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a b s t r a c t

Making sense out of human indoor environments is an essential feature for robots. The paper at hand
presents a system for semantic interpretation of our surrounding indoor environments such as offices
and kitchens. The perception and the interpretation of the measured data are essential tasks for any
intelligent system. There are different techniques for processing 3D point clouds. The majority of them
include acquisition, iterative registration, segmentation, or classification stages. We describe a generic pipeline
for indoor data processing and semantic information extraction. The proposed pipeline is validated using
several data sets collected using different 3D sensing devices.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The 3D perception of the surrounding environment is still an
important research field for both the industrial and the research
community. There are several potential applications for this
domain, mainly from the fields of urban surveillance, path planning
and cultural heritage conservation. Each individual application
requires a specific handling of the acquired data sets. Although
certain applications in the mobile robotics domain require real time
data processing, e.g. dynamic perception and planning, the post-
processing of data is sufficient for our pipeline.

Several sensors can be used for the acquisition of data, such as
stereo cameras, laser range finders, and the recent structured light
sensors. These devices have their own special characteristics in terms
of precision, range and speed. Thus the way in which these sensors
are chosen depends on the specific requirements of the measure-
ment problem to be solved (Scharstein and Szeliski, 2002).

Relatively large areas, such as indoor spaces for offices, require
several different measurements to be aligned in the same coordi-
nate frame. This kind of problem is well studied in the 2D space,
mainly in the image processing domain. Although these 2D
algorithms can be adopted for the registration of 3D data, they

need special adaptations. Also, characteristics such as range, noise,
and distribution have a large influence on the algorithms used for
3D data processing, including the registration of point clouds.

Different algorithms can be used for iterative map registration,
including keypoint and feature extractors, nonlinear correspon-
dence estimators or odometry based approaches (Magnusson
et al., 2007). Although the data merging can be performed based
only on the odometry information, this kind of registration is
prune to fail due to the error integration characteristics of the
odometers (Kaushik et al., 2009). Hence a more robust method
is applied for the initial alignment phase based on an extracted
keypoint-feature data set proposed in the work Zhang et al.
(2008). A similar version of this approach was adopted for the
registration stage in the paper at hand focusing on the iterative
registration without explicitly making use of the loop closure data.
Further on, for the different data sets, specific features and their
correspondences among them are evaluated.

A certain environment is scanned from multiple viewpoints.
These point clouds are then registered using an ICP-based algo-
rithm applied in two stages: (i) initial alignment: only for filtered
set of correspondences, usually a fast process; and (ii) refined
alignment: using the complete data sets, being a time consuming
but accurate variant. The assumption is that the registered cloud is
not axis aligned, thus having a random coordinate system. Since
the approach relies on accurate alignment with real-world axes,
this method transforms the cloud in two steps: (i) initial guess:
using normals of dominant planes to compute the axes; and
(ii) correct alignment: where basic features from indoor
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environments are used to determine the final axes. During this
process the planar surfaces are segmented and the boundary
points for each plane are computed. Quadrilateral shapes are then
fitted to each set of boundaries. These shapes will tell us the
positioning of walls and components such as doors and windows.
After inspecting the sizes of these rectangle-like shapes and
determining the relationships between them, the method can
start assigning a class or label to each point.

The main contributions presented in this paper are as follows:

� development of a robust framework for iterative map registra-
tion based on the combination of different keypoint feature
pairs from the main literature;

� validation of the iterative registration method on different data
sets including indoor and outdoor variants;

� a straightforward and reliable method for estimating the
principal axes of 3D complete indoor data sets;

� improved hierarchical model fitting by clustering the models’
inliers, and retaining only consistent clusters as final models;

� a simple and reliable set of rules for labeling indoor compo-
nents, without the use of any training classifiers;

� procedure for estimating quadrilateral-like forms, which are
needed for the proposed labeling process of 3D points.

2. Related work

The perception of environments is a current topic for several
research works especially in the field of robotics perception (Rusu
and Cousins, 2011; Tamas and Goron, 2012; Nüchter and Hertzberg,
2008). Furthermore, the data registration issues are treated in
different works using various approaches, such as planar patch
matching (Pathak et al., 2010), keypoint-descriptor pairs for the
depth information (Rusu et al., 2010) and even heterogeneous data
fusion including RGB data in the works (Kaushik et al., 2009; Tamas
and Majdik, 2012).

A good example for creating the surrounding environment
is given in Kasinski and Skrzypczynski (2001). The authors are
concentrating on the distributed mapping of an environment,
where the application is an industrial one, e.g. a shared floor in
a warehouse. In comparison to ours – which is intended for
understanding the human indoor environment, such as kitchens,
offices, and hospitals – the application presented in Kasinski and
Skrzypczynski (2001) is closer to business and enterprise.

Several research works deal with the estimation of the precision of
the registered 3D maps. This is valid for both the loop closure based
mapping process (also referred as simultaneous mapping and locali-
zation) (May et al., 2009; Strasdat, 2012) and the iterative registration
based mapping (Magnusson et al., 2009; Hervier et al., 2012) without
closuring the loop during the mapping.

