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Lessons Learned from Lightweight CNN Based Object Recognition for
Mobile Robots

Andrea-Orsolya Fulop and Levente Tamas

Abstract— The focus of this paper is on the comparison of
multiple neural network frameworks and the their usage in
2D/3D robot perception applications. Numerous frameworks
exists for this task including the recent deep learning based
ones, which allow us to develop a perception system, with the
chosen parameters for object recognition. In this paper we
analyzed the possible solutions, including different Convolu-
tional Neural Networks (CNNs) variants. The advantages of
2D CNNs linked with 3D features lead to another approach,
which can be extended further. The leading idea is to create a
custom object recognition method that takes advantage of a 2D
system’s precision and speed, but it can efficiently incorporate
3D features. This way, the disturbances specific to each method
separately can be minimized. On the other hand, this is a
lightweight solution, that is supposed to be tolerated by less
powerful processing units as well. By placing 3D bounding boxes
around detected objects, the convenience of the 2D detection
methods can be integrated in a 3D metric world.

I. INTRODUCTION

A. Motivation

Our target application was an object recognition system
based on 2D CNNs [?] and 3D pose estimation. The com-
bination of 2D state-of-the-art systems with 3D features
carries great possibilities [?]. Clearly, in order to use this
technique, not only the RGB images are needed, but also
their corresponding depth images. We implemented a system,
that does not rely entirely on 2D or 3D features, rather
combines them and extracts the most important segments.
This system is able to provide good results even when the
available computational resources are limited. Since our main
goal was to use it on mobile robots, the processing power
cannot be compared to a computer’s GPU, such as in case
of dedicated servers.
We also tested how do different neural network frameworks
perform when the same, lightweight dataset is used. The
comparison highlights the advantages and drawbacks of each,
regarding the domain of object recognition for mobile robot
applications.

B. Problem description

This system helps a mobile robot to recognize custom
objects in its environment. Since the capabilities of such a
robot are limited, the solution needs to be constructed in
such a way that it is supported by a modest hardware. An
example for such a hardware is a Raspberry Pi 3 model
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B with a Intel Movidius Neural Compute Stick. The stick
supports Caffe and TensorFlow, and thanks to its reduced
size the usage is comfortable even for lightweight systems,
such as mobile robots.
In order to get started, a basic knowledge is essential about
the functionality of neural networks, convolution, image
processing techniques and mobile robot programming. How-
ever, the learning curve for these non-parametric estimation
techniques is rather steep, i.e. in relatively short time cus-
tom solution can be achieved in developing custom object
recognition tasks.

C. Related work

The concept of neural networks and deep learning gains
more territory each year in computer vision and robotics,
thus there is a rich literature on frameworks related to this
technology. Placing 2D bounding boxes around detected
objects is a common feature for most detection systems.
In this paper we focus on three major frameworks, namely
Darknet [?], Caffe [?] and TensorFlow [?].
Convolutional Neural Networks are specific feed-forward
networks, that perform extremely well on visual recognition
tasks. Since object recognition belongs to this field, it is
convenient to take advantage of this characteristic. The
most representative networks that are worth to mention are
Region-based Convolutional Neural Networks (R-CNN) [?],
Fast R-CNN [?], You Only Look Once (YOLO) [?], Faster
R-CNN [?] and Region-based Fully Convolutional Networks
(R-FCN) [?]. All of the above require a powerful GPU,
at least for the training phase. In order to have a decent,
preferably real-time performance, it is recommended to use
GPU during the deployment process as well.
Using the Pascal VOC 2007 dataset, the performances are
compared in Table I.

Method mAP Rate
YOLO 63.4% 45 fps
YOLOv2 76.8% 67 fps
R-CNN 58.5% 3 fps
Fast R-CNN 70.0% -
Faster R-CNN (VGG-16) 73.2% 5 fps
R-FCN (ResNet50) 77.4% 8-11 fps
R-FCN (ResNet101) 79.5% 5-8 fps

TABLE I: Performance comparison of neural networks for
object recognition based on mean average precision (mAP)
and frames per second (fps).



