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Abstract—This paper presents an indoor object handling
application using a 7 degree of freedom lightweight robotic arm
and a commercial depth sensor. The motion planning for such a
complex arm is demanding, especially in a cluttered scenes, like
the majority of human environments are. In order to cope with
this task we designed and implemented the direct and inverse
kinematics for the arm as well as the perception related modules
using a depth sensor. Both the simulation and experimental parts
are carried out in a common framework which ensures a light
integration of different planning and spatial perception parts.

I. INTRODUCTION

An emerging field within robotics is that of service robots
especially the ones giving the opportunity to cooperate with
humans. The human-robot interaction in the current state is
mainly representative in the indoor environment, where the
interaction with other objects is must. The object in this
context can be defined as a physically separable union which
is independent from its environment, such that it can be
moved separately from the rest of its surroundings. Two main
directions are characterising the human-robot interaction with
respect to object handling: the object perception and object
manipulation. The first part is mainly focusing on the object
separation, i.e. segmentation while the second part is dealing
with the grasping and planning in the 3D space.

The object segmentation from its surrounding is not always
a trivial task: several research work from the computer vision
domain are focusing on this problem from decades. A common
approach for solving this problem is the passive segmentation,
the camera parameters relative to the object are not modified.
However such an approach may have several drawbacks,
especially when one has to deal with complex scenes, such
as the human environment in general [1]. Also a common
problem for the segmentation and scene interpretation tasks is
related to the computational speed and accuracy of the object
boundaries. A possible solution to overcome these limitation
is the active perception approach which allows change in the
camera parameters and even the interaction with the scene in
order to gain more reliable information about this [2].

More generally, the concept of active perception can be
found also in the human reasoning: one might move an object
or move around an object in order to gain more information
about this [3]. In case that one has a movable camera, i.e.

Fig. 1. The 7DoF robot arm model with the 3D depth sensor mounted on
the top of it

a camera mounted on a robotic arm can take advantage of
this extra degree of freedom, and can use it to gain getter
representation about the surrounding objects, as this might
be often needed. Nor the humans nor the surrounding scene
cannot be expected to perform by itself a movement which
helps the perception system to gain extra information, thus
this has to be done by the robot itself.

These ideas motivate the introduction and usage of the active
perception concept for the human-robot interaction [4]. Having
the possibility to choose the camera external parameters for the
perception system, i.e. move around the camera being mounted
on a robotic arm, this leads to the ability of the robot to choose
the way in which reasons about the working space.

In this paper we describe the method that we developed for
an eye-in-hand mobile manipulator development containing
a 7 degree-of-freedom (DoF) robotic arm used for object
handling. The main contribution of this work was the devel-
opment of kinematic setup for this device as well as the object
detection and handling in the 3D working space.

In the first part of the paper we briefly describe the state
of the art methods used for object detection and handling in
indoor environment with mobile robotic manipulators. Then
we describe the details of the setup that we used in order to
develop the necessary real life experimental setup. Further on
we show the details both for the object detection as well as
the planning approach for the object handling problem. Finally,
the paper is concluded with the results of these investigations.978-1-4673-8692-0/16/$31.00 c©2016 IEEE



II. PROBLEM DESCRIPTION

The problem of object handling in the human-robot interac-
tion context is far from being trivial, several aspects needs to
be considered in order to have a solution to this problem [1].
Different approaches arise from either the camera mounting
position with respect to the robot arm (i.e. on-board or off-
board), the degree of clutter in the scene, or the planning
approach (deterministic vs. probabilistic). A short overview
of the related work in the main literature is presented in the
next section.

A. 3D active sensing

The scene perception using active sensing approach is not
a new concept, it dates back at least to the 80’s [2]. Both the
work in the 2D and in the 3D part has been extended especially
in the mapping domain, where the map extension problem is
referred as frontier based mapping [5].

In our approach we used 3D information sensing, so the
in the next part we focus on the related literature. Also in
the part of the research an important question is related to
the best view selection from the scene, which is done for
example by Potthast et al. [6], by searching each depth points
back projected ray how much contribution has in terms of
information gain. An extension to a single point planning
approach is used in [7], where multiple position plans are
computed in a single step, however the viewpoint selection
and the path planning are done offline.