In Nüchter and Hertzberg (2008) the authors propose a so-called
scene interpretation method for labeling the walls, floor, and ceiling.
This approach relies only on the segmentation of planar patches using
the RANSAC (Random Sample Consensus) (Fischler and Bolles, 1981)
algorithm. Further identification of indoor components is obtained
using a rather complex recognition pipeline.

The authors in Rusu et al. (2008) presented an approach similar
to the one described in this paper in Section 4. They also use 2D
quadrilaterals to detect rectangular shapes, but under the assump-
tion that the points are axes aligned (Rusu, 2009). Based on this
assumption the reasoning about the environment becomes more
accessible. Also, from the article it was understood that the so-
called cuboid fitting was applied only for that particular kitchen
data sets.

With regard to door detection, some very interesting work has
been done, such as Murillo et al. (2008) where authors use computer
vision to classify pixels using a somehow smaller set of classes than
the one presented in this work. Although the results look good, the
performance can be easily affected by changing light conditions. Also
by using only image processing, robotic applications which require
3D information cannot be supported. Another work on door detec-
tion is Morisset et al. (2009) where the developed system is
accurately detecting and opening doors. Unfortunately, the authors
have applied it only on doors and handles that are conform to ADA
(American Disability Act) U.S. law, thus suggesting that the system
might not comply for other types of doors.

In addition, there was very little to be found on indoor window
detection, this application being more common for outdoor
processing of buildings. Nevertheless in Tuttas and Stilla (2011) a
method is presented for detecting windows from outdoor scans,
using indoor points. The authors also rely on the detection of
dominant planes, which is being considered most representative.
Using the indoor points, meaning the points which lie inside the
buildings, and which were obtained by the laser beam going
through the windows into the building, the authors estimate the
positions of windows.

In Silva et al. (2012) the authors give an extensive overview
over the latest applications in the area of intelligent homes, such
as child and elderly care, surveillance, and even the optimization
of energy usage. Although the applications summarized in Silva
et al. (2012) are relevant to the applied engineering field, robotic
applications are underrepresented in this work. We believe that
“smart homes” should also incorporate “smart agents”, such as
personal and service robots, which can interact autonomously
with the environment (Papadakis, 2013).

3. 3D scan registration

Several range scans are necessary in order to build a 3D elevation
map of the environment. To use these scans as a coherent data set,
they have to be unified in a common coordinate frame. Unless the
position and the orientation of the mapping robot are accurately
known, the range scan registration needs to be done using specialized
algorithms (Nagatani et al., 2009). Since in our case the robot position
could not be determined with a sufficient accuracy between the
measurement steps, the registration algorithms were employed for
creating the elevation maps (Tamas and Goron, 2012).

The problem addressed in this section deals with an iterative
scan registration without explicitly requiring or performing the
loop closure. Similar benchmarking and approaches were tested
for fusing different additional sensors in the work of Hervier et al.
(2012), or dealing with normal based information registration pre-
sented in Magnusson et al. (2009).

3.1. Data acquisition

There are several possibilities to acquire 3D information from
the surrounding environment. The measurement methods can be
divided into 3 major categories based on the applied sensor and
sensing technology: stereo vision (with two or more cameras)
(Morisset et al., 2009), active triangulation (Ohno et al., 2010) and
time of flight measurements. One of the most precise time of flight
measurement systems is based on the laser scanners; however it is
the most expensive one. A cheaper variant is the stereo camera,
with less precision in the depth estimations or the structural light
approaches (Khoshelham and Elberink, 2012).

In our experiments the data sets were recorded at normal light
conditions for spaces ranging between a few cm and 80 m. The
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scanning of the environment with a custom 3D laser scanner
mounted on the P3-AT mobile robot was performed in a stop–
scan–go fashion. The core part of the 3D scanner is a Sick LMS200
planar scanner augmented with an additional mechanical part in
order to gain the third degree of freedom for the data (Tamas and
Goron, 2012). A single scan takes up to 60 s depending on the
used sensor configuration. The resolution of the used custom 3D
scanner was 0.251 in yaw and 0.51 for the tilting while the depth
absolute error was less than 1 cm. All the measured data was
integrated in the ROS1 environment where each logging was
timestamped for an easier off-line processing (Goron et al., 2010).

3.2. ICP-based registration

The registration problem can also be viewed as the optimiza-
tion of a cost function describing the quality of alignment between
different scans. The algorithm determines the rigid transformation
which minimizes this cost function (Surmann et al., 2001).
The type of algorithm applied for the frame alignment strongly
depends on the measured data set type. For the 3D laser scans the
Iterative Closest Point (ICP) and derivatives are popular in the field
of robotics (Besl and McKay, 1992; Nuechter, 2009; Pathak et al.,
2010). The ICP computes the rigid transformation which minimizes
the distance among two point sets by associating a point from one
frame to the closest point in the target frame. The transformation
between two independently acquired sets of 3D points consists of
two components, a rotation R and translation t. Correspondence
points are iteratively searched from the model set of points M
(with jMj ¼Nm) in the data set D (with jDj ¼Nd). In case of a valid
correspondence we need the transformations R and t which
minimize the distance between the two points as follows:

EðR; tÞ ¼ ∑
Nm

i ¼ 1
∑
Nd

j ¼ 1
wi;j‖mi�ðRdjþtÞ‖2 ð1Þ

where wi;j is assigned 1 if a valid correspondence is found between
the ith point from M denoted with mi and the jth point from D
denoted with dj.

