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Abstract—Artificial intelligence solutions for Autonomous 

Vehicles (AVs) have been developed using publicly available 

datasets such as Argoverse, ApolloScape, Level5, and NuScenes. 

One major limitation of these datasets is the absence of 

infrastructure and/or pooled vehicle information like lane line 

type, vehicle speed, traffic signs, and intersections. Such 

information is necessary and not complementary to eliminating 

high-risk edge cases. The rapid advancements in Vehicle-to-

Infrastructure and Vehicle-to-Vehicle technologies show promise 

that infrastructure and pooled vehicle information will soon be 

accessible in near real-time. Taking a leap in the future, we 

introduce the first comprehensive synthetic dataset with intelligent 

infrastructure and pooled vehicle information for advancing the 

next generation of AVs, named VTrackIt.  We also introduce the 

first deep learning model (InfraGAN) for trajectory predictions 

that considers such information. Our experiments with InfraGAN 

show that the comprehensive information offered by VTrackIt 

reduces the number of high-risk edge cases. The VTrackIt dataset 

is publicly available upon request under the Creative Commons 

CC BY-NC-SA 4.0 license at https://vtrackit.irda.club.  

 
Index Terms—Autonomous vehicles, machine learning, 

reliability, safety, verification, validation. 

I. INTRODUCTION 

With the advancements in electronics and communication 

technologies, there is clear progress toward near real-time 

Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) 

data transfer [1]. Such data transfer technologies provide an 

unprecedented opportunity for increased safety and reliability 

of Autonomous Vehicles (AVs) even in adverse situations [2], 

[3]. Examples of V2V data include speed, heading, and pedal 

positions. Examples of V2I data include red light status, speed 

limits, and lane data [4]. Vehicle-to-Everything (V2X) 

encompasses both V2V and V2I data [5]–[7]. Multiple research 

efforts have explored the potential of integrating intelligent 

infrastructure and connected vehicle data to develop individual 

AV applications [5]–[10]. A detailed review by Jeong et al. [11] 

summarizes many of these research efforts and explains the 

vision of smart cities. It is evident that V2X will be the next 

transformative step toward building safe, resilient, robust, and 

reliable AVs.  

Unfortunately, broad availability of public datasets with 

infrastructure and pooled vehicle information is limited to 
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large-scale industrial efforts in the form of proprietary collected 

data [12]. This limits the progress within the self-driving 

community to develop futuristic models that leverage concepts 

of smart cities for AV applications. To address this research 

gap, we introduce a synthetically generated self-driving dataset 

named VTrackIt. The name VTrackIt reflects tracking 

infrastructure and surrounding vehicle information in real-time. 

VTrackIt aims to attract the attention of the self-driving 

community to integrate infrastructure and pooled vehicle 

information for safer and more reliable AV applications. The 

VTrackIt [13] dataset is publicly available for use upon request. 

VTrackIt is inspired by existing datasets like Level5 [12], 

NuScenes [14], Argoverse [15], ApolloScape [16], Waymo 

[17], AIODrive [18], and others. None provide a 

comprehensive vision of integrating concepts of intelligent 

infrastructure and smart cities for the safer deployment of AVs. 

Specifically, Argoverse, NuScenes, AIODrive, and 

ApolloScape do not log relevant infrastructure information like 

lane annotation, lane widths, speed limits, stop signs, and many 

more. One dataset that seems to record some infrastructure data 

is Level5; however, it fails to provide data from a pool of 

surrounding vehicles like speed, lateral and longitudinal 

accelerations, and pedal positions, among others. It is worth 
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Fig. 1.  An overview of VTrackIt with infrastructure and pooled vehicle 

information. Observed trajectories are labeled as ‘History’ and future 
trajectories are labeled as ‘Ground Truth’. Predicted trajectories using state-of-

the-art benchmark (without infrastructure information) are labeled as ‘Before.’ 

Predicted trajectories using VTrackIt are labeled as ‘After.’ 
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noting that some datasets offer semantic maps, but they are 

biased to sequences within their given Operational Design 

Domain (ODD) [12], [15], [17]. This bias makes it challenging 

to develop perception and other Deep Learning (DL) models 

that are generalizable beyond the training data. Taking a leap in 

the future, VTrackIt provides a more comprehensive vision of 

integrating infrastructure and surrounding vehicle information. 

We also validate the advantages of VTrackIt by developing a 

Generative Adversarial Network (GAN), called as InfraGAN 

for trajectory predictions. Our experiments with InfraGAN 

show that high-risk edge cases can be reduced by using 

VTrackIt. The contributions of this paper are multifold: 

 

1. A large-scale, synthetic, self-driving dataset with 

infrastructure and surrounding vehicle information. 
 

2. A video database with high-resolution Birds-Eye-View 

(BEV) and 360° views of the ego vehicle to promote the 

development of semantic-map-free solutions. 
 

3. A compelling case study for using VTrackIt. Specifically, 

the first GAN (InfraGAN) that integrates infrastructure 

and pooled vehicle information for trajectory predictions. 