For dense feature matching a good overview can be found
in [3]. In this paper the authors deal with a semi-complete
scene map for which further information is gather in order to
enhance its completeness. A similar eye-in-hand depth range
sensor approach is presented in [8]: a dense map is generated
with a projected light sensor and in the mean time a reasoning
about the scene object is performed. This approach is similar
to the one presented in the current paper too: an eye-in-hand
3D sensor for scene interpretation and object handling.

B. Planning with 7DoF arm

Object manipulation and grasping with robotic arm has a
long history in the robotics community. There was a paradigm
shift during the time from the deterministic way of planning
such as the A∗ towards the probabilistic planning methods
in the main literature such as the Rapidly-Exploring Random
Trees. A good overview of these techniques can be found in
the book of LaValle [9].

A similar problem to the one discussed in this paper can
be found in the works [10] focusing on planning issues in a
cluttered scene and [11] showing demonstrations for a dual-
arm planning problem. Our work is based on the concepts
described in [12], which was developed within Robot Operat-
ing Systems (ROS) using the out-of-box planning algorithms
such as the Open Motion Planning Library (OMPL) presented
in [13]. Some other variants for planning algorithms can be
found also in [14].

III. ARM CONTROL

Starting with a 7 DoF arm the development of the the
forward and inverse kinematics is not trivial any more, thus
approximate or sample based solutions such as the Rapidly–
Exploring Random Tree (RRT) are often used [9]. This is why
we adopted such a solution for our setup too.

A. Low level interface

The low level libraries for the Cyton arm is based on a
action-server architecture, which communicates with the serial
chained servo motors from the joints and is interfaced to the
computer via the USB port.

At the motor driver level, we reused the already available
ROS Dynamixel package, which could be customised in a flex-
ible way in order to communicate with each joint individually
by assigning an identifier (ID) to each motor in part. In the
next level of control we used these references to address the
physical joints of the arm [15].

B. Building the kinematics model

For the construction of the kinematics model of the robot
arm we used two steps. The first one was building the physical
structure based on the joint-link description language specific
to the ROS environment. Next based on this description we
configured the planning module together with the low level
drivers in order to have a fully functional model for the motion
planner.

For the first part of this task, i.e. the construction of the
physical description we based our work on the existing models
parameters from the commercial robot software package as
well as the predefined universal robotics description from
(URDF) for this type of arm presented in [12]. The later model
contains two different module: one for the arm with rotational
joint controls and one for the gripper with prismatic joint.
The module controls are based on the individual joint level
controllers and state feedback nodes for each node.

C. Planning algorithms

The arm has been tested with different planners from the
Open Motion Planning Library(OMPL) that is available for
use from MoveIt!.

a) RRT: A Rapidly–Exploring Random Tree(RRT) [16]
is an algorithm and data structure successfully applied to path–
planning problems that can contain obstacles, constraints of
nonholonomic, kinodynamic nature. The algorithm tries to find
a path between an initial starting point and a goal point by con-
structing a RRT that containing points from the configuration
space used to reach the goal point. The RRT has its root in
the specified starting point and its size grows iteratively with
points selected randomly from the configuration space. Thus,
the first point from the configuration space is selected and then
a connection between it and the nearest point from the RRT is
considered. If the connection satisfies the constraints the point
is added to the RRT.



b) RRT–Connect: The RRT–Connect [17] algorithm is a
variation of the RRT algorithm. The algorithm involves two
RRTs, one having its root in the starting position while the
other one has its root in the goal position. The algorithm
consists of expanding the trees towards each other, until a
connection between them appears, in such a case a path
between the starting and goal points is found. The algorithms
involves a greedy heuristic [17] in which a new extension
towards a random point from the configuration space is done
multiple times rather than a single time as in the case of the
RRT.

c) PRM: In [18] a path–planning algorithm is introduced
that is used to compute a path between two specified points,
that avoids any collision called probabilistic road map (PRM).
The algorithms works in two steps, in the first one another
planner is used to build a graph data structure, called a
roadmap [18] out of different randomly chosen collision free
points from the configuration space. In the second step, the
actual path between the starting point and the goal point is
computed, by applying a shortest path algorithm, such as
Dijkstra, on the previously constructed graph. The PRM is
used efficiently and is suitable for multiple queries performed
on the same configuration space.

d) KPIECE: The Kinodynamic Motion Planning by
Interior–Exterior Cell Exploration(KPIECE) is a motion plan-
ning algorithm that is successfully applied to path–planning
problems that involves high complexity constraints [19]. The
planner performs a multi–level cell discretization of the con-
figuration space, trying to explore different unexplored zones
of the configuration space in the fastest time possible.

e) EST: In [20] a path planning algorithm named Ex-
pansive Space Trees(EST) is introduced. The EST is a single–
query planner that is similar in its working with RRT–Connect.
The planner constructs two trees rooted at the starting point
and the goal point and expands them until they intersect. When
this happens, a path from the initial point to the goal point has
been found. Only the points from the configuration space that
are related to the starting and goal points are inserted into the
previously defined trees.