Darknet [?] is an open source neural network framework,
and it uses YOLO, a state-of-the-art object detection system.
Its performance depends heavily on the machine’s GPU, but
under optimal circumstances it performs real-time, meaning
40-90 fps. It makes use of a single neural network to the
whole image, then divides into multiple regions and predicts
the locations, using bounding boxes and probabilities. The
predictions are influenced by the environment of the detected
object. Since it uses only one network evaluation, its speed
exceeds multiple times the speed of R-CNNs or even Fast
R-CNNs. Recently they introduced YOLOv2[?], which pro-
vides some additional improvements over the former variant.
Caffe [?] is a deep learning framework developed by Berke-
ley AI Research. It mainly focuses on image processing,
and it is not designed for other deep learning application
such as text or sound recognition. The previously mentioned
networks, namely R-CNN, Fast R-CNN and Faster R-CNN
can all be integrated and effectively used with Caffe.
TensorFlow [?] is probably the most widely used open
source deep learning framework. It was developed by re-
searchers and engineers working on the Google Brain Team
within Google’s Machine Intelligence research organization.
It is a flexible and adaptable system, that can be useful on
many fields of interest.

II. OBJECT RECOGNITION

A. Overview

Object recognition allows robots or any kind of AI pro-
gram to identify objects from a given camera input stream.
This input stream is usually provided by a camera, and the
optimal outcome is a real-time detection.
The previously mentioned networks [?], [?], [?], [?], [?],
[?] have impressive performance on large datasets, but using
only 2D images has its own drawbacks. There is a constant
battle between speed and precision, so in order to achieve
a satisfying result compromises are needed. Speed has to
be sacrificed for a more precise detection and vice versa.
Furthermore, it provides coordinates only in 2D. Robots
usually need 3D coordinates in order to interact with an
object or recognize and locate them on a map.

B. 2D

The first objective is the preparation of a sufficiently rich
dataset, meaning that it contains satisfactory amount of data,
in this case images. The resolution of the pictures should be
adequate, neither too high, nor too low, and it is essential
that the overall quality is acceptable.
Usually a preliminary processing and filtering is recom-
mended in order to emphasize the contour of the objects
and to reduce the images’ size. Labels need to be assigned
to each class, so the identity of the detectable objects from
the images can be ”learned”. The dataset is divided in two
parts: a bigger one for training and a smaller for validation.
The structure of the neural network is then determined. Since
CNNs achieved the best performance in this domain, their
usage is highly recommended. The desired amount of con-
volutional, pooling and fully-connected layers, respectively

the activation functions need to be specified.
The network treats the images as matrices filled with pixel
values. During the training process filters are applied on the
images, that are updated after each iteration. As the error
decreases, the filters become more and more accurate. Once
the training process is finished, the filters can be used on
new images or even on a camera stream.

C. 3D

3D state-of-the-art detection methods have an increased
runtime and need way more processing power than their
2D counterparts. Using point clouds acquired from RGB-
D sensors, semantic segmentation and training is a costly
process, wearing down even powerful GPUs.

A major challenge in the 3D object detection part relies
in the part segmentation: the separation of the background
and region of interest [?]. For this a useful technique is the
use of the 2D bounding boxes as hints in the 3D point cloud
segmentation part, thus speeding up and making more robust
the recognition pipeline.

This approach assumes that the color and depth cameras
are relatively calibrated. In our case we used a Kinect like
camera, for which this constraint is satisfied. According to
our previous investigations on the feature 3D based object
recognition robustness [?] we chose the viewpoint feature
histogram (VFH) based variant for its speed and robustness
against sampling noise. The disadvantage of this approach,
i.e. the sensitivity to the boundary segmentation was com-
pensated with the use of pre-segmentation based on the 2D
bounding boxes determined by the 2D detection algorithm.

D. Experimental result

Test conditions: The tests were conducted on a Dell laptop,
with Nvidia GeForce GTX 1060 6GB graphics card and
Intel Core i7-7700HQ CPU @ 2.80GHz x 8 processor, using
Ubuntu 16.04 LTS, 64-bit OS, CUDA 9.0, cuDNN 7.0.5,
TensorFLow 1.6.0, Caffe 1.0.
Our experiments began by the comparison of three frame-
works, and several networks. In order to achieve the best
accuracy, the same custom dataset was used for each of them.
This dataset was created by us, using a Kinect camera and
it contains 4 object classes, including pictures about objects
from several angles.
In the case of Darknet, the modified YOLOv2 network was
used. For this, the data preparation takes more time, since
the images must be labeled. This label contains the class
number, and the position of the object relative to the image.
This ensures not only the recognition, but also the right
placement of the bounding boxes during detection. These
bounding boxes are weighted by the predicted probabilities.
The configuration files include the structure of the network
and the parameters that need to be set. The training executed
until the average loss was stagnating around 0.08. After
30.000 iterations, the model reached its present form. Figure
1 presents the visual results from the recognition process.
CPU is adequate only if pictures are used in order to



test the model, but for real-time performance CUDA is
recommended.