 

We acknowledge that synthetically generated datasets will 

not replace real-world datasets. However, VTrackIt and other 

synthetic datasets should still be used to explore opportunities 

and significant infrastructure and surrounding vehicle 

information variables that are presently hard to integrate or 

inaccessible in real-world datasets. 

II. LITERATURE REVIEW: RELATED WORK 

The following section reviews commonly used self-driving 

datasets developed and released for public use. 

A. Real-world Driving Datasets 

NGSIM [19] is one of the earliest naturalistic self-driving 

datasets used to develop several Machine Learning (ML) 

solutions. Although the goal of this dataset was to study traffic 

flow theories, limited infrastructure information was provided 

like lane ids, lane section id, and lane direction. Also, some 

surrounding vehicle information is provided, including vehicle 

extents, class, speed, and accelerations were captured at 10 

Frames-Per-Second (FPS). However, NGSM is limited by rigid 

location constraints using a small section on the southbound 

US-101 and Lankershim Boulevard in Los Angeles, CA, 

eastbound I-80 in Emeryville, CA, and Peachtree Street in 

Atlanta, Georgia. Huang et al. [16]  proposed the ApolloScape 

dataset that logged over 2 hours of driving, including 103 

scenarios with complex vehicle and pedestrian traffic flows 

captured at 2 FPS. However, ApolloScape does not include 

annotations for relevant infrastructure information. Chang et al. 

[15] proposed Argoverse, the first large-scale self-driving 

dataset with detailed semantic maps for the cities of Pittsburgh 

and Miami captured at 10 FPS. Although the Argoverse dataset 

logs about 320 hours of driving across 324k complex scenarios 

using a semantic HD map with lane center positions, it fails to 

explicitly annotate crucial infrastructure information such as 

lane annotations. Instead, it is assumed that the semantic maps 

encoded with lane centers and connectivity provide enough 

information. The Argoverse dataset is supplemented by 

rasterized maps to identify drivable areas and corresponding 

ground height information. This dataset represents traffic 

vehicles using centroids, and no other information is provided 

apart from their locations. The Argoverse dataset fails to offer 

detailed surrounding vehicle information. Houston et al. [15] 

proposed the Level5 dataset that logged 1,118 hours of driving 

across 170k scenes with some surrounding vehicle information 

captured at 10 FPS. Level5 offers semantic maps with no 

infrastructure information. A major limitation of Level5 is its 

bias to a single heavily trafficked route under rigid location 

constraints. Holger et al. [14] released the NuScenes dataset 

that logged over 15 hours of driving across 1000 scenarios 

captured at 2 FPS. The NuScenes dataset includes annotations 

for vehicle category, locations, extents, and yaw, for a pool of 

surrounding vehicles. However, only limited infrastructure 

information is provided. Another old dataset for developing DL 

solutions for AVs is the KITTI dataset [20] which logged 22 

minutes of driving captured at 10 FPS. Osinski et al. [21] 

proposed the OpenDD dataset with 501 scenarios recorded at 

30 FPS; however, again, with limited infrastructure 

information. Finally, IntentNet [22] is a dataset used to develop 

DL solutions for AV applications but is not publicly available. 

B. Synthetic Driving Datasets 

To advance the development of DL algorithms for use in 

AVs, some work has also been done to collect synthetic data 

using state-of-art simulators such as CARLA [23]. For 

example, Weng et al. [6] released the AIODrive dataset. 

Although this dataset includes data from different synchronized 

sensors, it lacks infrastructure information and diverse road 

conditions and does not offer a BEV. Xu et al. [24] introduced 

the OPV2V dataset with 70 interesting scenarios recorded using 

various; however, it does not investigate use of infrastructure 

information. KITTI-CARLA [25] is another publicly available 

synthetic dataset that records information identical to the KITTI 

dataset over seven simulated scenarios at 10 FPS. Some other 

synthetic datasets [28], [29] have also been made publicly 

available using simulation-based environments in recent years. 

However, most of these datasets are purpose-driven and only 

record LiDAR and/or perception-based information. Table 1 

presents an overview of all significant datasets used for the 

development of several modern AV applications. While 

multiple efforts collect limited information from surrounding 

vehicles, there is a clear gap of leveraging intelligent 

infrastructure information for most of the discussed driving 

datasets. Next, we introduce the VTrackIt dataset [13].  

III. THE VTRACKIT DATASET 

The VTrackIt dataset consists of 600 scenarios (360 training, 

120 validation, and 120 test), each recorded for a maximum of 

30 seconds (the duration of some scenarios where the ego 

vehicle had a crash may be less than 30 seconds.) Uniquely, 

VTrackIt provides explicit annotations for several V2I and V2V 

information variables for the ego vehicle and all other traffic 
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vehicles within a 50-meter radius surrounding the ego vehicle. 

