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ABSTRACT The automotive domain is highly regulated, with many safety-critical aspects to consider. This 
means that a great deal of testing is required to validate the performance of automotive systems, under all 
possible environmental conditions. For vision-based systems, camera images are among the most important 
input sources of information, and using high-quality images is integral to the system's performance. Rain, as 
a type of adverse weather condition, degrades the image quality which reflects negatively on the vision-based 
algorithms. Collecting representative sets of data under different rain conditions is required for system testing 
and performance evaluation. This usually is both costly and time-consuming. Augmenting the sets of real 
rained images in system testing is an attractive, feasible alternative. In this paper, we present an adherent rain 
simulator system, that adds simulated rain to clear image frames captured in real drive cycles. We test the 
quality of simulated rained images against real rained ones, using common image similarity metrics. We also 
compare the performance of deep learning-based object detectors, using our simulated rained images vs. real 
rained images. The results show that object detectors show similar performance using simulated and real 
rained images. A comparative analysis shows that our model produces more realistic raindrops, compared to 
a ray-tracing-based raindrop simulator.   

INDEX TERMS Adherent Raindrops, Automotive domain, Deep-learning, Image degradation, Object 
detection, Raindrop simulator, Recall, Similarity metrics

I. INTRODUCTION 
Most vision-based systems developed for automotive 
applications assume optimal visibility conditions. Deviations 
from these optimal conditions usually result in performance 
degradations or complete failure of vision-based systems. 
Reduced lighting level, for example, causes performance 
degradations in intensity-based vision algorithms, and may 
cause a total system failure in color-based algorithms that are 
usually more susceptible to illumination level variations. 
Raindrops that adhere to the vehicle windshield blocks 
certain zones of the image and introduce lens effects that 
cause both spatial and dynamic distortions to the image.  

The automotive environment is unpredictable in general. 
Testing vision-based automotive systems, to verify their 
robustness against noise factors requires collecting a great 
deal of data, to cover all possible operational conditions.  
Collecting representative rained image data is not optimal, 
since both raindrop sample properties and scene background 
are uncontrollable. It is not possible to control the size and 

intensity of real adherent raindrops. This means that many 
datasets of rained images need to be collected, analyzed, and 
classified based on adherent raindrop characteristics, before 
being used for robustness testing and system optimization.  
Lack of background controllability means that the clear-
image ground-truth cannot be established, since it is not 
possible to repeat the exact drive cycle with and without rain, 
due to variations in background elements in different drive 
cycles. De-raining of rainy images presents an option for 
estimating ground-truth, rain-free, data. This, however, is not 
an optimal solution either. De-raining algorithms cannot 
remove all existing raindrops in an image with high accuracy 
and reliability. They also add distortion, in terms of 
incorrectly de-raining clear sections of a rained image and 
adding spatial and intensity distortions to the de-rained 
image. In this paper, we present a rain simulator system, that 
adds rain to clear images, collected from real drive cycles. 
The system is dynamic, meaning that it shows the 
progressive accumulation of adherent raindrops on a vehicle 
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windshield. The amount of rain and rate of accumulation is 
controllable, to provide the most flexibility for generating 
test sets at different rain conditions. Moreover, this paper 
expands on and follows some of the approaches used in our 
prior work [1] to assess the effects of adherent Rain on deep 
learning-based object detectors, and compares it with 
simulated dynamic adherent rain. As a side contribution, we 
tested the performance of the object detectors using simulated 
raindrops that were produced by the state-of-the-art ray-
tracing raindrop simulator [2, 3] and showed that the generated 
rainy scenes were suitable for the validation of the object 
detectors performance.   

As an added contribution, we are releasing a dataset of 
images with real rain and with generated rain, along with the 
clear image samples that align with them. The sets of varying 
rain intensity from light to heavy are included in the database. 
The generated rain sets are augmented with text files that list 
the positions, sizes, and orientations of the ellipses that 
encapsulate the generated raindrops in each image. This can 
serve as ground truth for researchers developing raindrop 
detection approaches.  

The remainder of this paper is arranged as follows. Section 
II describes some work related to rain simulation. In section 
III we describe of data collection method and the test 
environment and metrics we used to evaluate our system. Our 
adherent rain simulator design is detailed in section IV. Test 
results are summarized in section V and a discussion of the 
results is presented in section VI. Section VII includes our 
conclusion and discussion of future work. 

