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Abstract-This paper is intended to give a short overview about 
the NEPSAC nonlinear predictive control approach. In the first 
part there are presented the theoretical aspects of the control de-
sign procedure, and then in the next section are shown the results 
for the designed algorithm for a real life experiment. There are 
also compared the results with other type of controllers like the 
MPC or PID controller. 

Keywords- nonlinear predictive control, model based control, 
parameter estimation, physical modeling. 

I.  INTRODUCTION 

The main objective of this paper is to present the NEPSAC 
(Nonlinear Extended Prediction Self-Adaptive Control) control 
algorithm in a real life application. As the name shows it can 
deal with nonlinear systems, using predictive control algorithm 
with a self adaptive ability. The fact that it can be applied to 
nonlinear systems is only an extension of the linear EPSAC, 
the fundamental principles of the algorithm are the same in 
both cases [1]. 

The predictive part of the algorithm is relying on the fact that 
it is based on the MBPC principle, i.e. it uses a model for pre-
dicting the future response of the system, and based upon this 
prediction computes the necessary control action for the sys-
tem. 

The self-adaptive capability of the algorithm specifies that 
even for partial miss modeling or for varying systems it is able 
to function within a normal range, adapting itself to the 
changes of the modeled system. In other words this ensures a 
rather high degree of robustness of the algorithm. 

A.  General description problem 
The chosen problem may be divided into the following sub-

parts: 
• Choosing the system that will be controlled 
• Building the necessary IO interface to the system  
• Making identification experiments for the model 
• Getting a valid model for the system 
• Building a controller for the system 
• Testing and optimizing the controller 

At the moment of choosing the plant a list of points needs to 
be analyzed in order to eliminate the possible problems which 
may emerge at later stages of the design procedure. Such points 
may be the available measuring devices for the quantities 
needed to be measured or how many states can be measured 
and how many are needed to be known; controllability of the 

plant and the sampling rate of the signals. These are only some 
of the most fundamental parts of the selection criteria. Based 
on the mentioned criteria’s there was selected a high perform-
ance equipment water tank system which will be described in 
details in the next section. 

As the NEPSAC control algorithm is a model based control 
algorithm it needs a model for the system. The model can be 
obtained via identification experiments. At this point is already 
essential to have some basic knowledge about the system, such 
as the sampling time, the measured variables, and the con-
trolled quantities. 

Based upon this priory knowledge it is needed to be selected 
the type of the identification experiment: step response, stair 
case, PRBS or other type of excitation [3]. The ideas upon 
which were selected the input types is presented in the section 
describing the identification. After selecting the input type it is 
needed to be performed the proper identification experiments. 

Finally, based on the collected data from the identification 
experiment it can be built a model for the system, which later 
can be used in the control design procedure. This model build-
ing is not a trivial task; it may need also physical modeling 
knowledge about the system. The model building is treated in 
details in the part presenting the modeling. 

The controller design in the case of EPSAC is generally 
done based on input/output from a state space model. The cur-
rently presented solution has extended this principle. 

B.  The novelty of this approach 
The main novelty of the current solution is that it does not 

use a state space or transfer function model for the system, in-
stead of it, it can be used any ‘black box’ model being able to 
generate a valid output for the model for a certain excitation at 
a certain operation point. In other words, it uses only the re-
sponse of a model, and does not care about the description 
form of the model. 

II. THEORETICAL PRESENTATION 

A.  Theoretical Aspects of the Model Based Predictive Control 
Basically there is an interest to reduce some cost in the 

plants. In other word these economical problems can be trans-
lated to some cost indices used in the control procedure. The 
model based predictive control (MBPC) approach’s main ad-
vantage is that it can handle easily these costs and constraints. 

However the MBPC control does not want to eliminate, nor 
replace the ‘old good working’ PID controllers, rather it offers 
a chance to reformulate some problems at higher hierarchical 
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levels, e.g. economical ones. At this way one may think about 
predictive controllers as some supervisors, which can provide 
useful advices to their subordinates in such a way that some 
long term interest will be satisfied [1]. 