All scenarios are generated using the CARLA simulator 0.9.13 

[23]. Although several state-of-art simulators such as Nvidia 

DriveSim1, Autonovi-sim [26], and GTA-V [27] exist, these 

simulators are not open source and may limit the future 

extension of this dataset. Although simulators such as TORCS 

[28] and AirSim [29] are publicly available, they offer limited 

sensor suites and lack the photorealistic rendering capabilities 

needed to train modern perception-based DL algorithms. Due 

to its seamless integration with Unreal Engine2 , CARLA offers 

several advantages over other mentioned simulators, such as (i) 

enhanced realism, (ii) sophisticated vehicle dynamics, (iii) map 

customizations, and (iv) easy and realistic, traffic and ego 

vehicle customizations. 

The VTrackIt dataset is generated using the ‘DirectSim’ 

platform that will be released soon. The details of the VTrackIt 

dataset are provided in the following section. 

A. Sensing Package, Lane Annotations, and Aerial BEV 

To generate synthetic data for the VTrackIt dataset, we equip 

the ego vehicle (Tesla Model 3) in the simulation environment 

with four highly synchronized RGB cameras, one IMU, and one 

GNSS sensor. Specifications of all attached sensors are given 

in Table 2. Figure 2 visualizes the sensor positions and their 

orientations from the vehicle center as defined in CARLA. 

While the four RGB cameras with 120° Field-of-View (FoV) 

provide a 360° view around the ego vehicle, VTrackIt also 

 
1 https://developer.nvidia.com/drive 2 https://www.unrealengine.com/en-US 

TABLE 2 
SENSING PACKAGE 

Sensor 

Sensor 

Position 
Code 

Location (in m) Sensor Details 

RGB Camera 
(Front) x 1 

a 

X=0.9;  

Y=0;  

Z=1.44 

Forward facing 
stereo camera 

with 120° field-

of-view 

recorded at 20 

FPS. 

RGB Camera 
(Right) x 1 

b 

X=0.9;  

Y=1.2;  

Z=1.44 

RGB Camera 

(Left) x 1 
c 

X=0.9;  
Y= -1.2;  

Z=1.44 

RGB Camera 

(Rear) x 1 
d 

X=-0.9;  
Y=0;  

Z=1.44 

IMU x 1 e 

X=0;  

Y=0;  

Z=0 

Inertial 

measurement 
sensor to 

record ego 

vehicle 
information at 

20 FPS. 

GNSS x 1 e 

X=0;  

Y=0;  

Z=0 

Global 

navigation 
sensor used to 

record ego 

vehicle pose 
information at 

20 FPS. 

 

 

TABLE 1 

COMPARISON OF MAJOR DRIVING DATASETS USED FOR AV APPLICATIONS 

Variable 

Dataset 
Size Scenarios Maps Trajectories Synthetic 

Frequency  

(FPS) 
BEV 

V2V 

Information 

V2I 

Information 

Diverse 
Road 

Conditions 

Low Light 

Conditions 

NGSIM [19] 1.5h - 

Sections of 

US-101, and I-
80 highways 

✓ - 10 - ✓ 
✓ 

(Partial) 
- - 

KITTI [20] 6h 50 Karlsruhe ✓ - 10 ✓ ✓ - - - 

ApolloScape 

[16] 
2h 

103; 

60s each 
China ✓ - 2 - ✓ - - ✓ 

Argoverse 

[15] 
320h 

324k; 

6s each 

Pittsburgh, Pa 

/Miami, FL 
✓ - 10 

✓ 

(Semantic) 
- 

✓ 
(Partial) 

✓ ✓ 

Level5 [12] 1118h 
170k; 

25s each 

Single route in 

Palo Alto, CA 
✓ - 10 

✓  

(Aerial + 

Semantic) 
✓ 

✓ 
(Partial) 

- - 

NuScenes 
[14] 

5.5h 
1000; 

20s each 
Boston, 

Singapore 
✓ - 2 

✓ 

(Semantic) 
✓ - ✓ ✓ 

AIODrive 

[18] 
2.8h 

100; 

100 secs 
each 

8 Virtual maps 

with varying 
typologies 

✓ ✓ 10 - ✓ - ✓ ✓ 

OpenDD 
[21] 

62.7h 

501; 

5-15 min 

each 

7 Round-
abouts 

✓ - 30 
✓  

(Aerial + 
Semantic) 

✓ - - ✓ 

VTrackIt 

(Proposed) 
5h 

600; 
30s each 

6 virtual maps 

with varying 

typologies 
✓ ✓ 20 

✓ 

(Aerial) 
✓ ✓ ✓ ✓ 
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provides an aerial BEV of the ego vehicle. All scenarios are 

captured and tagged at 20 FPS along with corresponding IMU 

and GNSS measurements. 

In addition to the provided perception information, VTrackIt 

also includes annotations for vehicle information, including 

their locations, attributes, color, extents, heading, steer, throttle, 

and brake pedal positions, along with the relative position from 

the center of the ego vehicle to the center of the tracked traffic 

vehicle. Further, VTrackIt also annotates several infrastructure 

information variables, including lane line color and lane line 

type on both sides, possible maneuvers (lane restrictions), lane 

width, vehicle deviation from the centerline, and red-light 

status. Such data is provided for the ego vehicle and a pool of 

surrounding vehicles. Data from the surrounding vehicles can 

thus be used to train DL solutions for AVs in addition to the ego 

vehicle data. Table 3 provides detailed information on all 

annotated variables, data types, ranges, and measurement units. 