II.  RELATED WORK 
Halimeh and Roser [2] developed a geometric-photometric 
model of raindrops on a windshield, coined Raindrop 
Intelligent Geometric Scanner and Environment Constructor 
(RIGSEC). The model makes use of Snell’s law [3] to track 
all points in an assumed raindrop image segment to the 
originating point in the environment. By comparing 
associating light beams emitted from the environment points 
that go through the assumed raindrop to those that go through 
the windshield glass only, a complete geometric model of the 
adherent raindrop can be established. Fresnel’s reflectivity 
equations [4] are then used to calculate the intensity of 
raindrops as seen by the camera, adding photometric 
enhancement to the raindrop model. The RIGSEC model 
generates adherent raindrops of different sizes and at 
different positions on the windshield. This model is cohesive 
and dynamic but since it is based on ray-tracing of each 
potential raindrop pixel, it is relatively complex and may be 
computationally expensive.  
Alletto et al. [5] used the ray-tracing approach to generate 
images with synthetic raindrops and used them to train their 
deep-learning-based de-raining algorithm. They selected 
special sequences from the DR(eye)VE dataset [6] with 
cloudy backgrounds and augment them with the generated 
raindrops. 

Hao et al. [7] also used the ray-tracing approach for synthetic 
raindrop generation and developed a dataset that they later 
used for their CNN-based de-raining algorithm. They 
selected special cloudy images from the Cityscape [8] 
dataset, and augmented them with their synthetically 
generated raindrops. 
To the best of our knowledge, the only publicly available 
model for generating simulated raindrops is the one 
developed by C. Carlin [9], which was used to generate 
synthetic rain datasets in Alletto et al. [5] rain removal 
system. We used that model to generate rained images 
dataset, to compare it with our model output.  
Stuppacher and Supan [9] developed a model for realistic 
waterdrops, that can be used in game development and CGI. 
The authors observed that a certain mass is required for the 
raindrop to move and that small drops stay idle or get swept 
away by moving drops. In addition, moving drops tend to 
lose mass, which slows down the drop motion. Waterdrop 
viscosity, speed, mass, and adhesion to the surface all play a 
role in shaping the water drop. Gravitational vector is 
introduced to the simulation world space, to govern the 
direction of raindrop moving speed and acceleration on an 
inclined surface.  
Stuppacher and Supan model produces visually realistic rain 
simulations, that are suitable for CGI and game development 
applications.  

In previous work, the authors of this paper [10] developed 
a rain simulation system that adds falling rain to clear image 
sequences. The system allowed for controlled simulated rain 
intensity and generated monochromic stereo image pairs. This 
system, however, simulated falling rain streak, rather than 
adherent rain on the windshield, the latter form being the more 
dominant source of distortion in vision-based automotive 
applications.  

III. Data Collection and Experiments Setup 
For data collection, we used a dual-lens stereo camera (ELP-
960P2CAM-V90-VC) that was attached to the vehicle 
dashboard, approximately 10 cm away from the windshield. 
We captured around 15 hours of videos of real drive cycles, 
under clear and rainy conditions, at 60 frames/second rate 
and 1280X960 resolution per image frame. We wrote an 
algorithm in MATLAB scripting language to detect the 
beginning and end of the wipe events. The frames previous 
to a wipe event were captured as rained image samples, and 
the few frames right after that event were considered to 
represent the clear reference images. Figure 1 shows an 
example of clear (a) and wet (b) images from the data sets. 
For the comparison with Carlin’s model [9], we cropped a 
set of 500x500 pixel images from the original images, since 
this image resolution provided the best result from that 
system. Used the same dataset to generate rained images 
from our model as well.  

We used two similarity metrics to test the closeness of 
images with real vs. simulated rain, namely the 
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Structural SIMilarity (SSIM) index, and the Earth Mover 
Distance (EMD).  

As described by Wang et al. [11], SSIM between two 
images 𝑥 and 𝑦 is given by: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]ఈ . [𝑐(𝑥, 𝑦)]ఉ . [𝑠(𝑥, 𝑦)]ఊ  (1) 
Where 𝑙, 𝑐 and 𝑠 are the luminance, contrast, and structure 

comparator functions, respectively, and 𝛼, 𝛽, and 𝛾 are factors 
that represent the contribution level of each comparator to the 
overall index.  We used the “ssim” function as implemented in 
MATLAB 2018-b. 

 
(a) Clear Image 

 
(b) Rained Image 

FIGURE 1.  Example of captured image sets, clear(a) and wet (b). 
 

