
Homography Estimation between Omnidirectional Cameras without
Point Correspondences

Robert Frohlich1∗, Levente Tamas2, and Zoltan Kato1

Abstract— This paper presents a novel approach for ho-
mography estimation between omnidirectional cameras. The
solution is formulated in terms of a system of equations,
where each equation is generated by integrating a nonlinear
function over corresponding image regions on the surface of
the unit spheres representing the cameras. The method works
without point correspondences or complex similarity metrics,
using only a pair of corresponding planar regions extracted
from the omnidirectional images. Relative pose of the cameras
can be factorized from the estimated homography under weak
Manhattan assumption. The efficiency and robustness of the
proposed method has been confirmed on both synthetic and
real data.

I. INTRODUCTION

Homography estimation is essential in many applications
including pose estimation [1], tracking [2], [3], structure
from motion [4] as well as recent robotics applications
with focus on navigation [5], vision and perception. Ef-
ficient homography estimation methods exist for classical
perspective cameras [6], but these methods are usually not
reliable in case of omnidirectional sensors. The difficulty of
homography estimation with omnidirectional cameras comes
from the non-linear projection model yielding shape changes
in the images that make the direct use of these methods
nearly impossible.

Although non-conventional central cameras like catadiop-
tric or dioptric (e.g. fish-eye) panoramic cameras have a more
complex geometric model, their calibration also involves
internal parameters and external pose. Recently, the geomet-
ric formulation of omnidirectional systems was extensively
studied [7], [8], [9], [10], [11], [12]. The internal calibration
of such cameras depends on these geometric models, which
can be solved in a controlled environment, using special
calibration patterns [11], [13], [14], [12]. When the camera is
calibrated, which is typically the case in practical application,
then image points can be lifted to the surface of a unit sphere
providing a unified model independent of the inner non-
linear projection of the camera. Unlike the projective case,
homography is estimated using these spherical points [2], [3].
Of course, pose estimation must rely on the actual images
taken in a real environment, hence we cannot rely on the
availability of special calibration targets. A classical solution
is to establish a set of point matches and then estimate
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homography based on these point pairs. Classical keypoint
detectors, such as SIFT [15], are also widely used [4], [2]
for omnidirectional images.

Unfortunately, big variations in shape resolution and non-
linear distortion challenges keypoint detectors as well as
the extraction of invariant descriptors, which are key com-
ponents of reliable point matching. For example, proper
handling of scale-invariant feature extraction requires special
considerations in case of omnidirectional sensors, yielding
mathematically elegant but complex algorithms [16]. In [4], a
correspondence-less algorithm is proposed to recover relative
camera motion. Although matching is avoided, SIFT features
are still needed because camera motion is computed by
integrating over all feature pairs that satisfy the epipolar
constraint.

A number of works discuss the possibility of feature-
less image matching and recognition (most notably [17]),
but without much success. In this paper, we propose a
homography estimation algorithm which works directly on
segmented planar patches. As a consequence, our method
does not need extracted keypoints nor keypoint descriptors.
In fact, we do not use any photometric information at
all, hence our method can be used even for multimodal
sensors. Since segmentation is required anyway in many
real-life image analysis tasks, such regions may be available
or straightforward to detect. Furthermore, segmentation is
less affected by non-linear distortions when larger blobs are
extracted. The main advantage of the proposed method is
the use of regions instead of point correspondence and a
generic problem formulation which allows to treat several
types of cameras in the same framework. We reformulate
homography estimation as a shape alignment problem, which
can be efficiently solved in a similar way as in [18]. The
method has been quantitatively evaluated on a large synthetic
dataset and proved to be robust and efficient. Inspired by [5],
we also show that the estimated homography can be used to
recover relative pose of an omnidirectional camera pair under
the weak Manhattan world assumption.

II. OMNIDIRECTIONAL CAMERA MODEL

A unified model for central omnidirectional cameras was
proposed by Geyer and Daniilidis [9], which represents
central panoramic cameras as a projection onto the surface of
a unit sphere. This formalism has been adopted and models
for the internal projection function have been proposed by
Micusik [10] and subsequently by Scaramuzza [19] who
derived a general polynomial form of the internal projection



Fig. 1: Omnidirectional camera model

valid for any type of omnidirectional camera. In this work,
we will use the latter representation.