 
Figure 1 The basic idea of MBPC 

The key idea of the MBPC can be summarized on the Figure 
1. There can be seen clearly separated the past, present and 
future control variables. This approach supposes that there is 
known in advance the reference trajectory for the output state 
trajectories, at least in some points (dealing with the number of 
points/shape of the reference trajectory there are available dif-
ferent methods). The system may also have dead time, which 
can be introduced in the model. The past values for the inputs-
outputs are available in the database. The main control objec-
tive is to minimize some cost represented by a cost index. 

B.  The basic idea of EPSAC 
For the linear case of the predictive control algorithm con-

sider the system as presented on the Figure 2: 

 
Figure 2 The model for the control  

The notations used for the Figure 2 are the followings: 
• y(t): (measured) process output 
• u(t): process input 
• x(t): model output 
• n(t): noise 

For the discrete model there is considered the CARIMA type 
one presented in the relation (1): 
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Where the e(t) signal is considered white noise, and it repre-
sents the disturbance through the filter between the controller 
and the system. 

The equation represented in the relation (1) can be solved us-
ing different techniques, like the algebraic equations (Dio-
phantine equation), or by the filtering ones. The two different 
approaches produce the same result [2]. 

The GPC approach uses the Diophantine equation techniques 
to solve the system (1), while the EPSAC uses the filtering one. 
On the following there will be presented the filtering approach. 

C.  The noise prediction in the model 
One of the obvious advantages of the presented approach is 

that there can be implemented a noise model in the case that 
there is a priory knowledge about it. By the simple equation 
(2), the noise can be determined as the difference between the 
model output and the measured state: 

)()()( txtytn −=                               (2) 

However it is not as trivial to predict the future noise. One 
convenient way is to suppose it as being white noise, passing to 
a suboptimal integration filter. This allows predicting the noise 
as 0 mean one, i.e. the best prediction being the mean of it, and 
considering 0. 

The white noise e(t) can be recalculated by passing the 
measured noise through ‘inverse’ filter used for modeling the 
disturbance. After having the values for e(t) in the past, the 
future values can be taken 0, as the best approach for mean of 
the white noise. With these values, there can be predicted the 
future noise in a recursive way. 
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In the relation (3) the | operator represents the prediction of 
the signal at the moment t for the time t+k in the future, e.g. the 
noise at the t+k moment predicted at the time t. 

There are made N2 prediction points in the prediction hori-
zon. 

D.  The controller configuration 
The response of the system is considered to be one com-

posed from a base component and a forced, optimal one as in 
the equation (4). This is valid for linear systems although it can 
be extended to nonlinear ones too [1]. 

optbase yyy +=                               (4) 

This means conceptually the followings: 
- The yBase is produced if the system is leaved with the last 

command to act free over the predicted horizon with the uBase 
command defined priori. This is not relevant for linear systems 
however in the nonlinear case this needs to be considered too; 

- yOptim will be the response for the optimizing part of the 
input, i.e. the one which is added to the uBase in order to 
minimize a certain cost function. This is presented on the 
Figure 3. 
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Figure 3 The idea of the base and optimized response 

Having in mind that the yOptim is the response to certain 
special impulses represented by uOptim, with the amplitude of 
uOptim at moment t while on the other hand these impulses 
have a finite length, so they can also be interpreted as some 
sort of step inputs. As a result, the yOptim can be computed as 
a combination of impulse/step response such in the equation 
(5) 
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Which using a matrix notation it can be represented as: 
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E.  The control objective 
In the case of the predictive control approach the main aim is 

to minimize a cost function. Therefore a most common ap-
proach is to minimize the following well know ITAE form de-
scribed in (7): 
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For the term (7) using the notations from (6) the optimal so-
lution can be written in the following matrix form: 

( ) ( )YRGGGU TT −=
−1*                       (8) 

In this way the optimal control part can be determined by 
simple matrix multiplication using the already defined G ma-
trix and the difference between the R reference and the Y 
measured values, however special attention should be paid for 
numerical stability problems. 

F.  Extension to the non linear case 
The superposition principle – the system response may be 

decomposed in base and optimized responses – presented in the 
previous chapters which theoretically is valid for linear systems 
only[1]. 