The EMD “is a measure of distance between two 
probability distributions over a region D” [12]. In image 
processing, EMD reflects the cost of moving one image, 
represented by some feature signature (e.g., intensity 
histogram), to a reference image, represented with the same 
signature type. Given two images, Image1 and Image2, one or 
more features are selected and clustered, to create signatures, 
[12] 

𝑆 =  {(𝑠ଵ, 𝑤௦ଵ) , (𝑠ଶ, 𝑤௦ଶ) , … , (𝑠ଷ, 𝑤௦௠)}, and 
𝑇 =  {(𝑡ଵ, 𝑤௧ଵ) , (𝑡ଶ, 𝑤௧ଶ) , … , (𝑡௠, 𝑤௧௠)}, for Image1 and 

Image2, respectively. 
 𝑠௜, 𝑤௦௜  for  1 ≤ 𝑖 ≤ 𝑚 and 𝑡௝ , 𝑤௧௝  for 1 ≤ 𝑗 ≤ 𝑛 represent 

the cluster Ids and weights for the two signatures. A feasible 
flow 𝐹 = ൣ𝑓௜,௝൧  between the two signatures must satisfy the 
following constraints: 

𝑓௜,௝ ≥ 0, ∀ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛                      (2) 

෍ 𝑓௜,௝ ≤

௠

௜ୀଵ

𝑤௦௜ , 1 ≤ 𝑖 ≤ 𝑚                            (3) 
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௝ୀଵ

𝑤௧௝ , 1 ≤ 𝑗 ≤ 𝑛                            (4) 
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               (5) 

Given a ground distance 𝐷 = ൣ𝑑௜,௝൧ between the two 
clusters, EMD represents the solution that minimizes the work 
(flow times distance) to move one signature to match the other. 
Mathematically, this is given by [12] 

𝐸𝑀𝐷(𝑆, 𝑇) = min ෍ ෍ 𝑓௜,௝  𝑑௜,௝

௡

௝ୀଵ

௠

௜ୀଵ

 

          =
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n
j=1

m
i=1

                         (6)  

In our implementation of EMD, we calculated the 
histogram of gray-scale image intensity and used it as 
signatures for the images under comparison. We used U. 
Yilmaz's [13] implementation of EMD in MATLAB, which 
was based on the work of Rubner et al. [14].  

We tested the quality of the generated simulated rained data 
sets compared to sets of the real rained images using pre-
trained Convolution Neural Networks (CNN) based deep 
learning models, designed to detect objects in real drive cycles, 
including YOLOv3 [15], SSD [16], and Faster-RCNN [17].  

We developed a MATLAB script to calculate Precision and 
Recall measures for object detector performance with real and 
simulated rain input.  

IV.  ADHERENT RAIN SIMULATOR 
We start with the following assumptions while designing our 
adherent raindrop simulator: 
1) Adherent raindrops can take many irregular shapes, but 

they can be approximated with an ellipse, as a starting 
point. 

2) An Adherent raindrop acts as a lens, adding fish-eye or 
barrel distortion to the image 

3) Adherent raindrops in an image are blurry and lack clear 
borders that define their shapes. 

4) Adherent raindrops are semi-static, in the sense that 
there is very little observed movement of a raindrop 
from one frame to the next. 

Figure 2 shows the main stages of our raindrop generation 
process, which are described as follows: 

A. SELECT RAINDROP SHAPE, SIZE, AND POSITION 
As shown in Figure 3, adherent raindrops can come in 
different shapes and sizes, and align in any possible 
orientation. We start with an ellipse to approximate the shape 
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of the adherent raindrop (Figure 4).  Subsequent steps distort 
this ideal elliptical shape, adding more realism to the 
simulated raindrop shape.  

The size, orientation, and position of raindrops in each 
frame are arbitrarily selected from a calibratable raindrop 
characteristics table. Table 1 shows the raindrop calibration 
parameters, with some example ranges. 

 
FIGURE 2.  Main stages of raindrop generation include image 
preprocessing, barrel (fisheye) transformation, raindrop image 
processing, brightness adjustment, and blurring and edge smoothing. 

 

 
FIGURE 3.  Adherent raindrops can come in different shapes, sizes, and 
orientations. Photo by Good Stock Photos.  