Different variants were developed in order to increase the
robustness and the performance of the algorithm especially for
computing the rotational transformation term, which introduces
a non-linear term in the minimization problem. A comprehensive
overview and a qualitative evaluation of different approaches for
the registration problem can be found in Salvi et al. (2007).

A common approach for boosting the ICP robustness is the
augmentation of the points with additional features such as point
color, geometric features and point histograms (Sharp et al., 2002).
This transposes the optimization problem in a higher order
dimensional space search. These features are usually computed
only for a certain subset of interest points from the original point
cloud, i.e. keypoints in order to reduce the computational effort
and enhance robustness.

The use of keypoints is to enable the efficient comparison between
different data regions. Our approach for the data registration is based
on the correspondence estimation for the extracted keypoint features.

3.3. 3D keypoints and descriptors

There are several possibilities for extracting interest points and
descriptors from 2D images including the popular SIFT (Scale
Invariant Feature Transform) (Lowe, 2004) or the SURF (Speeded
Up Robust Features) (Bay et al., 2008) features. Unfortunately,
these rely on local gradients from a unique orientation and
therefore are not directly applicable for our approach with 3D

data, however some concepts may be inherited from the 2D
domain.

In this paper the Normal Aligned Radial Feature (NARF) (Steder
et al., 2010) keypoints were adopted for the extraction of interest
points from range images. This type of keypoint takes into account
the information about the borders and surfaces, ensures the
detection from different perspectives and the stability for the
descriptor computation. The most important parameter for the
NARF extraction is the support size, i.e. the diameter of the sphere
in which the interest point characteristics are determined (Steder
et al., 2011). In our case several values for this parameter were
tested in order to gain a sufficient number of keypoints for
different types of data sets. After the selection of keypoints was
completed, the specific properties are determined, i.e. the descrip-
tors for the set of extracted keypoints.

For our approach we used the optimized version of the FPFH
descriptor in order to augment the three dimensional space with
pose-invariant local features and also tested the NARF descriptors
with Manhattan metrics as fitness score for the same set of
keypoints. To compare the two set of descriptors, the runtime (T)
in seconds and the initial alignment fitness score (S) was com-
puted for indoor (Id) and outdoor (Od) data sets. The result of the
comparison is summarized in Table 1.

The tests were performed on data sets containing around 10K
points for which the extracted number of keypoints was in the
magnitude of 0.1 K. For computing the runtime the average values
were considered for 10 batch runs on an Intel Pentium 4 single
core laptop running Ubuntu Linux. Although the run-time of the
proposed algorithm is higher than some custom scenario based
approaches such as the one presented in the work (Kaushik et al.,
2009), the degree of generality of the current approach is higher.

As observed, NARF descriptors are computed with several
orders of magnitude faster than FPFH descriptors, but the latter
approach is more robust in terms of estimating correspondences.
This would be also the case for scenes which present less clutter or
variation, thus having less discriminative features, where the FPFH
features ensured a better correspondence between points.

3.4. Correspondence estimation

The next step after determining the keypoints and the descrip-
tors is the estimation of correspondences between the two sets
of keypoints with descriptors. There are several methods for the
correspondence estimation, such as one-to-one, back and forth,
and sample consensus based one (Pathak et al., 2010).

In our approach the correspondence estimation was performed
based on the geometric constrains of the selected points. Thus the
nearest point in the high dimensional descriptor space was searched
by using a kd-tree for enhancing the search speed (Bentley, 1975).
Unfortunately, the brute force search does not ensure a coherent result
for the correspondence estimation problem having in many cases a
large number of false positives.

For improving the estimation results, the filtering based on
sample consensus was adopted. This ensures that after performing
the one-to-one search for descriptors, only those correspondences
are kept which satisfy a geometrical transformation constrain.

Table 1
Feature descriptor comparison.

Data set TNARF TFPFH SNARF SFPFH

Idcluttered 0.19 45 0.071 0.032
Idplane 0.12 12 0.094 0.057
Od 0.11 26 0.083 0.044

1 http://www.ros.org/.
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The comparison of the unfiltered and filtered set of correspon-
dences is shown in Fig. 1 on an indoor data set. This data set
contains two scenes, the original one and the one rotated with 451.
As it can be observed, the initial, unfiltered set of correspondences
contains a large number of false positives, which are eliminated,
yielding a more consistent estimation. The number of final corres-
pondences depends on the parameters used as a threshold for the
sample consensus rejection.