D. Integrating into the MoveIt!

The next step in the arm control development was the
integration in the MoveIt! framework. This can be done based
on the models developed in the previous step, and allows the
use of different sampling based planning algorithms such as
the RRT or different kinematic libraries. Beside the graphical
interface based interactive planning, there is a dedicated API
which can be used for planning.

IV. DEPTH INFORMATION PROCESSING

The use of 3D perception sensors in the robotics application
is widespread in the last few years mainly due to the available
low price 3D cameras [21], [22]. In order to ensure the
interaction with the robot arm in the Cartesian space, we used
a commercial depth sensor with color. This ensures that the

Fig. 2. The processing pipeline for the plane extraction algorithm

information in the working space of the robot is perceived in
real time and with sufficient accuracy.

In this paper we focus on the already implemented pro-
cessing components from PCL [23] library available with a
BSD type license for RGB-D data. The main components of
the processing chains included the raw data preprocessing,
segmentation, and model fitting for indoor scenes with objects
being sensed in 1m− 5m depth as this is presented in Figure
2.

Our goal was to detect a particular object in a scene
provided by the sensor.

Having a point cloud from the camera, we need to search for
our object in it. The searched object can be described either as
a mathematical model (cylinder, sphere) or as another point
cloud. In both cases, we desired to retrieve from the scene
only the points that belong to the object. Depending on the
description of the object and the restrictions about the scene
contents, the following algorithms can be considered.

A. Plane extraction

The first scene we considered was a bottle standing on a tall
box in the shape of a cuboid. The bottle had a cylindrical shape
and the box can be seen as a set of planes. If we eliminate
the points that belong to the box, we can obtain the points
belonging to the cylinder.

The box was inside a room and the camera sensed other
objects, such as walls, chairs etc. that were behind the box.
The arm is supposed to grab the bottle, so we can ignore the
points that are outside of the arm’s working space. In order
to remove the background, we used a PCL pass through filter
that keeps only the points that have their z coordinate between
0.5m and 1m.

After the filtering, the point cloud contained only our region
of interest: the box and the bottle. From this, we could
extract all the planes. Then most of the remaining points were
belonging to the bottle. For this purpose, we used one of the
planar segmentation algorithms provided by PCL. Providing a
point cloud, the algorithm detects a group of points that belong
to the same plane. By repeatedly applying the algorithm, we
can remove all the planes in the scene.



The next step is finding the cylinder’s parameters (the cylin-
der axis and radius). This requires fitting the remaining points
to the mathematical model of a cylinder. We used the PCL
cylinder segmentation algorithm, which is similar to the planar
segmentation described above. The RANSAC was chosen for
the search method, the distance threshold (maximum distance
between the points and the cylinder model) was set to 2cm.
We configured the searched cylinder’s radius to be between
1cm− 5cm (the bottle’s radius was about 2.5cm).

The algorithm works the same if there is a sphere instead
of the cylinder. The only difference is the fitting step, in
which we use the PCL sphere segmentation, with the following
parameters: RANSAC search method, the distance threshold
of 2cm and the radius between 5cm− 10cm (the sphere had
a radius of about 7cm). This algorithm has best results when
the scene contains planes and, by removing them, most of
remaining points belong to our object.

B. Region growing segmentation

This algorithm can be used to detect the object in a more
complex scene, where there are many objects, which do not
necessarily have a plane surface. Our program is designed to
search for a model (cylinder or sphere) in this environment.

The Point Cloud Libray (PCL) region growing segmentation
algorithm divides the point cloud into disjoint sets of points
which belong to the same smooth surface, called clusters. In
other words, it separates the smooth surfaces from the scene.

