automatic region correspondence could be implemented by detecting and
extracting windows [6] (see e.g. Fig. 7) which are typically planar and present
in urban scenes.

0 50 100 150
0

5

10

15

20

25

30

Test case

de
lta

 e
rr

or
 [%

]

 

 

Without noise, m=2.74
Omni. noise 8%, m=4.2
Omni. noise 15%, m=5.44
Lidar. noise 10%, m=3.06
Lidar. noise 20%, m=3.71

Fig. 5. Backprojection (δ) errors. (best viewed in color)
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5.2 Urban data fusion results

The input data with the segmented regions as well as the results are shown
in Fig. 6 and Fig. 7 for a catadioptric-lidar and dioptric-lidar camera pairs re-
spectively. The omnidirectional images were captured with a commercial SLR
camera with a catadioptric lens (Fig. 6) and a fish-eye (Fig. 7) respectively. For
the 3D range data, a custom lidar was used in Fig. 6 to acquire data similar
to the one described in [26] with an angular resolution up to half degree and a
depth accuracy of 1cm. In Fig. 7, the 3D point cloud was recorded by a Velodyne
Lidar mounted on a moving car [8].

After the raw data acquisition, the segmentation was performed in both do-
mains. For the 3D data, segmentation yields a parametric equation and bound-
aries of the selected planar region. This was then uniformly sampled to get a
dense homogeneous set of points (i.e. we do not rely on the Lidar resolution
after segmentation), which was subsequently transformed with a rigid motion
(R0, t0) into the Z = 0 plane yielding appropriate point coordinates X used in
the right hand side of (6). The x points of the left hand side of (6) are fed with
the pixel coordinates of the segmented omnidirectional image.

Fig. 6. Catadioptric and lidar images with segmented area marked in yellow, and the
fused images after pose estimation. (best viewed in color)

Once the output (R, t) is obtained from Algorithm 1, the final transformation
acting between the lidar and omni camera can then be computed as a composite
rigid transformation of (R0, t0) and (R, t). The final computed transformation
was used to fuse the depth and RGB data by reprojecting the point cloud on
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the image plane using the internal and external camera parameters, and thus
obtaining the color for each point of the 3D point cloud. The method proved to
be robust against segmentation errors, but a sufficiently large overlap between
the regions is required for better results.
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6 Conclusions

In this paper a new method for pose estimation of non-conventional cameras
is proposed. The method is based on a point correspondence-less registration
technique, which allows reliable estimation of extrinsic camera parameters. The
algorithm was quantitatively evaluated on a large synthetic data set and proved
to be robust on real data fusion as well.
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12. Mičuš́ık, B.: Two-View Geometry of Omnidirectional Cameras. Phd thesis, Depart-
ment of Cybernetics, Faculty of Electrical Engineering, Czech Technical University,
Prague, Czech Republic (June 2004)



12 Levente Tamas, Robert Frohlich, Zoltan Kato
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