A brief description of each variable can also be seen in Table 3. 

Figure 3 shows a sample frame in a random scenario captured 

by all four RGB cameras giving the ego vehicle a 360° view of 

 
Fig. 2.  Coordinate system for data recorded and locations of sensors with their 

respective sensor codes in the VTrackIt dataset. 
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TABLE 3 
VARIABLES ANNOTATED AT EVERY RECORDED FRAME IN THE VTRACKIT DATASET 

Variable 
Data 

Type 
Description Range / Possible Values 

Unit of 

Measurement 

timestamp Float Time stamp of the measurement 
[0, inf) 

Increments by 0.05 
Seconds 

frame Integer Frame number of measurement 
[0, inf) 

Increments by 1 
int 

actor_id Integer Unique id given to every actor in the scenario [0, inf) - 

actor_type String 
Identifier given to distinguish ego vehicle from traffic 

vehicles 
Ego / Traffic - 

attr String Classification of vehicle in CARLA standards - String 

color Tuple RGB values of given actor (0-255,0-255,0-255) - 

pos_x Float 
Global location of given actor along X-axis in cartesian co-

ordinate system 
[-inf, inf] Meters 

pos_y Float 
Global location of actor along Y-axis in cartesian co-ordinate 

system 
[-inf, inf] Meters 

pos_z Float 
Global location of actor along Z-axis in cartesian co-ordinate 

system 
[-inf, inf] Meters 

heading Float Glo al heading of actor relative to the ma ’s true North (0,360] Degrees 

extents List Actor length and width [0, inf] Meters 

speed Float Actor speed (0, inf] KMPH 

acceleration List Actor acceleration in X, and Y axes [-inf, inf] 𝑚/𝑠2 

throttle Float Throttle pedal position for given actor (0,1) - 

steer Float Steer angle for given actor (-1,1) - 

brake Float Brake pedal position given actor (0,1) - 

red_light Binary 
Unique identifier that is set to ‘ ’ if vehicle is directly 

affected by a red light. 
0/1 - 

rel_angle Float 
Relative angle of a traffic vehicle measured from center of 

ego vehicle; for example vehicle front is 90° 
(0,360] degrees 

rel_x Float 
Relative position of a traffic vehicle measured from center of 

ego vehicle along its y-axis; 
(0,50) Meters 

rel_y Float 
Relative position of a traffic vehicle measured from center of 

ego vehicle along its x-axis 
(0,50) Meters 

lane_type String Lane type affecting actor location Driving / Junction / Shoulder - 

right_lane_mark_type String Right lane marking type affecting given actor location 
Solid / Broken / SolidSolid / 

NONE 
- 

right_lane_mark_color String Right lane marking color affecting given actor location White / Yellow - 

left_lane_mark_type String Left lane marking type affecting given actor location 
Solid / Broken / SolidSolid / 

NONE 
- 

left_lane_mark_color String Left lane marking color affecting given actor location White / Yellow - 

possible_manuvers String Permissible lane changes for given actor based on its location Left / Right / Both / None - 

lane_width Float Width of driving lane based on given actor location (0, inf] Meters 

off_center Float 
Deviations along lane center lines recorded in along given 

actor’s  -axis. 
(0, inf] Meters 

 

 



 5 

its surroundings. Note that each variable is annotated with a 

corresponding frame number that helps synchronize 

perception-based sensor information with other variables in the 

VTrackIt dataset. 

B. Diversity in Weather and Typologies 

A significant limitation of existing synthetic datasets is their 

lack of ability to replicate real-world driving conditions. Thus, 

it is of high interest to (i) simulate scenarios that depict close to 

real-life road typologies and (ii) simulate scenarios that 

adequately consider the interaction of vehicles with their 

surrounding environment. Furthermore, a simulated dataset 

such as VTrackIt must also include scenarios under varying 

operating conditions, including those induced by adverse 

weather. We thus randomize the weather in different maps in 

VTrackIt. Typically, we define and randomly sample weather 

from various weather conditions ranging from noon to sunset, 

clear to foggy, and from dry to wet. We also modify the road 

friction to closely mimic real-life conditions based on values 

given by Hall et al. [30] for wet weather scenarios. Figure 4 

visualizes some of these weather conditions. Table 4 details 

various CARLA maps used in VTrackIt and their respective 

salient features.  

