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Abstract— This paper gives an insight in the preliminary
results of an ongoing work about heterogeneous point feature
estimation acquired from different type of sensors including
structured light camera, stereo camera and a custom 3D laser
range finder. The main goal of the paper is to compare the
performance of the different type of local descriptors for indoor
office environment. Several type of 3D features were evaluated
on different datasets including the output of an enhanced
stereo image processing algorithm too. From the extracted
features the correspondences were determined between two
different recording positions for each type of sensor. These
correspondences were filtered and the final benchmarking of
the extracted feature correspondences were compared for the
different data sets. Further on, there is proposed an open access
dataset for public evaluation of the proposed algorithms.

I. INTRODUCTION

The perception of the surrounding 3D environment is
still a significant research field both for the industrial and
researcher community. There are several applications in
which the 3D representation of complex environments is
essential including: architecture, automotive, mining and pip-
ing systems inside factories. Off-line 3D data is required for
applications such as architecture or factory design, scenarios
where the data sets can be conveniently acquired by using
several post processed 3D scans. Other type of applications,
e.g. autonomous navigation may require real-time data from
the environment [1].

In order to capture 3D information passive sensing tech-
niques can be used as a low cost alternative, which includes
a wide variety of devices starting from cheap web-cameras to
sophisticated multi-camera systems. The main disadvantage
of these approaches are related to the captured scene de-
pendency, including illumination and texture for the stereo
imaging [2].

In contrast to the passive imaging methods, the active
sensing techniques including laser range finder or structured
light cameras emit energy towards the scene and measure the
reflected values. The laser range finders capture a predefined
order of point sequence on a regular spherical grid, in a
time-dependent manner, hence they can be used only for
static scenarios. They still provide accurate, robust and long
range measurements from the environment [3]. Planar 2D
laser scanners are popular in the field of robotics due to
their high speed and precision. They are mainly used for 2D
mapping and navigation purposes, although by augmenting
the two-axial motion with an additional degree of freedom,
an accurate 3D scanner is obtained [4].

On the other hand, the need for capturing complex dy-
namic scenes is essential for a wide range of applications.
Recent research outcomes show that for close-range dynamic

scenarios, the structured light cameras provide a high-update
intensity and colour information. The idea of using an known
projected pattern on a scene and viewing the results of
the illumination does not require an expensive hardware.
Practically, the 3D information can be retrieved by simple
triangulation methods applied to the reflected data [5].

In this paper we are particularly interested in the evalua-
tion of robustness regarding keypoints and local descriptors
for the active laser range finder providing range data and
the Kinect commercial structured light sensor mounted on
the same platform with an off-the-shelf Bumblebee stereo
camera. These local descriptors can be used for different
applications, including object detection and classification as
well as localization or mapping, which are common topics
within the robotics research. Starting from this idea, we
briefly present three perception devices widely used in this
domain. First, a custom built 3D laser range finder based on
a 2D planar laser for range data acquisition is presented. For
the dense coloured depth point cloud we examine different
type of stereo image processing algorithms as well as the
fused infrared depth and RGB data from the Kinect. Further
on, for the different data sets specific features and the cor-
respondences among them are evaluated. Finally, the paper
presents the results including the comparison between the
tested approaches.

A. Related Work

The idea of fusing several type of 3D perception sensors
[6] is applied in several applications including face detec-
tion [7], scene analyses [8], simultaneous localization and
mapping [9], architectural industry [10], etc.

For these applications the relation between different
recorded datasets represents a widely encountered problem.
This problem can be summarized as the matching of sim-
ilar properties between two or more registration for object
recognition purposes, localization or tracking.

The recorded points are considered to represent 3D in-
formation of the surrounding, recorded from different sen-
sors. Comparing two points recorded in different positions
requires a common metric. Using some simple metric like
the Euclidean one may not lead to sufficiently robust results.
Instead of this local regions around the evaluated points are
selected which ensure a better representation of a local zone
in the space. These local patches are introduced as local
descriptors in the domain literature [11].

The computation of the local feature can be time consum-
ing, thus a common approach is to determine the descriptors
only for a limited number interest points, i.e. keypoints.
It is also important to select regions which are rotation



invariant and down sampling immune in order to ensure
the robustness of the local descriptor. There are several
possibilities for extracting keypoints and descriptors from 2D
images including the popular SIFT (Scale Invariant Feature
Transform) [12] Unfortunately, these rely on local gradients
from a unique orientation and therefore are not directly
applicable for our approach with 3D data, however some
concepts may be inherited from the 2D domain. Compared
to the camera images, the 3D sensors provide also the depth
information, which introduce an additional robustness in the
local feature estimation.