The complete ICP-based algorithm can be found in the works
(Besl and McKay, 1992; Zhang, 1992), therefore only a short
overview is given, with emphasis on the additional descriptor
information for the points. The ICP with initial alignment is
described in Algorithm 1 in the Appendix. It has two input point
clouds, Ps for the source and Pt for the target. Steps 1 and 2 extract
the FPFH of the source and target clouds (these two steps can be
substituted with arbitrary point cloud feature search), while in
Step 3 the initial alignment tn is determined after the correspon-
dence filtering. In the while statement in each iteration a set of
associations Ad is taken for which the best transformation is
determined. The loop exit conditions are related to the error
variation or to the maximum number of iterations both specified

as tuning parameters for the algorithm. Finally, the algorithm
returns the computed transformation between the two data
sets. Further details regarding the implementation of the ICP with
initial alignment based on sample consensus can be found in
Morisset et al. (2009).

The aligned map for the indoor and the outdoor environment is
presented in Fig. 2. In both cases the registration was performed
using a pair alignment approach and the FPFH descriptors for the
computed NARF keypoints. The initial alignment of the scans was
performed based on the filtered correspondences of the FPFH
descriptors. This alignment was then used for the ICP refinement,
computed on the last pair of data in the alignment loop.

For the presented scenarios the error convergence of the ICP
algorithm was monotonically decreasing, a suitable registration
error was achieved in less than 100 iterations. This scenario was
obtained by considering the maximum distance between two
neighbor points to be less than 1 m.

Fig. 1. Initial correspondences (a) and filtered correspondences (b).

Fig. 2. Example of registered indoor map (a) and outdoor registered map (b).
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3.5. Performance evaluation

The registration performance evaluation problem is an actual topic
for the robotics community. Several recent works are focusing on this
problem presenting different benchmarking variants including one
iterative registration evaluation (Censi, 2007; Magnusson et al., 2009)
or the popular global optimization with loop closure (Kümmerle et al.,
2009; Strasdat, 2012; Huitl et al., 2012). The covariance estimation for
the registration is also an important aspect which gives an information
about the confidence of the registration result as this is highlighted in
the work of Hervier et al. (2012).

In order to characterize the quality of the registration beside
the registered error the covariance of the estimate is also impor-
tant for mapping purposes. The ICP can be considered as a least-
square estimator which has the Cramer–Rao bound. This bound
defined as N¼ covðx̂Þ ¼ ½IðxÞ��1 where x̂ represents the estimate of
x and the I(x) denotes the Fisher information matrix. The later
matrix can be rewritten as

IðxÞ ¼ 1
s2 ∑

i

�A2
i Ai

�Ai I3

 !" #�1

ð2Þ

where s denotes the sensor noise and Ai is the skew matrix
composed of the point coordinates of the ith point as proposed in
Hervier et al. (2012). This metric is also useful, as the singularities
of the skew matrix can give a hint of the axes on which the
unobservability condition may arise (e.g. a straight corridor).

As the ground truth is often peculiar to obtain, in order to
evaluate the performances of the proposed methods a public data
set was considered as a reference data the Jacobs University
campus outdoor data (Elseberg et al., 2012) with manual marked
ground truth data. As their measurement was also based on lidar
the covariance of the sensor readings was considered as s¼ 1 cm.
For benchmarking purposes as a stopping criterion the iteration
number of the ICP algorithm was considered niter ¼ 100, usually
this offering sufficient good accuracy for the registration in a few
seconds runtime. In order to compare the performances of the
different keypoint-feature based pre-aligned scans as output the
absolute translation error and the covariance defined with (2) were
considered.

The summary of the evaluation run for different pairs of scans
from the public data set is summarized in Table 2 for the NARF,
FPFH and the combined set of keypoints used for initialization.

The comparison also in this case reflects the superior results of
the initial aligned with the FPFH keypoints over the NARF ones,
while the proposed combined variant of these keypoints gives the
best results. This is due to the different characteristics of the two set
of keypoints as well as the larger number, hence more robust initial
alignment with the combined keypoint set. Also it is important to
observe that the absolute errors computed on different axes tend to
have significant differences. This is mainly due to the asymmetrical
displacement of the coordinate frames with respect to the axes, i.e.
the largest displacement is towards the z-axis on which the largest
errors were measured as well.

4. Indoor environment classification

This section describes an integrated method for classifying
basic components of human indoor environments based on their
physical features. To be more concise, the system records 3D point
clouds and after processing assigns a label to each point according
to the class it belongs to. A P3-AT (Pioneer 3 All Terrain) and a
PR2 (Personal Robot 2) robot are used for achieving this task. In
the following, a comprehensive overview of the proposed method
is given.

4.1. Labeling process

A simple yet robust classification process was implemented,
which can be easily extended with additional component classes if
necessary. The goal of the system was not to rely on any training
process but rather use common sense knowledge to label 3D
points. To give some examples of what we understand as common
sense about indoor human environments, look into Table 3.

For the time being, the classification procedure uses ten classes,
which are also called labels: (1) floor; (2) ceiling; (3) wall; (4) door
frame; (5) door; (6) window frame; (7) window; (8) furniture;
(9) handle; and of course (10) unknown. It might seem redundant
to have such similar classes, e.g. (4) with (5), and (6) with (7), but
some components are not rigid and are constantly manipulated.
Therefore, it is useful to have a system which can determine
the places of those components. The method might not detect
the actual door or window, but will identify the location where it
should be when closed.