C. Traffic and Ego Vehicle Customizations 

As mentioned earlier, interactions with the surrounding 

environment and traffic regulations play a significant role in 

developing DL solutions for AVs. Traffic is undoubtedly one 

aspect of it. However, no two vehicles are the same in real life 

because of the complex interaction between factors such as 

driver behavior and intrinsic differences in the driven vehicle, 

such as tire wear, vehicle age, and many more. Unfortunately, 

most synthetically generated datasets fail to intelligently model 

such vehicle attributes and assume similar attributes for all 

traffic actors. In their work, Weng et al. [18] briefly discuss and 

try to address this issue. In our case, we adopt a fuzzing strategy 

and randomize every traffic actor in every scenario by varying 

its (i) vehicle type, (ii) vehicle color, (iii) minimum following 

distance, (iv) maximum speed over/under speed limits, (v) 

probability of ignoring other vehicles, and (vi) probability of 

ignoring traffic regulations, as defined in the CARLA 

documentation [23]. All of these variable values are sampled 

randomly from a uniform distribution for every variable, for 

every actor, in every scenario, based on real-life values 

extracted from naturalistic driving studies such as [31]–

[34],[35]. Further, a few selected actors in every scenario are 

uniquely modified using out-of-distribution values to represent 

overly ‘aggressive’ and ‘cautious’ drivers. Such drivers are 

known to pose additional risks to the ego vehicle. Finally, to 

augment the realism of wet weather scenarios with low friction 

conditions, we modify the speed limits in that sequence based 

on naturalistic driving studies such as [36]–[38]. 

In our experiments, we use the same ego vehicle model in all 

scenarios to remain consistent with other real-life datasets. The 

simulator parameters for every scenario are sampled from 

predefined statistical distributions. Sampled parameters include 

safe distance, maximum speed over/under speed limits, 

probability of ignoring other vehicles, and probability of 

ignoring traffic regulations. The statistical distributions are 

designed based on the abovementioned datasets and NHTSA 

reports. 

 
Fig. 4.  Diverse set of weather and Typologys included in the VTrackIt dataset. 

  

TABLE 4 

MAP AND ROAD FEATURES 

Map Name Location Salient Road Features 

Town01 
Low density urban 

(20-45 kmph ) 

3-way intersections, single lane 

roads, traffic lights, and stop 
signs. 

Town03 
Urban-Highway 

(20-90kmph) 

5-lane intersections, 

roundabouts, uneven grades, 
tunnel, highways, traffic lights, 

and stop signs. 

Town04 
Highway  

(20-90kmph) 

Lane merges, highway ramps, 

and 4-way junctions. 

Town05 
Hybrid  

(20-90 kmph) 

Multiple highway lanes, urban 

lanes, and 4-way junctions. 

Town06 
Highways  

(20-90 kmph) 

Long highways, ramps, 

Michigan-left, round abouts, and 

lane merges. 

Town10HD 
Urban  

(20-45 kmph) 

High fidelity road textures, 

parking lanes, stop signs, traffic 
lights, pedestrian crossings, and 

junctions. 

 

 

 
Fig. 3.  360° coverage of area surrounding the ego vehicle using four RGB 

cameras. 
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D. Comparisons to Real-world Datasets 

Most simulator parameters are carefully designed to mimic 

real-world conditions in our work. We are specifically 

interested in replicating real-world traffic speed distributions 

and expanding beyond its right tail to encourage events that 

may lead to worst-case conditions such as crashes or near-

crashes. Such scenarios are purposely excluded in real-world 

driving for obvious safety reasons; however, this introduces a 

bias toward safe scenarios. As shown in Fig. 5 (a) and (b), while 

the ApolloScape and Argoverse datasets contain many low-

speed vehicles, the VTrackIt dataset expands the right-tail of 

the distribution by spawning more medium-high vehicles. The 

VTrackIt dataset thus capitalizes on the power of synthetic data 

generation tools to generate a wider distribution of traffic and 

ego vehicles that are likely to be encountered in a real-world 

scenario but not in a scenario released by companies promoting 

AV solutions. Finally, Fig. 5(c) shows the realism of BEV 

provided by VTrackIt compared to the BEV provided by the 

Level5 dataset. Table 5 shows the diverse range of scenarios 

presented in the VTrackIt dataset when compared to other state-

of-the-art self-driving datasets (both synthetic and real-world). 

Some salient contributions of the VTrackIt dataset are 

highlighted in this table. 

IV. CASE STUDY: TRAJECTORY PREDICTIONS  

Although the VTrackIt dataset can be used for a wide range 

of self-driving applications, we focus on trajectory prediction-

related tasks in this section. Trajectory prediction is commonly 

employed in AVs to identify vehicles that present a higher risk 

to the ego vehicle given its planned trajectory [39]. In their 

work, Lefèvre et al. [39] categorize all trajectory prediction 

models into three broad categories, namely, (i) Physics-based 

models [40], [41], (ii) Maneuver-based models [42]–[46] and, 

(iii) Interaction-aware models [22], [47]–[60]. Today, Graph-

based interaction-aware models leveraging semantic maps are 

considered state-of-the-art [51], [56], [61], [62]. Many state-of-

art DL models also use BEV representations to capture complex 

interactions with other road agents [63]–[68]. Having said that, 

such models often ignore traffic rules’ effect due to limited 

infrastructure access and surrounding vehicle information. 

Although many trajectory prediction approaches have been 

proposed [69]–[74], we propose the first model (InfraGAN) that 

leverages infrastructure and pooled vehicle information for 

trajectory predictions. InfraGAN is a two-part network that 

consists of an interaction-aware trajectory prediction module- 

TGAN (Trajectory-GAN) and an LSTM network with a 

Correction Module (CM).  