There are several approaches for the 3D range point cloud
local descriptors, a part of them being rotation invariant
around the normal, like in the case of the NARF descrip-
tor [13] or even complete 3D orientation invariant as the
fast point feature histogram (FPFH) [14]. Other approaches
include normal based keypoint descriptors or radius based
ones such as the Radius-based Surface Descriptor (RSD)
introduced by [15]. For the RGB-D point cloud there are
recent keypoint variants adopted such as the SIFT3D [16].

There are wide range of methods for the correspondence
estimation based on different techniques for the correspon-
dence computation like one-to-one, back and forth or sample
consensus based one [17], [18], which can be used for
evaluating the performance of descriptor.

B. Contributions

In this paper we propose a common framework for fea-
ture based correspondence evaluation of different 3D data
including range data from laser ranger, RGB-D data from a
structured light camera and the coloured point cloud from a
stereo camera, calibrated in a same mobile robot platform.
For the range data a custom hardware setup is presented,
while for the feature estimation from stereo images different
algorithms were considered. The main idea of the paper is
to use these heterogeneous keypoint-descriptor pairs in a
common coordinate frame and evaluate the different pair
combinations of sensors, based on the performance of the
estimated correspondence.

Also an open access code and recorded database will
published on the internet by the time of publication in order
to encourage the further investigation and evaluation of the
different feature correspondence evaluation researches.

II. PROPOSED METHOD

For evaluating the different ranging devices, the data
captured needs to be transformed in a common coordinate
frame. In our case the mobile robot platform on which the
sensors were mounted was considered to be the origin of this
common coordinate frame. With this assumption, the change
in the orientation and position of the platform needs to be
estimated from the different correspondences.

For the correspondence evaluation metric first a rigid
transformation based on the correspondences between two
different point clouds is determined. This transformation is
compared against the reference transformation between the
two measurement coordinates. The reference point cloud

is determined via the fine tuning of the 3D point cloud
from the laser range finder, as this offers a precision under
lem in an indoor environment. The fine tuning is done
by applying a iterative closest point (ICP) algorithm to the
initially aligned laser point cloud based on the information
from the correspondence estimation [19].

By taking the normalized point cloud distance between the
different rigid transformation estimation, the evaluation of
the different feature correspondence estimation is performed.
According to this idea, evaluation of the heterogeneous
feature sets were tested, by means of fusing the range
feature set with the kinect and the ones extracted from the
stereo imaging. Also other combinations of the feature set
are proposed within this framework. In order to reduce the
false correspondences, a sample consensus based filtering is
applied to the heterogeneous feature set [18].

The reference transformation is computed based on a
FPFH type descriptor for the laser data recorded at two
different positions as this is listed in the Algorithm 1. First
the Fy and F} descriptors are computed for the source and
target datasets, which are used for the initial alignment guess
for the ICP. The ICP based registration with a sufficiently
good initial guess serves a high precision registration for a
laser ranger 3D data set. The final ICP transformation ¢,.. is
returned as the reference transformation for the feature based
correspondence rigid transformation estimation [20].

Algorithm 1 ICP with initial alignment for reference
Require: L, L;
1: Fy = ComputeFPFH(L,);

2: F; = ComputeFPFH(L;);

3. (tinit, Cr) = Initial Aligment(Fs, Fy);

4: while (errorq;ry < €)or(iteration < iteration,,qg)
do

5. Ag = getClosestPoints(tref, Ls, Ly);

6:  lpey = argmin (ﬁ ZjeAd wj |t(ls) — lt|2);

7: end while

8: return t,.r

The proposed feature evaluation algorithm is presented in
Algorithm 2. In the first part of this algorithm the 3D features
descriptor Dy and D; are computed for both input point
clouds. In the next step the correspondences are evaluated
and filtered out based on a sample consensus framework.
Finally, the normalized distance F, for the estimated trans-
formation ¢, and the reference t,.s is determined.