Fig. 1: Examples of detection of the objects of interest,
after applying the trained model, using Darknet [?] and the
modified YOLOv2 [?] network.

For Caffe, the labels for each class were assigned in
the program. The network used is a modified Alexnet [?].
The process started with histogram equalization, resizing,
division in two parts then storage in LMDB database. With
the help of already implemented Caffe tools, the mean image
of the training data can be generated. The structure of the
network is defined in a prototxt file, specific to Caffe. The
solver, responsible for model optimization, contains the base
learning rate, the learning rate policy, step size, maximum
number of iterations and more advanced parameters, that
can be chosen individually. The switch between CPU and
GPU works seamlessly, but the process used with CPU
is almost ineffective. During training with GPU, the loss
quickly stabilized around 0.38. Figure 2 shows the evolution
of the accuracy and loss after the first 10000 iterations.

TensorFlow was the only framework that showed a decent
performance even when only CPU was used. In order to
have more common points for comparison, the network is
a modified Alexnet in this case too. With respect to the
length of the code, this solution included the largest amount
of it. The labels were assigned in the program and the
configuration of the parameters does not require a separate
script. Since the entire purpose of TensorFlow is the usage
of computational graphs, it can be executed much more
efficiently than simply in Python. Once the training process
reached the maximum given number of iterations it stopped,
and the average loss stabilized around 0.39. The test shows
the results in Figure 3 after 10000 iterations.

The results for each method were exported, compared and

Fig. 2: The evolution of the training parameters during the
first 10000 iterations. Red - training loss, green - test loss,
blue - test accuracy (best viewed in color).

Fig. 3: The correct and predicted labels of nine, randomly
chosen objects from the list. True - real label, Pred - predicted
label.

the final comparison can be found in Table II. It presents the
performance recorded on the test set. Each model was used
on the same dataset, and the precision is recorded for each
class separately, then the average is calculated. The results
are based on a small test set, that contains a total of 40
images, 10 for each object class. Each percentage shows the
number of correct detections over the total number of images
for each object class separately.

Class Darknet Caffe TensorFlow
Box 60% 80% 80%
Fire extinguisher 100% 40% 40%
Pallet 60% 80% 70%
First-aid kit 90% 70% 60%
Total 77.5% 67.5% 62.5%

TABLE II: The results of the final comparison, for each class
separately and the average of detection rate.



Layer 1 Layer 2 Layer 3 Layer 4 Results
Size Activation f. Size Activation f. Size Activation f. Size Activation f. Class 1 Class 2 Average

2 relu 2 relu - - - - 92% 94% 93%
2 sigmoid 2 sigmoid - - - - 85% 57% 71%
2 tanh 2 tanh - - - - 91% 88% 89.5%
2 relu 4 relu - - - - 95% 94% 94.5%
2 tanh 4 tanh - - - - 100% 75% 87.5%
4 relu 4 relu - - - - 99% 77% 88%
4 relu 8 relu - - - - 99% 82% 90.5%
4 tanh 8 tanh - - - - 99% 69% 84%
8 relu 8 relu - - - - 99% 91% 95%
8 tanh 8 tanh - - - - 99% 83% 91%
8 relu 16 relu - - - - 97% 95% 96%
16 relu 16 relu - - - - 98% 94% 96%
16 tanh 16 tanh - - - - 96% 88% 92%
16 relu 32 relu - - - - 99% 89% 94%
8 relu 8 relu 8 relu - - 98% 83% 90.5%
8 tanh 8 tanh 8 tanh - - 95% 96% 95.5%
8 relu 8 relu 16 relu - - 96% 95% 95.5%
8 tanh 8 tanh 16 tanh - - 99% 86% 92.5%
8 relu 16 relu 32 relu - - 93% 98% 95.5%
8 tanh 16 tanh 32 tanh - - 99% 85% 92%
16 relu 16 relu 16 relu - - 98% 95% 96.5%
16 tanh 16 tanh 16 tanh - - 100% 78% 89%
32 relu 32 relu 32 relu - - 98% 88% 93%
32 tanh 32 tanh 32 tanh - - 99% 70% 84.5%
32 relu 32 relu 64 relu - - 96% 98% 97%
32 relu 32 relu 64 relu - - 100% 79% 89.5%
32 tanh 64 tanh 32 tanh - - 97% 90% 93.5%
2 relu 4 relu 8 relu 16 relu 96% 93% 94.5%
2 tanh 4 tanh 8 tanh 16 tanh 100% 88% 94%
32 relu 64 relu 128 relu 256 relu 96% 94% 95%
32 tanh 64 tanh 128 tanh 256 tanh 97% 95% 96%

TABLE III: The most successful network architectures and their accuracy for two object classes.