 
(a) 

 
(b) 

 
Our BEV 

 
BEV from Level5 dataset 

(c) 

Fig. 5.  Comparison of VTrackIt dataset with real-world driving datasets 

across, (a) traffic speed distributions (for non-stationary vehicles), (b) ego 
speed distribution (for non-stationary vehicles), and (c) the BEV. 

  

TABLE 5 

DIVERSITY OF COMMONLY USED SELF-DRIVING DATASETS 

Dataset Crashes 

Varying 
Road 

Surface 

Conditions 

Dynamic 

Speed 
Limits 

Highway 

Driving 

Traffic 

Rule 
Violations 

Average Lane 

Width (m) 

Lane Center 

Annotations 

360° Cameras 

w/ BEV 

ApolloScape [16] - ✓ - - - - - - 

Argoverse [15] - ✓ - - - 
3.84(Miami) 

3.97(Pittsburgh) 
✓ - 

AIODrive [18] ✓ - - ✓ ✓ 3.5 - Only 360° views 

VTrackIT 

(Proposed) 
✓ ✓ ✓ ✓ ✓ 3.5 

✓  

(lane deviations are 

given  y ‘off center’ 
in Table 3.) 

360° and BEV 
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A. InfraGAN: TGAN Module 

The TGAN module is a GAN-based DL model that consists 

of two competing autoencoders (Generator and Discriminator) 

trained to achieve a zero-sum game where the Discriminator 

fails to distinguish between generated and training samples. The 

Generator (𝐺) outputs a projected trajectory for a bunch of 

pooled vehicles 𝐺(𝑧, 𝑿) for a given random seed 𝑧 and a given 

set of historical observed trajectories 𝑿 for pooled vehicles. The 

Discriminator (𝐷) outputs a probability 𝐷(𝒀|𝑿) that the 

trajectories 𝒀|𝑿 are sampled from the Generator (fake), where 

𝒀 is the ground truth projected trajectories for the pooled 

vehicles. The objective of TGAN is to train a robust generator 

that outputs potential samples of predicted trajectories by 

solving the min-max problem given in Eq. (1).  

 

min
𝐺

max
𝐷

 𝐸𝒀|𝑿[log 𝐷(𝒀|𝑿)]

+ 𝐸𝑍[log(1 − 𝐷(𝐺(𝑧, 𝑿)|𝑿)] 
(1) 

Here, 𝑿=[𝑿1, … , 𝑿𝑛], 𝑛 is the number of pooled vehicles, 

including the ego vehicle,  𝑿𝑖  = {(𝑥𝑡
𝑖 , 𝑦𝑡

𝑖  )}
𝑡≤𝑡obs

 summarizes 

the observed trajectory of vehicle 𝑖, 𝒀=[𝒀1, … , 𝒀𝑛] and 𝒀𝑖  =

{(𝑥𝑡
𝑖 , 𝑦𝑡

𝑖  )}
𝑡obs<𝑡≤𝑡obs+𝑇

 summarizes the ground truth for future 

trajectories of the pooled vehicles, 𝑇 is the number of prediction 

timesteps, and 𝑧 is sampled from 𝒩(0,1). 

 

The backbone of the Generator is an LSTM encoder-decoder 

network. When given an input 𝑿𝑖 , 𝐺 outputs a predicted 

trajectory �̃�𝑖. The Discriminator then uses this predicted 

trajectory �̃�𝑖 or the ground truth trajectory 𝒀𝑖 as input and 

classifies it as ‘Fake’ or ‘Real.’ To standardize the input data, 

we encode the position of a vehicle 𝑖 at time 𝑡 such that 

 

𝑒𝑡
𝑖 = 𝜙(𝑥𝑡

𝑖 , 𝑦𝑡
𝑖; 𝑊𝑒𝑒) (2) 

Here, 𝜙(. ) represents a single layer, shallow neural network 

with ‘ReLU’ non-linearity, and 𝑊𝑒𝑒  are the weights of the 

shallow neural network. The LSTM-encoder then uses 𝑒𝑡
𝑖 as an 

input and produces encodings ℎ𝑡
𝑒𝑖  for every vehicle 𝑖 at time 𝑡 

such that 

ℎ𝑡
𝑒𝑖 = LSTMe(ℎ𝑡−1

𝑒𝑖 , 𝑒𝑡
𝑖; 𝑊𝑒𝑛𝑐𝑜𝑑𝑒𝑟) (3) 

Here, 𝑊𝑒𝑛𝑐𝑜𝑑𝑒𝑟  represents the weights of the LSTM encoder 

(LSTMe) that are shared between all input vehicles at time 𝑡 

based on suggestions given by Alahi et al. [64].  