Table I 
CALIBRATION PARAMETERS FOR GENERATING SIMULATED RAINDROPS FOR 

EACH IMAGE FRAME 

Parameter Description 

DropsPerFrame 
Number of raindrops added to a single frame [1-

3] 

DropPosition 
Position of a raindrop (default is the whole 

image area) 
DropRotation The orientation of a raindrop [80° - 150°] 

DropSize 
Size of a raindrop defined in terms of major and 

minor axes of an ellipse in pixels  
[10-35 x 3-10] 

B. APPLYING LENS DISTORTION 
Adherent raindrops on a windshield cause a lens distortion, 
similar to the fisheye or barrel effect. This distortion can be 
represented as a nonlinear spatial translation of image points 
into the raindrop pixels. This translational transformation can 
be approximated by [18] 

𝑃௡ = 𝑃௢ + 𝐷𝐹 ∗ 𝑃௢
ଷ                          (7)  

Where 𝑃௡ is the distorted pixel in the raindrop, 𝑃௢ is the 
original (environment) pixel that is influenced by the raindrop 
distortion, and 𝐷𝐹 is the distortion factor. We use the 
MATLAB function “geometricTransform2d” to represent this 
lens distortion effect of a raindrop. Figure 5-a shows the 
distorted region after applying the lens effect. 

C. BLURRING, RESIZING, ROTATING 
Since the vehicle camera used in vision-based applications 

is usually focused on the environment, any close images, 
raindrops included, would look blurry [19, 20]. We use the 
MATLAB function “imfilter” to add the blurring effect to 
our simulated raindrops. For focus-blurring, we selected the 
correlation option and set the blur window size to a proper 
value. 
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(a) Initial clear image 

(b) Simulated Raindrop position 

FIGURE 4.  Starting with a clear image frame (a), the simulator generates 
arbitrary values for simulated raindrop location, size, and orientation 
(b). 

 

 

(a) Raindrop region showing barrel 
distortion 

(b)  blurred, resized, 
and rotated raindrop. 

FIGURE 5.  Applying translational transformation on an image produces 
the barrel effect (a). The distorted region is blurred, resized, and rotated 
to match desired raindrop characteristics (b). 
 

For motion-blurring, we used the “fspecial” function to 
create a special filer type, with the ‘motion’ option, and the 
X and Y motion-blurring levels set appropriately. This 
motion type is then used by the imfilter function to add a 
motion-blurring effect. The parameters for focus and motion 
blurring were determined experimentally. We then resize and 
rotate the raindrop image, to approximately match the 
encapsulating ellipse we have started with. Figure 5-b shows 
the raindrop region, after blurring and applying the resize and 
rotation operations. 

D. ADDING RAINDROP TO IMAGE 
Adherent raindrops tend to be slightly brighter than their 
surrounding background, since they collect light from all 
areas of the image, due to the lens effect. As stated earlier, 
raindrops lack strong boundaries that separate them from 

their background and give them specific shapes.  
We use intensity adjustment and border dilation and filtering 
to allow for seamless addition of generated raindrops to the 
original (clear) image. Figure 6 shows samples of generated 
raindrops compared to real raindrops in a wet image. 

E. CAPTURING ADHERENT RAINDROP DYNAMICS 
Raindrops remain adhered to the windshield surface so long 
as the forces exerted surface tension and gravitational pull 
are balanced. You et al. [19] found that the observed raindrop 
speed was around 0.01 pixel/s, as seen by a camera mounted 
on a vehicle moving at a speed of 30 km/h. They also 
observed that the motion seen inside a raindrop was 20 to 30 
times slower than that seen in other areas of the image. In our 
raindrop simulator, the raindrop dynamic behavior is 
implemented as follows: 
1) No movement is applied to raindrops from one frame to 

the next, a reasonable approximation to the quasi-static 
movement observed by You et al. [19] .  

2) New Raindrops are added arbitrarily to the raindrops 
generated on previous image frames. 

(a) Simulated 

(b) Real 

FIGURE 6.  Generated raindrops (top) are visually similar to real 
raindrops (bottom), as perceived by a human observer. 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103895, IEEE Access

 

VOLUME XX, 2017 1 

3) If a new raindrop is generated that intersects with an 
existing one, the distorted area is generated as a simple 
addition of the two raindrops. This method allows for 
approximating complex raindrop shapes as a 
combination of elliptical shapes. 

4) For simplicity, the process of refactoring large raindrops 
to smaller droplets (see Stuppacher and Supan [9])  is 
not implemented. This simplification holds reasonably 
well under light-to-moderate raindrop intensity since the 
size of raindrops does not grow fast, due to the low 
probability of arbitrary raindrops intersecting over a 
short period.  