Although for nonlinear systems in case that the future uBase 
is selected appropriately, then the optimal and the base re-
sponse are practically identical, i.e. no superposition is in-
volved, so this results in the optimal response for NEPSAC In 
order to apply the EPSAC algorithm for nonlinear systems, the 
following steps have to be done: 

• Select the uBase in such a way that this is close to 
the uOptim, so there is no superposition involved at 
the generation of the response.  

• Once there is selected the uBase there can be com-
puted the uOptim, using the above presented algo-
rithm. 

• For nonlinear systems the last step might be needed 
to be repeated in order to get a close yBase and 
yOptim response. 

• As it can be seen in the case of the nonlinear sys-
tems the optimization is done more than once. 

III.  PRACTICAL APPROACH TO THE  PROBLEM 

In this chapter first is presented the plant on which were car-
ried out the measurements, together with the physical model-
ing, the simulations and the carried out experiments. 

A.  Presentation of the experiment equipment 
On the Figure 4 there is shown the schematics of the water 

tank system. 

 
Figure 4 The schematics of the water tank system 

As it can be seen there are two water tanks, from which/into 
which can flow water on several pipes. There is a pump in the 
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system, several valves and a servo valve too. On both tanks 
there is installed an infrared level sensor 

The used IO interface to the tank process is realized via the 
available modules from IPCON-7000 production series. These 
are general IO modules which can be interconnected through 
the RS-485 protocol in a communication bus. They use as 
communication protocol the DCON specific commands.  

DCON Communication Protocol for I-7000 series module 
works on the principle that there is sent a command to the de-
vice which answers for the sent command. The distinction 
among the modules is done using the address as ID for each of 
them. 

B.  The plant model 
The diagram describing the process is presented on the 

Figure 5. The rate at which water enters is proportional to the 
voltage, V, applied to the pump. The rate at which water leaves 
is proportional to the square root of the height of water in the 
tank. 

 
Figure 5 The water tank system overview 

The water tank system can be modeled via differential equa-
tions represented by 

HabV
dt

dHAVol
dt
d

−==                   (9) 

The equation (9) describes the height of water H, as a func-
tion of time, due to the difference between flow rates into and 
out of the tank. The equation contains one state, H, one input, 
V, and one output. It is nonlinear due to its dependence on the 
square-root of H. The constants a and b are specific for the 
tank, and they need to be identified. 

There is also a Simulink model available for the system, 
which gives a clear view about the nonlinear characteristics in 
the system. The model using the Simulink blocks is presented 
on Figure 6. 

 
Figure 6 The Simulink schematics of the plant 

C.  Parametric identification of the process 
The testing of the sensor and the pump: First there were car-

ried out some experiments in order to determine the character-
istics of the sensors and the pump of the system. 

The sensor testing consists of checking the linearity of the 
sensor. As it was mentioned in the specifications of the system, 
the sensor linear is a linear one, which fact was validated with 
an experiment.  

At the next step there was tested the pump linearity. As it 
can be seen on the Figure 7, the pump has a rather linear be-
havior in the range of 0-6. After the pump linearity test, it was 
checked the non-linear characteristic of the flow out from the 
tank, which can be also seen on this figure from the time inter-
val 150 to 250.  

.  
Figure 7 The linearity of the pump 

After performing the two experiments there was performed a 
measurement with stair-case excitation to the system. 

The aim of the stair case experiment was to get the nonlin-
earities in the system, and to be able to validate later the ob-
tained models. The obtained stair case response is plotted on 
Figure 8. 

 
Figure 8 The stair-case experiment 

The Simulink control design tool was used for the parametric 
identification of the plant using the dataset from the staircase 
experiment. Using this toolbox it can be done the identification 
in an automatic way, i.e. after the signal specifications, the 
toolbox estimates the parameters of the model based on certain 
types of optimization methods [5]. 
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In the next step as a validation for the obtained model this 
was tested against the measured values, as this can be seen on 
the Figure 9. As it can be seen on this figure, the simulated 
output is close to the measured one. 

 
Figure 9 The response of the identified model 

D.  The controller design  
The PID Controller design was performed using a graphical 

design tool based on frequency response of the system called 
FRTool [4]. As the plant is a nonlinear one, and the control 
algorithm is for linear plants, there was chosen a local opera-
tion point around which it was considered a model of the plant.  