But what is considered a smooth surface? To answer this
question, the algorithm uses the concept of surface normals.
Consider that a surface represents the boundaries of a 3D
object. The surface normal is defined for each point as the
line perpendicular on the surface in that point. A line is
perpendicular on the surface in a point if it is perpendicular on
the plane that is tangent to the surface in that point. Therefore,
the problem is reduced to estimating the tangent plane of the
point cloud in each of its points. In order to find the tangent
plane in a point, the PCL normal estimation algorithm searches
for the neighboring points and finds the plane that minimizes
the sum of distances from the points to that plane. The plane
normal can be computed easily from the plane’s coefficients.

A surface is considered to be smooth if, for each pair of
two neighboring points, the tangent planes are similar, so their
normals have a similar orientation. The ”similarity” of normals
is measured using the angle between their direction vectors.

But the angle between normals may not be enough to
determine if the surface is smooth or not. Considering the
following situation: a cylinder standing vertically on a plane.
We would expect that the plane’s points’ normals to be
vertical, and the cylinder’s points’ normals to be horizontal.
But that does not happen in our case. The normals at each
point are approximated using the neighbors of that point. The
points of the plane that are very close to the cylinder will have
their normals influenced by the points of the bottle. And the
points of the cylinder that are close to the plane will have
their normals influenced by the points of the plane. Therefore,
the plane’s points’ normals will gradually become more and

more horizontal as we get closer to the cylinder. Hence, if the
algorithm was based only on angles between normals, it could
consider the area between the two surfaces to be smooth, and
therefore the cylinder and the plane would belong to the same
smooth surface, which is not true.

To solve this problem, there are two options: set the angle
threshold to a very low value (we had success with a value of
2.5◦), or use the curvature feature. The curvature of a surface at
a point is a measure of the smoothness of the neighborhood of
that point. The more the neighborhood of a point is similar to a
plane, the smaller the point’s curvature is. Therefore, only the
points that are close to the intersection have a high curvature.
We can use the feature by specifying a curvature threshold.
The points that have a higher curvature than the threshold do
not belong to any cluster. In our program, we achieved the
best results with a curvature threshold of 0.07.

In order to divide the scene into smooth surfaces, the
algorithm uses the region growing approach. Starting with
a region containing only one point, called the seed, the
alogithm expands the region by adding neighboring points
that satisfy the smoothness constraints. When the region
cannot be extended anymore (all the neighbors would violate
the smoothness constraints), the cluster is complete, and the
algorithm starts again with a different seed, until there are no
more points in the cloud that have not been processed.

Having the groups of points that form smooth objects,
we iterated through them, trying to fit each cluster to the
cylindrical model. If most of the points of a cluster were fitted
to the model, then we consider the object to be found.

C. Correspondence grouping detection

Another approach for object retrieval is the recent corre-
spondence grouping one suggested in [24]. This method aims
for detecting similarities between two or more objects. In this
case we will use it to find a certain 3-D object (model) in a
scene by grouping the correspondences in clusters, from which
the pose will be extracted.

The descriptors for the keypoints are used to accurately
determine the correspondences between points and hopefully
find the match of the model in the scene, and must be robust
to noise, resolution variation, translation and rotation. The
algorithm that we used was SHOT (Signatures of Histograms
of Orientations), which proved to be robust enough for the
experimental part.

In the last step the correspondence grouping algorithm
classifies all the correspondences that are thought to belong
to the model into clusters, and rejecting the ones that are not.
For this we have used the Hough algorithm which relies on a
Hough Voting process, that outputs the rotation matrix and the
translation vector. This aims at gathering evidence about the
existence of the initial object in the plane by voting if enough
feature correspondences are present.

Unfortunately this method seems to run for several tens of
seconds which is far larger the the most unfavorable one from
the two other methods, so we decided not using it for our real
life experiments.



V. EXPERIMENTAL VALIDATION

In the first stage of our investigations we used also simulated
robot arm, in order to test the object handling algorithms. A
typical figure with our 3D simulated environment containing
the robot arm, the 3D depth camera and an object of interest
is visible also in Figure 4.

In the next steps we performed out real life experiment on
a Cyton Gamma R2 seven degree of freedom robot arm and
using an Asus Xtion Pro depth camera in a typical indoor
environment. In the first part of the real life experiments we
had to determine the external camera parameters relative to
the gripper fingers of the robot arm.

A. Hand-eye camera calibration

The camera calibration in general has a broad interest in the
computer vision and robotics community, several approaches
existing for the intrinsic and extrinsic parameter estimation
problems including the specific hand-eye calibration problem
dating back already at the 80’s [25].