5) Raindrops mask is refreshed (all raindrops regenerated) 
every 20 to 30 frames (programmable), to account for 
the dynamic changes of background scene elements and, 
at the same time, making use of You et al. [19] 
observation about the slow change of raindrop pixels 
compared to non-raindrop areas.    

 V.  RESULTS AND ANALYSIS 
To validate the quality of our generated raindrops against 
real ones, we started with a clear/rained image set of the 
same scene. We individually picked raindrops from the 
rained image and measured their positions, sizes, and 
orientations. We then used our simulator to generate 
raindrops with the same characteristics as the real ones. We 
used SSIM and EMD metrics to measure the level of 
similarity of our generated raindrops to their real 
counterparts. We took each rain raindrop image and 
compared it to the corresponding simulated raindrop, which 
was generated by using the same orientation, size, and 
position of the real raindrop image. Figure 7 shows the 
similarity measure histogram between real and simulated 
raindrops, as calculated using EMD and SSIM metrics. 
Figure 8 shows that the similarity level between a real rained 
image and an image with generated raindrops increases with 
the addition of extra simulated raindrops. 

 In the second level of testing, we generated rained images 
by adding generated raindrops to clear images. Real and 
simulated rain image frames are then selected based on the 
degradation level of each image frame as compared to the 
clear image frame of the same scene. SSIM and EMD metrics 
were used as indicators of image degradation, in the sense that 
worse similarity score of these metrics was taken as a direct 
indication of increased image degradation caused by 
raindrops.  Only “parking-lot” data sets were used in this 
series of tests, to eliminate any degradation from the 
movement of the test vehicle, relative to other objects in the 
scene. The matched real and simulated rained images are then 
used as inputs to three deep learning-based object detectors, 
namely Single Shot Detector (SSD), You Only Look Once 
version 3 (YOLOv3), and Faster Region-based Convolutional 
Neural Network (RCNN). Detected objects are evaluated and 
matched, and detection performance is evaluated in two ways: 

A. DETECTION CONFIDENCE LEVEL VERSUS IMAGE 
DEGRADATION LEVEL 

The confidence level that is generated by the object detectors 
and assigned to each detected object (0-100%), is inspected 
against image degradation (dissimilarity to the clear image), 
over all dataset frames. This process is repeated for both real 
and simulated rained images. Figure 9 shows matched image 
frame pair of real and simulated rain, with objects detected 
in each image with different confidence levels. Figure 10 
shows plots of confidence levels of one object (Object #2) in 
the image scene, against SSIM and EMD, used as measures 
of distortion. There is a clear trend of increased confidence 
level with decreased degradation (less rain) of rained images. 
This trend is observed in both real and simulated rained 
images. The error bars represent the mean (center of the bar) 
and standard deviation (length of the bar) of sample point 
segments, each segment containing sample points that have 
the same range of SSIM or EMD scores.  
 

FIGURE 7.  The similarity between individual Real and Simulated 
raindrops is measured using EMD (top) and SSIM (bottom) metrics and 
the histograms of scores calculated for each metric. The figure shows a 
strong similarity between real and generated raindrops. 
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(a) EMD vs generated raindrops 

 
(b) SSID vs generated raindrops 

FIGURE 8.  Using EMD (left) and SSIM (right) as similarity measures of real rained image and clear image with simulated rain added shows a clear 
trend towards improving similarity, with the addition of simulated raindrops. Lower EMD scores and higher SSIM scores both mean increased 
similarity levels between compared images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9.  Objects are detected in real (top) and simulated rained images (bottom), with different confidence levels (using YOLOv3). Bigger objects 
are detected with higher confidence levels than smaller ones. The detectors order the detected objects according to their detection confidence levels. 
 

 
 

(a) Real rained image  

(b) Image with simulated rain 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103895, IEEE Access

 

VOLUME XX, 2017 1 

(a) Detection Confidence vs. rained-to-clear image similarity using SSIM 
metric 

(b) Detection Confidence vs. rained-to-clear image similarity using 
EMD metric 

FIGURE 10.  Detection Confidence level of Object #2 increases with decreased image degradation in both real and simulated rain images. The mean of 
sample detection confidence levels (center of error bars) has a strong correlation to image quality.    