Having this model, the frequency response of the controlled 
system is presented on the Figure 10. As it can be seen on this 
figure, the response of the system (thin blue line) is satisfying 
the robustness constraint (thick blue line), as well as the over-
shoot constrain (thick red line) and the imposed response time 
(green line). 

 
Figure 10 The frequency response of the system with the PID controller 

The NEPSAC controller design was performed without mak-
ing any explicit linearization of the plant, instead of this, using 
the referenced output generated from the model.  

The whole algorithm’s idea is an intuitive one, although it is 
important to make a suitable data representation for the past, 
present and future values of input/outputs, states, and noise. 

The convention that was used in this paper is the following: 
Table1 

In Table1 Nx represents the number of elements that will be 
stored from the past. This depends mainly on the length of the 
structure of the modeled system. The values for the present are 

just one dimensional, while the predicted values have N2 
length, having in mind that all the inputs/states/noise are being 
predicted on a horizon of N2 points. 

Although there is no local linearization performed using this 
algorithm, the step response at each sampling time for the 
model is recalculated. In order to have a fast algorithm in the 
first approach there was made a trade off, considering a local 
model for the system of the form presented in equation (10) 

as
K
+

                                       (10) 

This form can be easily deduced from the physical model of 
the system. The problem with this approach was that the re-
sponse of the system will get more and more far away from the 
real one. In this case the response had steady state error, due to 
the approximations done at the previous phase. As the predic-
tion horizon grows, it grows the steady state error too. A possi-
ble solution for this problem may be to include an integrator 
element in the noise model; however this may reduce the phase 
margin of the system. So this approach is not a useful one, and 
it can be used only in the case that N2 is small, as this is also 
visible on the Figure 11.  

 
Figure 11 The locally operation point response  

Instead of the local operation point it was used the step re-
sponse of the model starting from an initial state, which re-
sponse can be generated from the Simulink representation of 
the plant. This approach leaded to a correct behavior of the 
controller. 

After having done the two controllers design phases, in the 
next step there were compared in simulations the outputs from 
the two controlled systems. 

 
Figure 12 Comparison of the PID and NEPSAC simulations 

Past(Nx) Present(1) Future(N2) 
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As it can be seen on the Figure 12 the response of the PID 
controlled system is fast, doing well around the operation point 
where it was designed, but it gets with a slow convergence to 
the set point in different operation points. On the other hand, 
the nonlinear predictive control algorithm handles in correct 
mode the nonlinearities in the system. 

 
E.  The real time experimental set up 
The experiment was performed for different controllers the 

control algorithm running on a PC. The link between the plant 
and the PC was done with the IPCON data acquisition board, 
with a sampling time of 1 second. In case of the NEPSAC al-
gorithm it was necessary to check the real time constraints of 
the algorithm which is a rather time consuming one. On the 
Figure 13 there is shown the result of the algorithm profiling. 
As it can be seen, the algorithm runs in about 0.5 seconds, in 
this way satisfying the real time constraints for the control ap-
plication with the 1 second sampling time. 

 
Figure 13 The algorithm running time and the sampling time 

The result of the PID controlled system is presented on the 
Figure 14. As it can be seen on this figure, the controller has 
quite a good response near the operation point where it was 
tuned, but in other points, the response is pretty poor. Also the 
control effort has great variations compared to the NEPSAC 
case. 

 
Figure 14 The PID response in the experiment 

On the Figure 15 there is shown the output of the controlled 
system with the NEPSAC controller in case of the prediction 
horizon N2=5 and the control horizon N1=1.  

 
Figure 15 the NEPSAC response of the experiment 

Although the response of the controlled plant with these tun-
ing parameters is slower than in the case of the PID controller, 
there are no stationary errors in this case. The input to the plant 
has less variation than in the previous case, and in this way the 
control effort is also less. 

CONCLUSIONS 

As a conclusion it can be said, that the NEPSAC control al-
gorithm is performing well in different operation points in case 
of nonlinear plants, and it can be also estimated the computa-
tional effort for this type of control algorithm as this is a de-
terministic one. 
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