Let us first see the relationship between a point x in the
omnidirectional image I and its representation on the unit
sphere S (see Fig. 1). Note that only the half sphere on the
image plane side is actually used, as the other half is not
visible from image points. Following [11], [19], we assume
that the camera coordinate system is in S, the origin (which
is also the center of the sphere) is the projection center of
the camera and the z axis is the optical axis of the camera
which intersects the image plane in the principal point. To
represent the nonlinear (but symmetric) distortion of central
omnidirectional optics, [11], [19] places a surface g between
the image plane and the unit sphere S, which is rotationally
symmetric around z. The details of the derivation of g can be
found in [11], [19]. Herein, as suggested by [11], we will use
a fourth order polynomial g(‖x‖) = a0+a2‖x‖2+a3‖x‖3+
a4‖x‖4 which has 4 parameters (a0, a2, a3, a4) representing
the internal parameters of the camera (only 4 parameters as
a1 is always 0 [11]). The bijective mapping Φ : I → S is
composed of 1) lifting the image point x ∈ I onto the g
surface by an orthographic projection

xg =

[
x

a0 + a2‖x‖2 + a3‖x‖3 + a4‖x‖4
]

(1)

and then 2) centrally projecting the lifted point xg onto the
surface of the unit sphere S:

xS = Φ(x) =
xg
‖xg‖

(2)

Thus the omnidirectional camera projection is fully described
by means of unit vectors xS in the half space of R3 and these
points correspond to the unit vectors of the projection rays.

A. Planar Homography

A 3D point X ∈ R3 in the camera coordinate system is
projected onto S by central projection. Therefore X and its
image x in the omnidirectional camera are related as:

Φ(x) = xS =
X

‖X‖
(3)

Given a scene plane π, let us formulate the relation between
its images D and F in two omnidirectional cameras repre-
sented by the unit spheres S1 and S2. The mapping of plane

points Xπ ∈ π to the camera spheres Si, i = 1, 2 is governed
by (3), hence it is bijective (unless π is going through the
camera center, in which case π is invisible). Assuming that
the first camera coordinate system is the reference frame,
let us denote the normal and distance of π to the origin
by n = (n1, n2, n3)T and d, respectively. Furthermore,
the relative pose of the second camera is composed of a
rotation R and translation t = (t1, t2, t3)T , acting between
the cameras S1 and S2. Thus the image in the second camera
of any 3D point X in the reference frame is

xS2 =
RX + t

‖RX + t‖
(4)

Because of the single viewpoint, planar homographies stay
valid for omnidirectional cameras too [2]. The standard
planar homography H is composed up to a scale factor as

H ∝ R +
1

d
tnT (5)

Basically, the homography transforms the rays as xS1 ∝
HxS2, hence the transformation induced by the planar ho-
mography between the spherical points is also bijective. H is
defined up to a scale factor, which can be fixed by choosing
h33 = 1, i.e. dividing H with its last element, assuming it is
non-zero. Note that h33 = 0 iff H(0, 0, 1)T = (h13, h23, 0)T ,
i.e. iff the origin of the coordinate system in the first image is
mapped to the ideal line in the second image. That happens
only in extreme situations, e.g. when Z2 ⊥ Z and O2 is on Z
in Fig. 1, which is usually excluded by physical constraints
in real applications. Thus the point Xπ on the plane and its
spherical images xS1, xS2 are related by

Xπ = λ1xS1 = λ2HxS2 ⇒ xS1 =
λ2

λ1
HxS2 (6)

Hence xS1 and HxS2 are on the same ray yielding

xS1 =
HxS2

‖HxS2‖
= Ψ(xS2) (7)

III. HOMOGRAPHY ESTIMATION

Given a pair of omnidirectional cameras observing a planar
surface, how to estimate the homography between their
images? First, let us formulate the relation between a pair of
corresponding omni image points x1, x2. According to (2),
their lifted coordinates are obtained by applying the camera’s
inner projection functions Φ1, Φ2, and then the spherical
points are related by (7):

Φ1(x1) = xS1 =
HxS2

‖HxS2‖
= Ψ(Φ2(x2)) (8)

Any corresponding point pair (x1,x2) satisfies the above
equation. Thus a classical solution is to establish a set of such
point matches by standard intensity-based point matching,
and solve for H. However, we are interested in a solution
without point correspondences.

We will show that by identifying a single planar region
in both images (denoted by D and F), H can be estimated
without any additional information. Since camera intrinsic
parameters are known, we can work directly with spherical



Fig. 2: Alignment error (δ) on the synthetic dataset with
various baselines (m is the median, best viewed in color).