 

The trajectory predictions can thus be obtained such that 

 

(�̃�𝑡
𝑖 , �̃�𝑡

𝑖) = 𝛾(ℎ𝑡
𝑑𝑖) (4) 

ℎ𝑡
𝑑𝑖 = LSTMd(ℎ𝑡−1

𝑑𝑖 , 𝑒𝑡
𝑖; 𝑊𝑑𝑒𝑐𝑜𝑑𝑒𝑟) (5) 

𝑒𝑡
𝑖 = 𝜙(𝑥𝑡−1

𝑖 , 𝑦𝑡−1
𝑖 ; 𝑊𝑑𝑒) (6) 

Here, 𝑊𝑑𝑒𝑐𝑜𝑑𝑒𝑟  represents the weights of the LSTM-decoder 

(LSTMd), 𝑊𝑑𝑒 represents embedding weights, and 𝛾 is an MLP. 

The probability of a trajectory being real/fake is obtained by 

applying an MLP on the encoder’s final hidden state. 

 

The TGAN is trained using both the adversarial loss in Eq. 

(1) and the mean squared error between the predicted and actual 

trajectories. While the LSTM-encoder consists of 16 cells, the 

LSTM-decoder consists of 32 cells. We train the TGAN using 

a batch size of 64 for 200 epochs using the ‘Adam’ optimizer 

with a learning rate of 0.001.  

B. InfraGAN: Correction Module (CM) 

The infrastructure and pooled vehicle information (spatial 

coordinates and 14 additional variables emboldened in Table 3) 

are given as input to an LSTM network with ten cells and a CM. 

The LSTM network combined with the CM revises the 

predicted trajectories from TGAN.  For example, the CM tends 

to eliminate trajectories with lane violations or trajectories that 

may lead to crashes. The output (predicted) trajectories using 

InfraGAN are denoted by �̂�𝑖 and mathematically given by the 

CM as: 

 

�̂�𝑖 = �̃�𝑖 + tanh(𝑪𝑖) ∗  �̃�𝑖 (7) 

 
Fig. 6.  Overview of the InfraGAN baseline for trajectory prediction using infrastructure and pooled vehicle information in the VTrackIt dataset. The variables 

𝑠𝑡
𝑖,1, … , 𝑠𝑡

𝑖,14
 represent the 14 annotated information variables emboldened in Table 3. 

  

Generator

timestam          

 os         

 os y        

lane ty e         

right lane mark ty e         

right lane mark color         

left lane mark ty e         

left lane mark color         

  

 ossi le maneuvers         

 orrection 

 odule

  served Tra ectories

Infrastructure and 

Pooled Vehicle 

Information

TGA   

 ut ut

Predicted Tra ectories

timestam          

 os         

 os y        

 ST 

 ST   etwork

Discriminator
 eal 

or

 ake

        

TGA   odule

 ncoder

 ST 

Decoder

 ST 

 ncoder



 8 

Here, �̃�𝑖 is the predicted trajectory for vehicle 𝑖 using TGAN, 

tanh(𝑪𝑖) is the correction factor for the TGAN predictions 

using the LSTM network that utilizes the extra information 

provided by VTrackIt. 

 

The TGAN is first trained for sufficient epochs to produce 

acceptable trajectories. Then, the entire InfraGAN is trained to 

correct for TGAN predictions using the ‘Adam’ o timizer for 

200 epochs with an adaptive learning rate. The TGAN is 

expected to adjust its weights to work in tandem with the LSTM 

network to achieve reliably corrected trajectories that minimize 

the loss function of the InfraGAN given in Eq. (8). 

 

ℒInfraGAN = ∑ {‖�̂�𝑖 −  𝒀𝑖‖
2

2
+

1

‖𝑪𝑖‖1

}

𝑘

 (8) 

 

In all our experiments, we configure the InfraGAN to 

generate five likely trajectories (𝑘 = 5) for every input vehicle 

𝑖 by randomly sampling 𝑧 from a standard normal distribution. 

Next, we perform an extensive evaluation using the InfraGAN 

on the VTrackIt dataset. 

C. Trajectory Prediction Benchmarks 

Most trajectory prediction models and AV modules operate 

at 2-2.5 FPS [51], [55], [65], [75]–[78]. Thus, we down sample 

the VTrackIt dataset to 2.5 FPS. The scenarios in the VTrackIt 

‘train’ and ‘val’ sets are then used to train and validate the 

TGAN and the InfraGAN models. More importantly, to avoid 

divergence while training the DL model, we exclude scenarios 

where the ego vehicle had a collision but may still have 

scenarios where surrounding actors collide. In all our 

experiments, we observe vehicle trajectory for eight timesteps 

(or 3.2 secs) and predict trajectory for the following eight 

timesteps unless mentioned otherwise. We evaluate the baseline 

methods during testing using the three most used criteria [15], 

[16], [18]. The Minimum Average Displacement Error 

(minADE) is the average displacement error for the best-

forecasted trajectory for every scenario. The Minimum Final 

Displacement Error (minFDE) is the final displacement error 

for the best-forecasted trajectory for every scenario. The Miss 

Rate is the percentage of sampled forecasted trajectories for 

every scenario with the final displacement error exceeding 2.0 

meters. 