Algorithm 2 Correspondence estimation
Require: P, Py, tcf
1: Dy = Compute3DFeatures(FP;);
2: D, = Compute3DFeatures(F;);
3: (t.,Cy) = SACFilterCorrespondences(Dy, Dy);
4: Eg = ﬁ ZjECf w |tr6f(ps) - tc(ps) 2;
5: return Fjy




III. EXPERIMENTS

The datasets were recorded indoor at normal light condi-
tions for spaces ranges between a few cm up till 10m. The
scanning of the environment with the P3 type mobile robot
was performed in a stop-scan-go fashion, a single scan taking
up to 60 seconds depending on the used custom laser range
finder configuration. All the measured data was integrated in
the ROS ! environment where each logging was timestamped
for an easier off-line processing.

A. Range Image Features from Custom 3D Laser Ranger

1) Data Acquisition from Custom 3D Laser Ranger:
For a scanner with pitching actuator the 3¢ dimension of
a point is given from the pitch angle. The coordinates of
one 3D point result from the distance to the surface, the
yaw angle of the beam, and the pitch angle of the actuated
mechanical part. Thus a scanned point can be represented as
a tuple of the form (p;; 6;,~;) where p; represents the depth
information from the laser scanner and 6;,~; the yaw and
pitch measurements. The forward kinematic transformation
taken as original coordinate system to the laser base link is
given by:

Ty cosy 0 sinvy pcosf
p=1\|yn | = 0 1 0 x | psiné (1)
Zn —siny 0 cosvy 0

where p is a point in the Cartesian space with the coordinates
Ty Yn and z,.

The key component of the 3D sensor is the 2D com-
mercial laser scanner for which a custom rotary platform
was designed. There are several possibilities to rotate the
laser scanner, i.e. around the yaw, pitch or roll axis, thus
achieving a yawing, pitching or rolling 3D sensor [4]. Each
of these three setups has its own advantage and disadvantage.
As for mobile robots the most common approach is the
pitching scan, which was adopted for the current system. The
mechanical design and prototype are presented in Figure 1.
The design shown has two parts: one fixed containing the
driving servo motor (left) and the rotation encoder (right);
and the mobile rotary on which the Sick LMS200 is placed.
The prototype was built using an iron frame both for the
fixed and mobile part [21].

Fig. 1. The design and prototype of the actuated 3D sensor.

Uhttp://www.ros.org/

2) Range Data Keypoints and Features Analysis: In this
paper the Normal Aligned Radial Feature (NARF) keypoints
introduced by [22] were adopted for the range image interest
points extraction. This type of keypoint takes into account
the information about the boarders and surfaces, ensures
the detection from different perspectives and the stability
for the descriptor computation phase. The most important
parameter for the NARF keypoint extraction is the support
size, i.e. the diameter of the sphere in which the interest point
characteristics are determined [13]. In our case several values
for this parameter were tested in order to gain a sufficient
robust and enough number of keypoints for different type of
datasets.

After the selection of the keypoints, the specific properties,
i.e. descriptors for the set of extracted keypoints are deter-
mined. The role of the descriptors is the efficient comparison
for discrimination between two selected points. There are
several approaches for the descriptors, a part of them being
rotation invariant around the normal, like in the case of
the NARF descriptor [13] or even complete 3D orientation
invariant as the fast point feature histogram (FPFH) [14].

For our approach we used the optimized version of the
FPFH in order to augment the three dimensional space
with pose-invariant local features and we also tested the
NARF descriptors with Manhattan metrics for the same set
of keypoints. In order to compare the two set of descriptors,
the runtime (T) and the initial alignment fitness score (S) was
computed for indoor (Id) cluttered and uncluttered data sets.
The result of the comparison is summarized in the Table I.

TABLE I
3D RANGE FEATURE DESCRIPTOR PERFORMANCE COMPARISON

Dataset Tvarr | Trpra | SNARF | SFPFH
Idclutte'red 0.17 23 0.70 0.29
Idpiane 0.10 6 0.91 0.55

The tests were performed on datasets containing around
10K points for which the extracted number of keypoints was
in the magnitude of 0.1K. For computing the runtime the
average values were considered for 10 consecutive runs on
an Intel Pentium 4 single core laptop running Ubuntu Linux.

Ay

Fig. 2. Feature matching for laser range data for a typical rotated scenario

As observed, NARF descriptors are computed with sev-
eral orders of magnitude faster than FPFH descriptors, but



the latter approach is more robust in terms of estimating
correspondences. This would be also the case for scenes
which present less clutter or variation, thus having less
discriminative features, where the FPFH features ensured
a better correspondence between points. A typical feature
correspondence estimation applied to a rotated scene is
presented in Figure 2. As it can be observed, the the majority
of feature correspondences are valid ones, giving a reliable
initial transformation estimation between the two scenes.