Fig. 3: Alignment error (δ) on the synthetic dataset with
various levels of boundary error (m is the median, best
viewed in color).

points. To get rid of individual point matches, we will
integrate both sides of (8). This yields a surface integral
on S1 over the surface patches DS and FS obtained by
lifting the first omni image region D and by lifting and
transforming the second omni image region F . To get an
explicit formula for these integrals, the surface patches DS
and FS can be naturally parametrized via Φ1 and Ψ ◦ Φ2

over the planar regions D and F : D ⊂ R2, F ⊂ R2;
and ∀xS1

∈ DS : xS1
= Φ1(x1),x1 ∈ D as well as

∀zS1 ∈ FS : zS1 = Ψ(Φ2(x2)),x2 ∈ F , yielding the
following integral equation:

∫∫
D

Φ1(x1)

∥∥∥∥ ∂Φ1

∂x11
× ∂Φ1

∂x12

∥∥∥∥ dx11 dx12 =∫∫
F

Ψ(Φ2(x2))

∥∥∥∥∂(Ψ ◦ Φ2)

∂x21
× ∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ dx21 dx22

(9)

where the magnitude of the cross product of the partial
derivatives is known as the surface element. The above inte-
grals can be regarded as component-wise surface integrals of
scalar fields, yielding a set of 2 equations. Since the value of
a surface integral is independent of the parameterization, the
above equality holds because both sides contain an integral
on S1, parametrized through Φ1 on the left hand side and
through Ψ ◦ Φ2 on the right hand side.

A. Construction of a system of equations

Obviously, 2 equations are not enough to determine the
8 parameters of a homography. To construct a new set of
equations, we adopt the general mechanism from [18] and
apply a function ω : R3 → R to both sides of (8), yielding∫∫

D
ωi(Φ1(x1))

∥∥∥∥ ∂Φ1

∂x11
× ∂Φ1

∂x12

∥∥∥∥ dx11 dx12 =∫∫
F
ωi(Ψ(Φ2(x2)))

∥∥∥∥∂(Ψ ◦ Φ2)

∂x21
× ∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ dx21 dx22

(10)

Adopting a set of nonlinear functions {ωi}`i=1, each ωi
generates a new equation yielding a system of ` independent
equations. Although arbitrary ωi functions could be used,
power functions are computationally favorable [18]:

ωi(xS) = xli1 x
mi
2 xni

3 ,

with 0 ≤ li,mi, ni ≤ 2 and li +mi + ni ≤ 3 (11)

Hence we are able to construct an overdetermined system
of 15 equations, which can be solved in the least squares
sense via a standard Levenberg-Marquardt (LM) algorithm.
The solution to the system directly provides the parameters
of the homography H.

The computational complexity is largely determined by the
calculation of the integrals in (10). Since both cameras are
calibrated, Φ1 and Φ2 are known, hence the integrals on the
left hand side are constant which need to be computed only
once. However, the unknown homography H is involved in
the right hand side through Ψ, hence these integrals have to
be computed at each iteration of the LM solver. Of course,
the spherical points xS2

= Φ2(x2) can be precomputed too,
but the computation of the surface elements is more complex.
First, let us rewrite the derivatives of the composite function
Ψ ◦ Φ2 in terms of the Jacobian JΨ of Ψ and the gradients
of Φ2:∥∥∥∥∂(Ψ ◦ Φ2)

∂x21
× ∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ =

∥∥∥∥JΨ
∂Φ2

∂x21
× JΨ

∂Φ2

∂x22

∥∥∥∥
(12)

Since the gradients of Φ2 are independent of H, they can also
be precomputed. Hence only Ψ(Φ2(x2)) and JΨ(Φ2(x2))
have to be calculated during the LM iterations yielding a
computationally efficient algorithm.

B. Normalization and Initialization

Since the system is solved by minimizing the algebraic
error, proper normalization is critical for numerical stabil-
ity [18]. Unlike in [18], spherical coordinates are already in
the range of [−1,+1], therefore no further normalization is
needed. However, the ωi functions should also be normalized
into [−1, 1] in order to ensure a balanced contribution of
each equations to the algebraic error. In our case, this can
be achieved by dividing the integrals with the maximal
magnitude of the surface integral over the half unit sphere.
We can easily compute these integrals by parameterizing the
surface via points on the unit circle in the x − y plane as



(a) 0% (b) 5% (c) 10% (d) 15% (e) 20%

(f) 0.72% (g) 2.69% (h) 4.17% (i) 5.37% (j) 6.79%

Fig. 4: Typical registration results for various level of seg-
mentation error. First row shows the first image and the
amount of segmentation error while the second row contains
the overlay of the transformed first image over the second
image with the δ error (best viewed in color).