In our approach to the calibration of the depth camera
mounted on the arm and the gripper frame is based on a
relative calibration to a fixed frame in space, as this is shown
in Figrure 3. The main ideas is to use a calibration pattern
as an external reference with an internally calibrated depth
camera. The position of this checkboard and fixed frame with
respect to the depth camera can be determined with standard
methods from the computer vision field taking into account
the physical size of the pattern.

Denoting with CT
F the transformation from the camera

to the fixed frame this can be used later on in computation
of the GT

C (gripper-camera transform) in a closed kinematic
chain. The BT

G transformation from the base frame to the
gripper frame can be determined using the kinematic model
of the robot. Further more, by moving the robot arm to at least
four fixed corners of the calibration pattern, the position of the
base with respect to the fixed frame BT

F can be determined
using a singular value decomposition (SVD) approach. Having
all these transformations in the kinematic chain, the searched
gripper camera transformation can be obtained using:

GT
C =

(
BT

C
)−1 ×B TG (1)

By computing this transformation between the gripper and
depth camera coordinate frames the camera can be integrated
in the planning process easily.

B. Scene object retrieval

Further on we present the results of our investigations
related to the object retrieval from the working space using
the 3D perception pipeline described earlier.

The differences and special characteristics of the presented
methods are shown in Figure 4 containing both the real
experiment scenario as well as the object segmentation using
the selected two approaches.

In the Tables I we summarized the results of our test cases
for the detection rate of the suggested approaches from five

Fig. 3. The 7DoF robot arm model.

TABLE I
DETECTION RATE FOR THE SCENE OBJECTS WITH A SINGLE AND
MULTIPLE CYLINDRICAL AND SPHERICAL OBJECT IN THE SCENE

Cyl.1 Cyl.2 Sph. Cyl.1 all Sph. all
Plane ext. 5/5 4/5 5/5 4/5 5/5
Reg. grow 3/5 2/5 5/5 4/5 5/5

TABLE II
STANDARD DEVIATION OF THE OBJECT CENTRE USED DURING THE

RECOGNITION FROM SEVERAL VIEWPOINTS

Cyl.1 Cyl.2 Sph. Cyl.1 all Sph. all
Plane ext. 0.03 0.43 0.01 0.48 0.55
Reg. grow 0.42 0.03 0.49 0.02 0.41

different viewpoints about the same scene. The first columns
contain the results from the scene with only one object of
interest, while the last two columns show the results for the
retrieval focusing on a specific type of object in a multi-object
scenario.

Finally, the Table II summarizes the results from the stan-
dard deviation for the detected object’s geometric center using
different viewpoints about the same scene by moving the arm
around the objects.

As one can observe the region growing method tends to be
more robust, although the runtime of this is slightly larger than
the plane extraction variant for the same scenes.

C. Planning benchmark

In order to test the performance of the planning algorithms
on the arm, ten points from the configuration space have been
chosen. The test have been carried out for the same points in
two scenarios one unconstrained which contained no obstacles
and one constrained in which an obstacle has been placed.

In the Table III we summarized the runtime performance
analysis for our experimental setup using a standard laptop.
As one could expect, the planning time with a constrained
working space is greater than the one without collision objects
in the scene for the sampling based algorithms. The most
affected variants are in this case the RRT and its derivatives.
The planning times for each algorithm are less then 5 sec-
onds, which in this case is the minimum for the robot arm
displacement in general.



(a) Scene with objects (b) Region growing segmenta-
tion

(c) Planar segmentation (d) Cylinder detection

Fig. 4. Detection scenarios for various different approaches.

TABLE III
PLANNING ALGORITHMS AVERAGE RUNTIMES IN SECONDS FOR THE 7

DOF ARM

RRT RRT–Connect KPIECE PRM EST
Unconst. 2.18 4.13 2.48 2.24 2.13
Constr. 3.15 4.96 2.77 2.45 2.567

VI. CONCLUSION

In this paper we presented a custom solution for the
object manipulation in an indoor environment using a 7 DoF
commercial robot with a 3D depth camera mounted close to
its gripper. We presented our solution to the scene parsing as
well as planning related problems for the object manipulation
using different approaches.

In the future we would like to extend our approach to a more
natural human-robot interaction using advanced detection and
planning algorithms being able to track objects moving in the
humans hand and to interact with these objects in real life
experiments.
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