B. 3D Features for Stereo Images

1) Principle of Stereo Image Depth Extraction: The stereo
cameras are popular tools for creating 3D coloured data
based on two or more images recorded from different camera
positions. In order to recover depth information from 2D im-
ages correspondences have to be established between pixels
of the left and right image of the stereo pair, representing
the same object in the scene.

Numerous algorithms are focusing on finding correspon-
dences 2. Generally speaking to obtain better precision
more complex algorithms are applied resulting in a higher
computational effort.

In many applications there is no need of a dense recon-
struction for all the pixels in the image. In these cases is
sufficient to use only some points, namely to apply image
feature detectors [23]. Image features capture relevant dis-
tinctive information in images that can be repeatable detected
under different lighting conditions, angle of view and scale
increasing thus the robustness of the algorithm.

One of the fastest methods to compute dense disparity
maps form stereo images is based on correlation analyses.
Using this method the depth is computed at each pixel, a grey
level around the pixel in the left image is correlated with the
corresponding pixel in the right image. The disparity of the
best match from the correspondence is determined using the
Sum of Absolute Differences (SAD).

Image feature descriptors can be also used in order to
generate dense depth maps. In such a scenario for every pixel
in the image a complete descriptor is computed. Afterwards
the corresponding pixel is searched in the other image of the
pair by comparing the feature descriptors.

2) Enhanced Stereo Image Algorithm: From the numer-
ous image feature descriptors presented in the literature
Daisy [24] was chosen in order to compute the 3D point
clouds presented in Figure 4. The Daisy descriptor has
several advantages over other popular methods such as: SIFT
[12] or SURF [25]. It can be computed very rapidly for all
the pixel of an image. In our experiments for 6402480 pixels
the computational time was around 3.2s using a standard
PC. Also the Daisy descriptor has better precision than other
image feature descriptors according to the literature [26].

The processing pipeline consist of several phases as fol-
lows: (1) capture the stereo image pair; (2) rectification and
aligning of the images; (3) compute the Daisy descriptor
for every pixel of the left, respectively right image; (4) for

2Two-frame stereo algorithms: http://vision.middlebury.edu/stereo/

every pixel of the right image search for the corresponding
one in the left image, the search is performed on the same
line from the minimum disparity (10 in our experiments) to
the maximum disparity (respectively 40); (5) select the best
match by comparing the descriptors, resulting the disparity
(for some pixels the disparity could not be found); (6) using
the stereo geometry of the vision system and triangulation
compute the real world XYZ coordinate for the pixels; (7)
get the RGB colour and save the point cloud shown in Figure
4.

3) Robust Coloured Point Cloud Features Correspon-
dence: For the RGB-D datasets SIFT3D type keypoints were
considered, while for the local descriptors both the NARF
and FPFH variants were tested. As in the case of the laser
range data, the FPFH proved to be more robust to the rotation
type transformations. For the translations the performance of
the two type of descriptors were similar.

The output of the feature estimation and the correspon-
dence estimation for the SAD stereo algorithm is shown in
the Figure 3. As it can be seen, the correspondences are
valid for this type of algorithm, although the quality of the
3D point cloud is rather noisy.

Fig. 3. Feature matching for coloured point cloud from stereo camera with
SAD algorithm

The results of the feature estimation for the Daisy stereo
image processing is shown in Figure 4. For this case, the
generated 3D coloured point cloud has less distortions,
although it has depth discontinuousness for ranges above 2m.
Also in this case the keypoint-descriptor pairs have less false
correspondences as in the case of the SAD stereo imaging
algorithm.

C. 3D Features from Structured Light Camera Images

1) Principle of Depth Measurement via Triangulation:
The Kinect RGB-D camera captures infrared and RGB data
from the same scenario. It has also an infrared emitter, which
is used for structural light projection on the scene as this is
described by the inventors in [27].

The projected pattern is captured by the infrared camera
and is spatial correlated with the reference one. The effective
distance measurement is done on the principle of computing
the distance between the reference points from the emitter
and the ones received at the infrared sensor via a triangula-
tion using the known baseline distance between the emitter
and the receiver.