 

 
Figure 11 shows a plot of another object (Object #10) 
detection confidence levels versus image degradation 
levels. The trend is still visible on both real and simulated 
rain images but not as strong as the first object. We 
calculated the correlation between detection confidence 
and image degradation for several objects in the real and 
simulated datasets. The results are shown in Table II.  As 
expected, object 2 showed a strong correlation between its 
detection score and image quality. The correlation scores 
for real and simulated rained images for object 2 were also 
very comparable. Object 10, on the other hand, showed a 
weaker correlation score, which explains why the trend 
was observed in Figure 11. The table also shows that object 
1 and object 15 show no clear correlation between 
detection confidence and image degradation level. Further 
analysis showed that object 1 was the largest object (car) 
in the image scenes, and its detection confidence remained 
high under all levels of image degradation. Object 15 was 
the opposite. It was very small and its detection confidence 
was low at all levels of image degradation. In both cases, 
detection confidence levels were not strongly correlated to 
image degradation, caused mainly by adherent raindrops.  
 
 

 
(a) Detection Confidence vs. rained-to-clear image similarity 

using SSIM metric 

 
(b) Detection Confidence vs. rained-to-clear image similarity 

using EMD metric 

FIGURE 11.  For small objects in the image (e.g., Object #10), the 
detection confidence level is low, even at low image degradation 
levels. The correlation between detection confidence and image 
quality is also weaker than larger and brighter objects in the same 
image (e.g., Object #2). 
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TABLE II 
CORRELATION IS CALCULATED BETWEEN DETECTION CONFIDENCE AND 

IMAGE QUALITY FOR REAL AND SIMULATED RAINED IMAGES. 
COMPARABLE CORRELATION SCORES FOR REAL AND SIMULATED RAINED 

IMAGE OBJECTS. SOME OBJECTS SHOW WEAK TO NO CORRELATIONS.  
 Correlation between 

Confidence and EMD 
Correlation between 

Confidence and SSIM 
Object ID Real Simulated Real Simulated 

1 -0.3007 0.3422 0.2536 -0.4207 
2 -0.7440 -0.6641 0.7690 0.7390 
3 -0.6552 -0.2923 0.6453 0.6167 
4 -0.7019 -0.8262 0.6827 0.8427 
5 -0.3589 -0.7343 0.4529 0.7421 
6 -0.4145 -0.5397 0.4538 0.5034 

10 -0.2617 -0.3070 0.2141 0.3390 
15 -0.3912 0.0365 0.2431 -0.3717 

 
Figure 12 shows histograms of correlations between 

detection confidence and image quality, for fifteen objects 
in the scenes of the images, calculated for both real and 
simulated rained image sets.  

 

FIGURE 12.  Histograms of correlation of detection confidence and 
image quality for both real (top) and simulated (bottom) rained 
images show the strongest correlation levels under both real and 
simulated rain. Only a few objects had weak correlation, and around 
half the objects showed relatively strong correlation levels (above 
0.5). 

B. PRECISION AND RECALL METRICS VERSUS 
IMAGE DEGRADATION LEVEL 

The other means of assessing the performance of our 
raindrop simulator is using precision and recall metrics, 
instead of just confidence levels, against image 
degradation levels. Initially, we ran detection algorithms 
on clear image sets and used them as the ground truth for 
our precision and recall calculations.  A detection is 

considered true positive  
 

 
FIGURE 13.  Calculating the recall score of detected objects over all 
captured frames of rained images, with different rain intensities, 
shows a trend of decreased recall score with increased image quality, 
represented by the EMD similarity score. As the degradation in image 
quality increases, objects are detected less often, and recall score 
correlation to image quality becomes weaker. 

 
(TP) if the detected object in the rained image (real or 
simulated) matched that found in the clear image. A false 
negative (FN) is considered when an object in the clear 
image is not detected in the rained one. A false positive 
(FP) is when the classifications of the objects detected in 
clear and rained images do not match (e.g., car vs. boat). 
Figure 13 shows the plot of recall against image 
degradation, represented with EMD measure. As can be 
seen from figure 13, there is a clear trend of decreased 
recall scores with the increase of image degradation, 
represented by the EMD similarity metric. The trend is 
observed in both real and simulated rained image sets. 

Table III shows the correlation value of recall score versus 
image quality (EMD and SSIM) for both real and simulated 
rained sets.  