f(x, y) = (x, y,
√

1− x2 − y2)T ,∀‖(x, y)‖ < 1. Thus the
normalizing constant Ni for the equation generated by the
function ωi is

Ni =

∫∫
‖(x,y)‖<1

|ωi(f(x, y))|
√

1

1− x2 − y2
dxdy (13)

To guarantee an optimal solution, initialization is also
important. In our case, a good initialization ensures that the
surface patches DS and FS overlap as much as possible.
This is achieved by computing the centroids of the surface
patches DS and FS respectively, and initializing H as the
rotation between them.

IV. EXPERIMENTAL RESULTS

A quantitative evaluation of the proposed method was
performed by generating a total of 9 benchmark datasets,
each containing approximately 100 image pairs. Images of
24 different shapes were used as scene planes and a pair of
virtual omnidirectional cameras with random pose were used
to generate the omnidirectional images of 1MPx. Assuming
that these 800×800 scene plane images correspond to 5×5m
patches, we place the scene plane randomly at around 1.5m
in front of the first camera with a horizontal translation of
±1m and ±[5 − 10] degrees rotation around all three axis.
The orientation of the second camera is randomly chosen
having ±5 degree around the x and y axis, and ±10 degree
around the vertical z axis, while the location of the camera
center is randomly chosen from the [45cm-55cm], [100cm-
200cm], and [200cm-500cm] intervals, providing the first
three datasets for 3 different baseline ranges.

The alignment error (denoted by δ) was evaluated in terms
of the percentage of non overlapping area of the omni images
after applying the homography. Based on our experimental
results, we concluded that a registration error below 5%
corresponds to a correct alignment with a visually good
matching of the shapes. For the synthetic datasets, error
plots are shown in Fig. 2. Note that each plot represents
the performed test cases sorted independently in a best-to-
worst sense. The median value of δ was 0.60%, 0.72% and

1.17% for the different baselines. In the first 2 cases, with
baselines having values under 200cm, we can say that only
1% of the results were above 5% error, while in the case
of the biggest baselines (200cm to 500cm) still 84% of the
results are considered good, having δ error smaller than 5%.
The wrong results are typically due to extreme situations
where the relative translation from the first camera to the
second camera’s position is in such a direction from where
the image plane can be seen under a totally different angle
resulting a highly different distortion of the shape on the
omni image, thus a hard task for the registration algorithm.

In practice, the shapes are segmented from real world
images subject to various degree of segmentation errors.
Therefore robustness against segmentation errors was also
evaluated on simulated data. For this we used the dataset
having the typical base distances of [1m - 2m] and we gen-
erated segmentation error by randomly adding and removing
squares uniformly around the boundary of the shapes in one
of the image pairs. A total of four datasets were produced
from 5% up to 20% of boundary error. Samples from these
datasets can be seen in Fig. 4, while Fig. 3 shows error plots
for these datasets. Obviously, the median of δ error increases
with the segmentation error, but the method shows robustness
up to around 15% error level. In particular, 80% and 60%
of the first two cases are visually good, while only 44% and
30% of the cases are below the desired 5% δ error for larger
segmentation errors.

The algorithm was implemented in Matlab and all the
benchmarks were run on a standard quad-core desktop PC,
resulting a typical runtime of 5 to 8 seconds with the code
not being optimized in any way.

The real images, used for validation, were taken by a
Canon 50D DSLR camera with a Canon EF 8-15mm f/4L
fisheye lens and the image size was 3MPx. In our experi-
ments, segmentation was obtained by simple region growing
(initialized with only a few clicks) but more sophisticated
and automatic methods could also be used. The extracted
binary region masks where then registered by our method
and the resulting homography has been used to project one
image onto the other. Two such examples are illustrated in
Fig. 5, where the first two images are the input omni image
pairs, showing the segmented region in highlight, and the
third image contains the transformed edges overlayed. We
can observe that in spite of segmentation errors and slight
occlusions (e.g. by the tree in the first image of Fig. 5), the
reprojected region’s edges and the edges on the base image
are well aligned.

V. RELATIVE POSE FROM HOMOGRAPHY

Manhattan world assumption is quite common when
working with images of urban or indoor scenes [20], [21].
Although this is a strong restriction, yet it is satisfied at
least partially in man-made structures. A somewhat relaxed
assumption is the weak Manhattan world [5] consisting
of vertical planes with an arbitrary orientation but parallel
to the gravity vector and orthogonal to the ground plane.
Following [5], we can also take advantage of the knowledge



Fig. 5: Homography estimation results on real omni image pairs. Segmented regions are overlayed in lighter color, while
the result is shown as the transformed green contours from the first image region over the second image.