It is important to mention, that the final conclusion
cannot be drawn by taking into consideration only these
results. The created code can be modified, and the network
structure can be changed in order to achieve a better
performance. This comparison puts accent on computer
vision and CNNs respectively. Darknet and YOLO were
created only for this purpose, thus professionally optimized,
including out-of-the-box features. Caffe has some useful
built-in tools as well, but since our dataset is a custom one
and consists of a limited number of pictures, its accuracy
is poorer. The situation is similar to TensorFlow, where a
bigger dataset would result in better precision. Also, for the
latter everything needs to be written manually. Without a
high-level API, the code becomes unnecessarily long and
repetitive. On the other hand it is the most flexible and
versatile variant. This fact was proved to be convincing
enough to continue the research in order to find a more
efficient network structure. Using Keras [?] with TensorFlow
backend, the problem of the long-drawn code is eliminated.
We created additional datasets consisting of a higher number
of images in order to have a better insight of its influence
on the performance. During the process, multiple factors

were taken into consideration, and their influence on the
results was recorded. The tested activation functions are
the three most used ones, namely ”relu”, ”sigmoid” and
”tanh”. The number of layers varies between 2 and 4, and
the number of neurons on some layers goes up to 256.
The convolutional kernels are the size of 3x3. The most
successful combinations are listed in Table III. Since one
layer is not sufficient, this possibility is not included in
the table. For the sake of simplicity and time management,
we used only two object classes in order to find the best
architecture. The training phase lasted for 30 epochs and
the fully connected layer consists of 500 neurons in each
case. Multiple combinations were eliminated, because the
model did not converge properly.
The most efficient networks were then tested on the original
dataset of four object classes, and on another dataset
consisting of 20 different objects. The results of both tests
are shown in Table IV. In the case of the original dataset,
the results show a powerful increase in comparison to the
previously presented Alexnet structure. However, when
more objects are added, a significant decrease in precision
can be observed. This can happen due to multiple facts



Layer 1 Layer 2 Layer 3 Layer 4 4 classes 20 classes
Size Activation f. Size Activation f. Size Activation f. Size Activation f. 30 ep. 100 ep. 30 ep. 100 ep.

1 32 relu 32 relu 64 relu - - 77.5% 75% 46.5% 48.1%
2 16 relu 16 relu 16 relu - - 72.5% 75% 46.25% 47.1%
3 8 relu 16 relu - - - - 62.5% 85% 44.8% 45.1%
4 16 relu 16 relu - - - - 80% 72.5% 46.45% 44.7%
5 32 tanh 64 tanh 128 tanh 256 tanh 35% 64% 52.55% 53.75%

TABLE IV: The results of the multi-class implementation for the most efficient networks taken from Table III, tested on
the original dataset (4 classes) and on a more extended one (20 classes).

regarding the relevance of the training and test datasets,
the significantly higher number of object classes or other
disturbing effects. As a potential deployment use-case,
the model was also tested on the Intel Movidius Neural
Compute Stick. It is a small scale device, that supports
Caffe and TensorFlow and allows the tuning and deploying
of CNNs on low-power appliances. The stick comes with
a SDK, which offers an API, tools and examples as well.
It creates an internal compiled format based on the desired
input, which can be used later on the deployment device.
The API provides software for connection establishment
with the stick, loading the previously created graph and
running detection on it. Its performance was proved to be
satisfactory for such a small scale device. It is able even
for real-time detection with a low power consumption/size
constrained applications such as in case of autonomous
rovers.

III. CONCLUSIONS AND FUTURE WORK

In this paper we summarized our lessons learned from
the functionality of neural networks, especially CNNs, and
the different approaches from three main frameworks in the
current state of the art in this research field. The main
focus was on the implementation of 2D and 3D object
recognition techniques using a Kinect like depth camera for
mobile robots in indoor environment. A demo code and video
showing the results of this investigation is available on the
website of the authors.

In the future we plan to extend the current approach
with a depth-net hypothesis verification in the recognition
pipeline in order to speed up and run the recognition relying
solely on CNN structures. Also the we intend to use a life
long learning phase of the algorithm, i.e. to extend the
already learned set of features with the new ones during the
robot exploration.
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