Fig. 4. Feature matching for coloured point cloud from stereo camera with
Daisy algorithm

Further on the depth image and the RGB data can be fused
by using a calibration based on the fixed parameters of the
camera. The main error sources for this device are related to
the lighting conditions of the measured scene, as for strong
lighting (e.g. sun) the projected infrared pattern have low
contrast. This is also the main reason for the indoor usage
limitation of this type of sensor.

2) Feature Correspondence Filtering for Kinect RGB-D
Data: We tested different keypoint-descriptors for this type
of RGB-D data including NARF, SIFT3D and FPFH ones.
The best computational effort and descriptor performance
was obtained for the SIFT3D keypoint and FPFH feature
descriptor pair. For this type of setup the result of the
algorithm is shown in Figure 5, which shows two recordings
which were taken from the same scenario with the second
scene rotated with 30 deg to the base one.

Fig. 5. Feature matching for coloured point cloud from structured light
camera, unfiltered correspondences.

Further on, the SAC based filtering of the correspondences
gives a reduced set of feature pairs as this is visible in Figure
6. The original correspondence pairs were reduced from 56
to 11. This was done by computing both the back and forth
correspondences between the source and target datasets.

For both cases the original RGB-D point cloud was
filtered by using a voxel-grid filter in order to reduce the

Fig. 6. Feature matching for coloured point cloud from structured light
camera, filtered correspondences

measurement noise in the data and to have a more compact
dataset [28].

D. Heterogeneous Feature Evaluation

The main idea of the heterogeneous feature evaluation
relies in the simultaneous use of different type of descriptors
from different type of data sets, i.e. stereo camera, Kinect
or laser. The motivation behind the use of different feature
descriptors is the enhancement of the robustness for the
initial alignment of the rigid transformation estimation. Also
in the case of the stereo imaging - Kinect combination,
ensures a larger range of operation, beyond the limits of the
Kinect sensor.

In our test scenario, we used the different stereo imaging
algorithms and the kinect data for comparing them against
the ground truth laser dataset. Four type of descriptor sets
were considered: stereo from SAD, stereo from Daisy, the
combination of SAD stereo with the Kinect and the combi-
nation of Daisy stereo with kinect. In the case of the RGB-D
data, SIFT3D keypoints were considered. These showed to
be more powerful than the NARF ones for the colored 3D
data.

In Table II the results of the heterogeneous keypoint-
descriptor pairs are shown. The initial estimate for the
SAD stereo algorithm is compared to the Daisy one and
to the combined SAD-Kinect, Daisy-Kinect sets. The Daisy
correspondences returned a better transformation than the
SAD, while the SAD-Kinect combination over performs
both stereo algorithms. The best performance was obtained
for the Daisy-Kinect pair in terms of differences from the
reference point cloud transformation obtained from the 3D
laser scanner considered as reference in our test cases.

TABLE II
HETEROGENEOUS 3D FEATURE DESCRIPTOR PERFORMANCE
COMPARISON
Name | SAD | Daisy | SAD — Kinect | Daisy — Kinect
Error 0.13 0.10 0.094 0.081




The tests were performed on datasets containing around
10* points for which the extracted number of keypoints was
in the magnitude of 102. For computing the runtime the
average values were considered for 10 consecutive runs on
a P4 single core laptop running Ubuntu.

The test datasets were recorded indoor at natural lighting
conditions, the transformation between the source and target
sets being a rotation plus translation type transformation.

IV. CONCLUSIONS

This paper presents a common framework for evaluating
different heterogeneous keypoint-descriptor performances
obtained from 3D datasets. The data acquisition is done by
using a custom 3D laser range scanner, a stereo camera
and a commercial structured light camera. The estimated
correspondences were filtered by using a sample consensus
based approach.

A. Result Analysis

From the comparison of the different descriptor sets
including NARF and FPFH, results that the combined
keypoint-descriptor sets show more robustness in terms of
the correspondence estimation between two different scenes
captured with stereo camera and the Kinect device. The idea
of using a heterogeneous keypoint-descriptor set proved to
give better results than using them apart. The computational
effort is comparable for both cases.

B. Future Work

For the future work we propose the extension of the cur-
rent indoor dataset to outdoor ones, with additional variants
for the keypoint and descriptors and their combinations. The
future applications of the proposed algorithm would include
the scene recognition within a SLAM framework in an urban
environment and providing an open access database for this
type of evaluation algorithm both indoor and outdoor.
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