Fig. 6: Alignment error (δ) on the synthetic dataset with weak
Manhattan constraint (only vertical surfaces and horizontal
camera rotation allowed).

Fig. 7: Horizontal rotation error in relative pose (m is the
median).

Fig. 8: Translation error in relative pose (m is the median).

of the vertical direction, which can be computed e.g. from
an inertial measurement unit (IMU) attached to the camera.
IMUs are widespread on modern smart phones. While [5]
deals with perspective cameras, herein we will show that
homographies obtained from omnidirectional cameras can
also be used and then we conduct a synthetic experiment
to evaluate the performance of the method.

Let us consider a vertical plane π with its normal vector
n = (nx, ny, 0)T (z is the vertical axis, see Fig. 1). The
distance d of the plane can be set to 1, because H is
determined up to a free scale factor. Knowing the vertical
direction, the rotation matrix R in (5) can be reduced to a
rotation Rz around the z axis, yielding

H = Rz + (tx, ty, tz)(nx, ny, 0)T

=

 cos(α) + nxtx − sin(α) + nytx 0
sin(α) + nxty cos(α) + nyty 0

nxtz nytz 1

(14)

=

 h11 h12 0
h21 h22 0
h31 h32 1


The estimation of such a weak Manhattan homography

matrix is done in the same way as before, but the last
column of H is set to (0, 0, 1)T , yielding 6 free parameters
only. In order to quantitatively characterize the performance
of our method, 2 synthetic datasets with weak Manhattan
world assumption were generated: first the 3D scene plane
is positioned vertically and randomly rotated around the
vertical axis by [−10,+10] degrees, followed by a translation
in the horizontal direction by ±[400-800] pixels, equivalent
to [2m-4m] such that the surface of the plane is visible
from the camera. For the second camera position we used
a random rotation of [-10,+10] degrees around the vertical
axis followed by a horizontal translation of ±[50cm-100cm].
The second dataset only differs in the vertical position of
the 3D scene plane: in the first case, the plane is located
approximately 150cm higher than in the second case. Fig. 6



shows the registration error for these datasets. As expected,
having less free parameters increases estimation accuracy
(alignment error is consistently under 2, 5%) and decreases
computational time (typically 2-3 sec.).

Based on the above parametrization, H can be easily
decomposed in the rotation α and the translation t =
(tx, ty, tz)

T parameters of the relative motion between the
cameras. For example, using the fact that n2

x + n2
y = 1,

tz = ±
√
h2

31 + h2
32 (see [5] for more details).

Following the decomposition method of [5], the horizontal
rotation angle of the camera can be determined with a
precision of around 0.6 degrees, which means a precision
of a little above 5% of the total rotation (see Fig. 7). As
for the translation t, it can be also recovered with an error
of less then 5cm in the camera position. Note that the scale
of t cannot be recovered from H, but during the generation
of our synthetic dataset, we also stored the length of the
translation, hence we can use it to scale up the unit direction
vector obtained from H and compare directly the distance
between the original and estimated camera centers. This is
shown in the plots of Fig. 8.

Of course, classical homography decomposition methods
could also be used. As an example, we show the pose
estimation results obtained on the same dataset using the
SVD-based factorization method from [1]. Fig. 7 and Fig. 8
show the rotation and translation errors for both methods.
Although the differences are not big, one can clearly see the
increased stability of [1].

VI. CONCLUSIONS

In this paper a new homography estimation method has
been proposed for central omnidirectional cameras. Unlike
traditional approaches, we work with segmented regions cor-
responding to a 3D planar patch, hence our algorithm avoids
the need for keypoint detection and descriptor extraction. In
addition, being a purely shape-based approach, our method
works with multimodal sensors as long as corresponding
regions can be segmented in the different modalities. The
parameters of the homography is directly obtained as the
solution to a system of non-linear equations, whose size is
independent of the input images. The algorithm is compu-
tationally efficient, allowing near-real time execution with
a further optimized implementation. Quantitative evaluation
on various synthetic datasets confirms the performance and
robustness of the method under various conditions. We also
demonstrate, that the accuracy of our homography estimates
allows reliable estimation of extrinsic camera parameters
under weak Manhattan world assumption.
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