TABLE III 
CORRELATION OF RECALL SCORE VERSUS IMAGE QUALITY IS STRONG IN 

BOTH REAL AND SIMULATED RAINED DATASETS. THE CORRELATION 

VALUES ARE ALSO COMPARABLE FOR REAL AND SIMULATED RAIN 
Recall vs. EMD  Recall vs. SSIM 

Real Simulated Real Simulated 

-0.7645 -0.8097 0.7253 0.8356 

 
Precision scores calculated on the same datasets did not 

show a clear dependency on the degradation levels of rained 
images. Examining the detection results, we found that the 
dominant failure mode was false negative rather than false 
positive. This can be explained as follows. The object 
detectors were trained with full or partial images of common 
objects that can be found on the street. A raindrop may 
occlude sections of an object, but the remaining un-occluded 
section may still be sufficient features to correctly classify 
the object. Only when the occlusion is significantly large 
enough, that the detector fails to detect (false negative) the 
raindrop-occluded object. It is much less likely that the 
occlusion would leave sections of the object, which would 
cause the detector to classify it incorrectly (false positive). 

Histogram of correlation of Detection Confidence against Image Quality under Simulated Rain
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Since precision is calculated as 
்௉

்௉ାி௉
 , it is clear why the 

precision score came as one for most of the samples, and 
thus was weakly correlated to the degradation level. The 

recall, however, is calculated as 
்௉

்௉ାிே
 so it was more 

correlated to the degradation level and showed a significant 
decrease with the increase of the degradation level.  

C. Comparative Analysis 
To evaluate the performance of our raindrop simulator 
against the state-of-the-art ray-tracing-based raindrop 
simulators, we used Carlin’s [9] model to generate rainy 
images from clear 500x500 pixel images, that we selected 
from our original dataset. A total of 128 images with 
different rain patterns were used. Figure 14 shows an 

example of an image with generated raindrops using our 
model and Carlin’s model. Carlin’s model generates 
raindrops with similar shape and orientation, compared to 
raindrops generated from our model that vary in size, 
shape, and orientation. Roser et al. [22] modeled 
raindrops using Bezier curves and showed that the area of 
a raindrop as seen on a windshield is proportional to its 
volume and maximum thickness. For real raindrops, the 
bigger the raindrop volume is, the less transparent the 
raindrop becomes. Raindrop transparency level in 
Carlin’s model is also higher than that generated by our 
model, and higher than what is normal for the size of 
raindrops generated by his model.  
 

  

Figure 14: Images with raindrops that were generated by the ray-tracing method (left) and our method (right). Our model generates raindrops with 
more varieties in size, shape, and orientation compared to the ray-tracing model. The transparency levels in our generated raindrops are closer to that 
of real drops and are generally lower than that of raindrops generated by the ray-tracing model.

 
 
For quantitative comparison, we evaluated the 

performance of CNN-based object detectors, using rained 
images generated by both Carlin’s model and ours. We used 
two metrics in our evaluation, detection confidence level, 
and detection recall score. For the confidence level 
evaluation, we matched objects in the rained images that 
were generated by both models to those detected in real 
rained images. We then calculated the differences in 
detection confidence for each object detected in real and 
simulated rain images. Table IV shows a summary of some 
statistical metrics for the object detection confidence level, 
using real and simulated rain datasets The two models seem 
to produce similar results in terms of object detection 
confidence levels, as indicated by the mean and standard 
deviation metrics of the results. 

 

TABLE IV 
MEAN AND STANDARD DEVIATION OF OBJECT DETECTION CONFIDENCE 
LEVELS SHOW STATISTICAL SIMILARITY OF RESULTS UNDER REAL AND 

SIMULATED RAIN DATASETS. 

Statistical metrics of 
detection confidence results 

Mean Standard 
Deviation 

Datasets  
Real rain dataset 0.8029 0.1702 
Our generated rain dataset 0.8013 0.1852 
Ray-tracing generated dataset 0.8108 0.1857 
 
For Recall score metric, we matched the image objects 

detected in simulated rained images from the two models, to 
the ones detected in the clear image (reference) dataset. 
Recall score is calculated for each image frame and the 
results are compared to the recall score of detection with real 
rained images. Table V shows a summary of some statistical 
metrics for the object detection recall score, using real and 
simulated rain datasets. The object detection recall scores 
are closer for our model to those with real raindrops than the 
scores calculated for the ray-tracing model.    
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TABLE V 
 MEAN AND STANDARD DEVIATION OF OBJECT DETECTION RECALL 

SCORES SHOW STATISTICAL SIMILARITY OF RESULTS UNDER REAL AND 

SIMULATED RAIN DATASETS. 