While the goal of this work is not to compare baseline 

models, it is critical to understand how the additional 

infrastructure and pooled vehicle information affects the 

trajectory prediction algorithms. In our work, to provide a fair 

comparison to future models, we provide benchmarks using 

both- the TGAN and the InfraGAN models. Note that the results 

reported using the TGAN model do not use any infrastructure 

and pooled vehicle information apart from the ego and tracked 

vehicle’s 𝑥 and 𝑦 coordinates. 

As intuition suggests, the InfraGAN significantly improves 

over the TGAN by accurately predicting trajectories using the 

information available in the VTrackIt dataset. This performance 

gain can be easily visualized in Fig. 7. Table 6 can be used to 

verify this performance improvement using the InfraGAN over 

the TGAN when predicting 𝑘 most likely trajectories using the 

specified metrics. As is observed in similar GAN-based 

 
TABLE 7 

COMPARISON OF BENCHMARK MODELS ON THE VTRACKIT TEST SET PER MAP FOR THE TRAJECTORY PREDICTION TASK 

Metric Town01 Town03 Town04 Town05 Town06 Town10 Overall 

Without Infrastructure and Pooled Vehicle Information 

minADE 1.50 1.93 2.74 1.13 2.45 1.62 1.87 

minFDE 3.20 4.14 5.61 2.43 5.15 3.52 3.97 

Miss Rate 0.45 0.58 0.70 0.34 0.70 0.51 0.56 

With Infrastructure and Pooled Vehicle Information (InfraGAN) 

minADE 1.29 1.69 2.07 0.91 2.33 1.20 1.55 

minFDE 2.93 3.89 4.75 2.15 5.34 2.75 3.56 

Miss Rate 0.32 0.44 0.51 0.25 0.59 0.35 0.42 

 

 

TABLE 6 

TRAJECTORY PREDICTION BENCHMARKS USING TOP 𝑘 PREDICTIONS ON THE 

VTRACKIT TEST SET 

Metric 𝑘 = 1 𝑘 = 3 𝑘 = 5 Average 

Without Infrastructure and Pooled Vehicle Information (TGAN) 

minADE 3.19 2.11 1.87 2.39 

minFDE 7.15 4.55 3.97 5.22 

Miss Rate 0.74 0.60 0.56 0.63 

With Infrastructure and Pooled Vehicle Information (InfraGAN) 

minADE 1.56 1.56 1.55 1.55 

minFDE 3.58 3.57 3.56 3.56 

Miss Rate 0.43 0.42 0.42 0.42 

 

 

 
Fig. 7.  Performance comparison with and without infrastructure and pooled 
vehicle information.   served tra ectories are la eled as ‘History’ and future 

tra ectories are la eled as ‘Ground Truth’. Trajectories predicted using TGAN 

and are labeled as ‘Before.’ Trajectories predicted using InfraGAN and are 
labeled as ‘After.’ 
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approaches [65], the TGAN performs significantly worse when 

put to the test using smaller values for 𝑘. Further, we also report 

individualized metrics for every considered map in the test set 

using Table 7. Table 8 can be used to analyze the performance 

of both considered models over varying prediction horizons. 

Note that we always observe the preceding eight timesteps 

irrespective of the prediction horizon in Table 8. Figures 8 and 

9 show the change in the distributions of ADE and FDE for all 

predicted trajectories using the TGAN and InfraGAN. From 

these figures, we can clearly see a shorter right tail in the error 

distributions. Thus, we conclude that the infrastructure and 

pooled vehicle information provided by VTrackIt supports the 

development trajectory prediction models that experience a 

significantly lower number of edge cases. 

D. Ego Trajectory Prediction Benchmarks 

Publicly available motion forecasting datasets are also 

commonly used to build robust motion planning algorithms. As 

a related task, we use the VTrackIt dataset and utilize recorded 

data for all tracked vehicles around the ego vehicle while only 

predicting the trajectory for the ego vehicle. Table 9 can be used 

to compare the results of the baseline models when predicting 

𝑘 most likely trajectories using mentioned metrics. Using this 

table, we observe a similar pattern where the InfraGAN 

outperforms the TGAN. This performance gain can thus be 

attributed to the additional infrastructure and vehicle 

information provided in the VTrackIt dataset.  

V. CONCLUSION 

In this paper, we introduce and publicly release the VTrackIt 

dataset. To the best of our knowledge, VTrackIt is the largest, 

synthetically generated, self-driving dataset annotated with 

infrastructure and pooled vehicle information variables. This 

dataset aims to apprise researchers of the benefits of such 

information in building advanced algorithms for the newer 

generation of AVs. We also present a compelling case study for 

trajectory prediction using the VTrackIt dataset. Specifically, 

we introduce the first trajectory prediction model (InfraGAN) 

that utilizes infrastructure and pooled vehicle information. Our 

experiments show that InfraGAN performs better than other 

methods, resulting in a significantly lower number of edge 

cases. For future work, we would like to expand this dataset by 

adding more sensors and challenging scenarios. We would also 

like to consider additional case studies that integrate and 

leverage the infrastructure information from the VTrackIt 

dataset in the near future. 
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