4.2. Principal axes estimation

In this subsection, a technique is described for estimating the
principal axes of indoor point cloud data described in detail in
Algorithm 2. First, planes are fitted using the RANSAC (Fischler and
Bolles, 1981) algorithm, by segmenting the inliers of each plane
out of the point cloud. For an example of the final fitted planes,
look at Fig. 3(a). This is repeated until the remaining points in the
cloud fall under a certain threshold. The mentioned threshold is
set to an empirical value of 2500 point inliers.

As expected, RANSAC always finds the dominant planes first,
meaning the planes with the biggest number of inliers. Also in many
indoor environments most of the surface normals coincide with one
of the three main axes of the room. This is because most of the walls
and furniture surfaces are parallel and/or perpendicular to each
other. Therefore, the idea behind estimating the principal axes is to
find three planes, which can form a right angle between each others

Table 2
Evaluation of the registration on public data set.

Alg./transfrom error[cm] tx ty tz

ICPNARF 2.7072.96 2.2172.74 3.974.18
ICPFPFH 1.3273.08 1.5972.13 2.7174.06
ICPcombined 1.2172.59 1.1672.97 1.8273.25

Table 3
Rules for labeling point of indoor environments.

Criterion Description

(i) In the majority of cases the walls inside houses and buildings form
rectangular shapes

(ii) By considering also the floors and ceilings, cuboid shapes are
obtained

(iii) Doors are always positioned on the edge of a wall, very close to the
floor

(iv) And if closed, a door is always parallel to its supporting wall; the
same for windows

(v) Windows are always located higher from the floor, and closer to the
ceiling

(vi) Furniture pieces are usually placed right against the walls, being also
aligned accordingly

L. Tamas, L. Cosmin Goron / Engineering Applications of Artificial Intelligence 32 (2014) 76–8780



normals. The first step is to compare the normal of the most
significant plane with the normal of the second most significant
plane and so on. When a match is found, those plane normals are
marked as axes for the new coordinate system. After the three planes
and their corresponding normals are found, the point cloud is
transformed into the new coordinate system. This was the initial
guess stage of the estimation procedure.

Although now the points are aligned with the real-world
Cartesian system of coordinates, the orientation of the three
vectors representing the axes is most probably incorrect, as it
can be seen in Fig. 3(b). But the method will correct the axes in the
second step, which is described in the following subsection. Also,
it is important to mention that usually only two normal planes
which are at a right angle are needed, since the cross product
between the two mentioned normals returns the third axis.

4.3. Quadrilateral detection

A strategy is detailed here for detecting quadrilateral-like
shapes and for explaining the reasoning behind the classification
process used.

The work is based on the idea presented in Rusu et al. (2008)
although in this work cuboid fitting was based on four extracted
line features while in the current paper this requirement is relaxed
and only three lines are considered for this purpose. This allows
the fitting to be performed on lower density or sparser data too.
This is especially useful for experiments in non-laboratory condi-
tions or with noisy data such as in our outdoor measurements.

Another major difference between the method presented in
Rusu et al. (2008) and the current one is the scan area that is
considered for classification. While in our method a whole room is
considered, in the original method only a single scan with limited
angle of view is used as data source. Also the number of data sets on
which the experiments were performed makes the qualitative
comparison difficult, as in the original work only a single scenario
is analyzed while in this paper more than 10 scenes are considered.

The method uses these quadrilaterals to classify points which
belong to doors, windows, or frames, based on their physical sizes
and positioning inside the scene. By using this approach, the

classification can be effortlessly extended for other rectangular-
shaped components, e.g. furniture pieces, radiators, or trash bins.
But in order to perform quadrilateral fitting, the method would
need to execute these steps:

1. compute boundary points for each segmented plane previously
found;

2. detect line models inside the sets of boundaries using the
RANSAC algorithm;

3. analyze line segments to find candidates which can form
rectangular-like shapes.
The planar boundary points are estimated by using the PCL2

(Point Cloud Library) project. For visualizing the boundaries take a
look at Fig. 3(b), where each plane has its boundaries colored
differently. Then the method continues by fitting lines much
similar to the plane segmentation routine presented in the pre-
vious subsection. Whereas here the threshold for lines is set to 25
point inliers, which is also a value deduced empirically.

Quadrilateral fitting is performed by comparing lines between
each other to determine if formations of rectangular-like shapes
are possible. Finding quadrilateral-like forms which have right
angles is done in an iterative fashion. For each iteration, a new line
segment is checked and if it satisfies certain conditions, it is added
to a quadrilateral configuration as described in Algorithm 3. A line
is added to a current shape, i.e. rectangular, if two conditions are
fulfilled:

(a) at least one, if not both, of the segment's ends should be in the
proximity to either one of the shape's ends;

(b) the angle between the newly added segment and the existing
one is of approximately 901, give or take 51.