Statistical metrics of 
detection Recall results 

Mean Standard 
Deviation 

Datasets  
Real rain dataset 0.6484 0.1956 
Our generated rain dataset 0.7601 0.1742 
Ray-tracing generated dataset 0.8132 0.0864 

 

VI.  DISCUSSION 
Our proposed simulator generated a visually convincing 
adherent raindrop on a vehicle windshield. The model 
performs best when generating simple raindrops that can 
be approximated with an ellipse. For more complex 
raindrop shapes, the model can be programmed to generate 
several intersecting elliptical raindrops, each 
approximating one section of the complex raindrop shape. 
This technique was tested by trying to mimic real raindrops 
of complex shapes using our simulator. Results showed 
great improvement of raindrops similarity, compared to 
using a single ellipse representation of complex shapes. 
The object detection tests we conducted using three CNN-
based deep learning object detectors showed similar 
behavior using real or simulated rained datasets. This 
“behavior” can be described as follows: 
1) The correlation values between recall score and image 

quality were very close on all datasets tested and using 
both YOLOv3 and Faster-RCNN detectors  

2) The correlation values between detection confidence 
levels and image quality were also close on all datasets 
and the same detectors. 

3) Big objects showed Resilience to raindrop-induced 
image degradation, and that behavior was similar in 
both real and simulated rained image datasets. Smaller 
objects in the image were more susceptible to the 
presence of raindrops and this susceptibility was 
similarly observed in both real and simulated rained 
datasets.  

Our implementation of the SSD detector did not perform 
as well as YOLOv3 or Faster-RCNN. It detected much 
fewer objects and the detection confidence dropped fast with 
increased raindrop content. Because of that, SSD results 
were not included in our raindrop simulator performance 
evaluation.  

EMD and SSIM were good metrics for evaluating 
degradation in image quality at different levels of raindrop 
content in an image. They, however, are not perfect. Special 
attention needed to be applied to limit the influence of 

dynamic background objects, whether being a distant 
vehicle, moving clouds, or even flickering street lights. We 
also observed that they do not always agree when 
representing image similarities, in a sense that increased 
SSIM score does not always mean a decrease in EMD score, 
for the same sets of images compared. This meant that these 
two metrics cannot be used interchangeably for individual 
image matching. For observing trends that extend over many 
samples, the metrics show similar behavior and they 
appropriately track the progression of image degradation, 
caused by increased raindrop presence.  

Comparison of rained images generated by the state-of-
the-art ray-tracing-based model showed very close results, 
both in visual perception or the generated raindrops, and the 
usability of generated rained images in object detection 
system validation.   

In terms of performance speed, we developed our 
raindrop simulator using MATLAB 2018b scripting 
language, with no specific optimizations. We ran it on a PC 
with an AMD FX-8350 microprocessor, 16 GB of DDR3 
RAM, a 500 GB SSD hard drive, and running Windows 10 
operating system. It took on average 600 ms to generate each 
raindrop, using the full (1280 x 650) image as an input. 
Figure 15 shows samples of our generated raindrop images, 
alongside the original, clear images, and real rained images 
with roughly the same level of rain-caused degradation, as 
our generated ones. 

 

VII. CONCLUSION 
We developed a dynamic adherent raindrops simulator that 
adds generated raindrops to clear images.  

The simulator accepts any set of clear images at any size 
and resolution, and generates simulated rained image sets, 
with generated raindrops added. The simulator allows for 
full control of the generated raindrops, in terms of intensity, 
size, and orientation ranges. The quality of generated 
raindrops was visually convincing. Using CNN object 
detectors as a case study, we showed that generated rained 
images can be successfully used to evaluate real vision-
based applications in the automotive domain, such as the 
detection of objects in the path of the moving vehicle. Our 
generated rained images showed a strong resemblance to 
images generated by the state-of-the-art ray-tracing 
approach, although our approach to raindrop simulation is 
different. We expect the generated rained images from our 
model to be useful in different vision-based applications that 
require lots of data samples for training, testing, and 
optimizing.  

We also published a dataset of images of urban drive 
scenes, with added simulated raindrops, generated through 
our raindrop simulator. The images in the dataset were 
augmented with text files, that identify the size, location, and 
orientation of each generated raindrop.  
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For future studies, it is of interest to investigate optical 
flow calculations that may improve simulated raindrop 
representation on dynamic scene images, at the expense of 
added complexity. 
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FIGURE 15.  Examples of Clear, Real, and randomly generated raindrop images from our dataset. rain intensity ranges from light (set 1) to relatively 
heavy (set 4). The generated raindrops are perceptually convincing to a human observer.
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