A quadrilateral configuration is obtained when a maximum of
four line segments is found making up a rectangular shape. On the
other hand, shapes which have less than three line segments are
rejected. This routine stops when there are no more line segments

Fig. 3. Significant stages for the interpretation of indoor environments, where axes X, Y, and Z, are colored in red, green, and blue, respectively: (a) segmentation of planar
surfaces, where it can be observed that all major planes are segmented correctly, including the two doors; the coordinate system is not correct, thus having the axes
randomly tilted in 3D space; (b) axes are aligned with the real-world, but the coordinate system is still not right, i.e. the Z-axis should point upwards, and not towards the
reader; computed boundary points for each planar surface are also presented; (c) labeling results of the floor (red), ceiling (yellow), walls (green), door frames (cyan), and
doors (blue), plus the corresponding color scaling; axes are aligned as in the real-world environment. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

2 http://pointclouds.org/.
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to be analyzed. For a better understanding consider Algorithm 4.
Naturally, the results of this routine are influenced by the point
cloud density, hence more points result in a better accuracy.

After finding the 2D rectangular shapes, the method checks
their sizes, to see if there are any doors or windows. Usually, the
doors encountered so far were around 2000 mm by 800 mm, and
windows around 1200 mm by 600 mm, whereas walls have a
height of around 3000 mm. Also, this is not the only criterion by
which rectangles are classified as doors or windows. There is also
the positioning of those rectangles in their supporting quadrilat-
erals, i.e. usually walls. Therefore, the method checks also for the
relationships between rectangles, i.e. the relative position in
comparison with one another. With the help of this information,
the correct alignment of the coordinate system – see Fig. 3 – can
be detected.

As an example, think of a smaller rectangle, which is very close
to one of the edges of a bigger rectangle. If that smaller rectangle
within the bigger rectangle has a size close to the system's
thresholds, then it can be asserted that the smaller rectangle is a
door, which lies on the floor, and that the Z-axis should be
oriented upwards in the door's direction.

If the normal of the door is then considered, as for example
Y-axis, which is at a right angle with the newly found Z-axis, the
cross product can be computed and the X-axis is obtained. The point
clouds are transformed according to the new axes, and the correc-
tion of alignment has been fulfilled. Thus having the real-world
coordinate system, the floor, ceiling, and walls can be determined, as
shown in Fig. 3(c), by using a pass through filter along the Z-axis.

4.4. Detection of furniture

Our method is based not only on similar concept proposed in
Tuttas and Stilla (2011) but also incorporates constrains on the
position and size of the detected windows. Although windows and
pictures may have the same silhouette, the way that they lay in the

supporting plane (i.e. the windows are embedded in the plane,
while the pictures usually tumble out from the plane) makes them
distinguishable.

The number of furniture classified in the work (Rusu et al.,
2008) is lower than that in the current work, the focus being in a
statistical analysis of the proposed algorithms. The limitation of
the current approach is related to the objects classes which were
considered at the design phase for the classifier.

The system extracts relevant planes from the registered point
cloud, categorizes them as doors or drawers, walls, floor, ceiling,
and tables or other horizontal structures. This is achieved by first
locating the relevant planar structures, testing for the existence of
fixtures, and segmenting the different doors.

As an exhaustive search for all planes is computationally
intractable, the method is only searching for those that are aligned
with the walls of the room. The orientations of the main walls are
determined using a RANSAC-based (Fischler and Bolles, 1981)
approach on the normal sphere, as described in Marton et al.
(2010). Since in many indoor environments, most of the surface
normals estimated coincide with one of the three main axes of the
room, these directions can be used to limit the plane extraction, as
it can be seen from Fig. 4.

After extracting the primary planes, they are classified into
floor and ceiling based on horizontal orientation and height, and
the walls based on the observation that they are adjacent to
the ceiling. The remaining planar connected components – if they
exceed a minimum size – constitute candidates for tables or
furniture faces as suggested in Algorithm 5. This minimum size
is the empirically deduced value of 500 point inliers in herein
presented experiments.

Fixtures are detected by first finding point clusters that are
within the polygonal prism of the furniture faces using Euclidean
distance measure and then fit RANSAC lines or circles to those
clusters and thereby differentiate between handles and knobs. A
down-sampled version is used, i.e. voxel size 3.5 cm, of the point

Fig. 4. Segmentation result of human indoor environment, visualized without ceiling: (a) 3D data set with highlighted floor; (b) detection of vertical and horizontal surfaces.

Fig. 5. Detection of important furniture pieces, inside kitchen areas.
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cloud for speed considerations and to simplify the computation of
patch areas.

Kitchen appliances, doors and drawers typically have fixtures
that allow interaction with them. The existence of fixtures is a
good indication to the presence of these objects, so the algorithm
searches for clusters of points in the vicinity of detected vertical
planar structures. Since the ultimate goal is the manipulation
of the handles by the robot, clusters that are too big in diameter
relative to the gripper aperture are discarded. These filters are
simple enough to be performed for all possible clusters and
explain all the fixtures in typical kitchen environments. The results
of this process can be visualized in Fig. 5.

4.5. Experimental results

The proposed system was tested on several point clouds,
recorded inside various office and kitchen environments. Table 4
presents empirical results for 13 different data sets, out of which
4 are complete scans of rooms, while the other 9 are only partial
scans. These data sets were recorded with two different devices;
8 of them using a Hokuyo UTM-30LX sensor, mounted on a PR2
robot; and remaining 5 were taken with a Sick LMS 200 sensor,
mounted on a P3-AT robot. Both scanning devices are fitted with
tilting mechanisms in order to attain 3D point clouds.

The obtained results are promising, considering the accuracy
values shown in Table 4. Detection of indoor components was
achieved by identifying planar patches and line segments in the
above-mentioned data sets. The floors and ceilings are detected
flawlessly, as they are the most simple indoor components. Walls and
furniture parts, along with their corresponding handles, are also
accurately identified; whereas doors and windows, with their frames,
are more complicated to detect. Doors can easily blend in as walls,
while windows are harder to detect, due to their transparent nature.
During the experiments, it was also observed that success rates

of handle detection are directly proportional to their physical sizes
(Fig. 6).

5. Conclusions

This work covers the necessary steps for a 3D environment
perception in different environments for automatic reasoning in
case of autonomous agents. As the first step of the perception, the
data acquisition and preprocessing part is presented including the
scan registration. For the registration algorithms a robust keypoint
feature based variant was proposed which proved to provide
reliable results for sparse and cluttered environments.

Further on a system was presented for labeling 3D point clouds
taken from human indoor environments by relying on physical
features. The labeling classes are as follows: floor, ceiling, wall, door
frame, door, window frame, window, furniture and handle. Also
described, is a technique for estimating the principal axes while
dealing with 3D indoor data sets. From experimental observations,
the presented approach is relatively robust to noise and easy
to compute. The method was tested on different data sets with
promising results.

This system can be useful in different areas of the robotic
research. One would be the interpretation of registered clouds
taken from human indoor environments. Also, it can be useful
to know where basic components, e.g. doors or windows, are
situated for certain environment mapping algorithms.

As research perspectives there are a number of ways to extend
this work, both short-term and long-term. In short-term it is
intended to enlarge this classification, i.e. by adding new classes to
the pipeline, e.g. heating radiators and furniture pieces such as
round windows and paintings. And for long-term the perception
can be improved by incorporating vision into the process, thus
contributing to the overall robustness. Using the Hough transform
instead of the RANSAC algorithm is also taken into consideration.
Despite its lack of randomness, using the Hough transform ensures

Table 4
Detection results presented by individual labels.

No. Label Ground truth Correct detection Accuracy (%) Present in (scenes)

1 floor 11 11 100 11
2 ceiling 11 11 100 11
3 wall 53 50 94 13
4 door 10 8 80 6
5 door frame 10 8 80 6
6 window 10 8 80 4
7 window frame 10 4 40 4
8 furniture 35 33 94 8
9 handle 27 25 93 2

Fig. 6. Obtaining the handles of furniture, which can be used in grasping applications.
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the best possible fitted shapes, each time the labeling pipeline is executed.
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Appendix A. Pseudo-code algorithms

Algorithm 1. ICP with initial alignment.

Input: Ps, Pt
1: Fs¼ComputeFPFH (Ps);
2: Ft¼ComputeFPFH (Pt);
3: ðtn;Af Þ ¼ InitialAlignment ðFs; FtÞ;
4: while ðerrordiff oϵÞ3 ðitero itermaxÞ do
5: Ad¼GetClosestPoints ðtn; Ps; PtÞ;

6: tn ¼ arg min
1

jAdj
∑

jAAd

wjjtðpsÞ�pt j2
 !

;

7: end while
Output: tn

Algorithm 2. Estimating principal axes.

Input: cloud // Data of complete room.
Input: axes¼ | // Empty set of vectors.

1: bool’0; bool1’0; bool2’0; bool3’0 // Set boolean variables.
2: repeat //
3: ½plane; inliers� ¼ detectPlaneInCloudðcloudÞ // Fit plane to data set.
4: if sizeOf ðinliersÞZminPlaneInliers then // Check number of inliers.
5: if bool1 ¼ 0 then // Most significant plane.
6: plane1’plane // Keep detected plane.
7: axes’normal1 // Add plane normal to axes.
8: bool1’1 // Update bool variable.
9: else //
10: if bool2 ¼ 0 then //
11: if plane1 ? plane then // Check if perpendicular.
12: plane2’plane //
13: axes’normal2 //
14: bool2’1 //
15: end if //
16: else //
17: if bool3 ¼ 0 then //
18: if plane2 ? plane then //
19: plane3’plane //
20: axes’normal3 //
21: bool3’1 //
22: end if //
23: end if //
24: end if //
25: end if //
26: extractInliersFromCloudðcloud; inliersÞ // Remove inliers from data.
27: end if //
28: if ðbool1 ¼ 0Þ4 ðbool2 ¼ 0Þ4ðbool3 ¼ 0Þ then // Three axes found,
29: bool’0 // stop fitting planes.
30: end if //
31: until ðsizeOf ðcloudÞZminPlaneInliersÞ4 ðbool¼ 1Þ // Stopping conditions.

Output: axes¼ fnormal1;normal2;normal3g // Initial guess of axes.
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Algorithm 3. Fitting lines to boundaries of planes.

Input: Planes¼ fpp1; pp2;…; ppmg // Detected plane inliers.
Input: Lines¼ | // Empty set of lines, and
Input: Inliers¼ | // corresponding inliers.

1: for k to sizeOf(Planes) do //
2: bpk ¼ getBoundaryPointsðppkÞ // Get boundaries of plane.
3: repeat //
4: ½lmk; ipk� ¼ fitLineToCloudðbpkÞ // Fit line to boundaries.
5: Clusters¼ detectClustersFromPointsðipkÞ // Get clusters of inliers.
6: cpk ¼ passLargestClusterðClustersÞ // The biggest cluster.
7: if sizeOf ðcpkÞZminSizeOfInliers then // Check number of inliers.
8: lmk-Lines // Add found line to set,
9: ipk-Inliers // save its inliers also.
10: extractInliersFromCloudðbpk; cpkÞ // Remove inliers from data.
11: end if //
12: until sizeOf ðbpkÞZminSizeOfInliers // Stopping conditions.
13: end for //

Output: Lines¼ flm1; lm2;…; lmng // Set of line models,
Output: Inliers¼ fip1; ip2;…; ipng // and their inlier points.

pp – points of planes; which were detected along the axes

bp – boundary points; found on the edges of planes

lm – line models; fitted to the boundary points of planes

ip – inlier points; of the previously found line models

cp – cluster points; extracted from each of the line's inliers

Algorithm 4. Estimating quadrilateral-like shapes.

Input: n // Number of fitted lines.
Input: H ¼ fline1; line2;…; lineng // Set of line models.
Input: G¼ | // Empty quadrilateral set.

1: repeat //
2: line¼Hð1Þ // Start with first line.
3: quad¼ | // Initialize empty quad.
4: repeat //
5: if quad¼ ¼ | then // First edge of quad.
6: add line to quad // Add line to quad.
7: delete line from H // Remove line from set.
8: update n // Decrease number of lines.
9: line¼Hð1Þ // Restart with first line.
10: else //
11: if conditionðaÞ4conditionðbÞ then // Check the two conditions,
12: add line to quad // mentioned above.
13: delete line from H //
14: update n //
15: line¼Hð1Þ //
16: else //
17: line¼HðindexOf ðlineÞþ1Þ // Continue with next line.
18: end if //
19: end if //
20: until ðindexOf ðlineÞrnÞ4ðsizeOf ðquadÞo4Þ // Stopping conditions.
21: if sizeOf ðquadÞ42 then // More than two lines,
22: add quad to G // add quadrilateral to set.
23: end if //
24: until Ha| // No more lines in set.

Output: G¼ fquad1; quad2;…; quadmg // Detected quadrilaterals.

Algorithm 5. Detecting furniture surfaces and fixtures.

Input: cloud // Input data set.
Input: axes¼ fX;Y ; Zg // Orthogonal axes of room.
Input: surfaces¼ | // Empty set of surfaces,
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// and furniture fixtures.

Input: handles¼ |

FURNITURE SURFACES

1: for i to sizeOf(axes) do
2: repeat
3: ½plane_model; plane_inliers� ¼ detectPlaneAlongAxisðcloud; axes½i�Þ
4: if sizeOf ðplane_inliersÞZminPlaneInliers then
5: extractPointsFromCloudðcloud; plane_inliersÞ
6: plane_clusters¼ getClustersFromPointsðplane_inliersÞ
7: for j to sizeOf ðplane_clustersÞ do
8: if sizeOf ðplane_clusters½j�ÞZminPlaneCluster then
9: surfaces’plane_clusters½j�
10: end if
11: end for
12: end if
13: until sizeOf ðcloudÞZminPlaneInliers
14: end for

FURNITURE FIXTURES

15: for i to sizeOf(surfaces) do
16: if ðsurfaces½i� ? floorÞ4 ðheightOf ðsurfaces½i�Þ42 ½m�Þ then
17: points¼ getPointsOnSurfaceðsurfaces½i�Þ
18: fixtures¼ getClustersFromPointsðpointsÞ
19: for j to sizeOf(fixtures) do
20: repeat
21: ½line_model; line_inliers� ¼ fitLineToCloudðfixtures½j�Þ
22: if ðsizeOf ðline_inliersÞZminLineInliersÞ then
23: extractPointsFromCloudðfixtures½j�; line_inliersÞ
24: line_clusters¼ getClustersFromPointsðline_inliersÞ
25: for k to sizeOf ðline_clustersÞ do
26: if sizeOf ðline_clusters½k�ÞZminLineCluster then
27: handles’line_clusters½k�
28: end if
29: end for

30: end if
31: until sizeOf ðfixtures½j�ÞZminLineInliers
32: end for
33: end if
34: end for

Output: surfaces¼ fsurface1;…; surfaceng
// Set of detected surfaces,
Output: handles¼ fhandle1;…;handlemg
// and estimated handles.
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