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s u m m a r y

Soil moisture plays a key role in the water and energy balance in soil, vegetation and atmosphere sys-
tems. According to Wood et al. (2011) there is a grand need to increase global-scale hyper-resolution
water–energy–biogeochemistry land surface modelling capabilities. These modelling capabilities should
also recognize epistemic uncertainties, as well as the nonlinearity and hysteresis in its dynamics.
Unfortunately, it is not clear how to parameterize hydrological processes as a function of scale, and
how to test deterministic models with regard to epistemic uncertainties. In this study, high resolution
long-term simulations were conducted in the highly instrumented TERENO hydrological observatory of
the Wüstebach catchment. Soil hydraulic parameters were derived using inverse modelling with the
Hydrus-1D model using the global optimization scheme SCE-UA and soil moisture data from a wireless
soil moisture sensor network. The estimated parameters were then used for 3D simulations of water
transport using the integrated parallel simulation platform ParFlow-CLM. The simulated soil moisture
dynamics, as well as evapotranspiration (ET) and runoff, were compared with long-term field observa-
tions to illustrate how well the model was able to reproduce the water budget dynamics. We investigated
different anisotropies of hydraulic conductivity to analyze how fast lateral flow processes above the
underlying bedrock affect the simulation results. For a detail investigation of the model results we
applied the empirical orthogonal function (EOF) and wavelet coherence methods. The EOF analysis of
temporal–spatial patterns of simulated and observed soil moisture revealed that introduction of hetero-
geneity in the soil porosity effectively improves estimates of soil moisture patterns. Our wavelet coher-
ence analysis indicates that wet and dry seasons have significant effect on temporal correlation between
observed and simulated soil moisture and ET. Our study demonstrates the usefulness of the EOF and
wavelet coherence methods for a more in-depth validation of spatially highly resolved hydrological 3D
models.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

More reliable weather and climate models for the prediction of
water, energy and CO2 transport are needed to better support the
management of natural resources. For the improvement and
validation of such models, a better understanding of the processes
and interdependencies within and between soil, vegetation and the
atmosphere are urgently needed (Wood et al., 2011). Soil moisture
is the most significant variable in the soil-vegetation-atmosphere
continuum due to its important role in the exchange of water
and energy at the soil surface. Fast lateral flow under gravitational
forces (interflow) can facilitate fast redistribution of soil water in
hillslopes during intensive precipitation events (e.g. Hopp et al.,
2011; Zhang et al., 2011). However, this important hydrological
flux is still poorly understood, because it is difficult to measure
and quantify (e.g. Weiler and McDonnell, 2007; Bachmair and
Weiler, 2012). Recently, it was recognized that interflow is also
very important for understanding the spatial and temporal
variability of biogeochemical fluxes and trace gas emissions (e.g.
Groffman et al., 2009; Tang et al., 2014). According to
Ghasemizade and Schirmer (2013) interflow processes are mainly
controlled by factors depending on topography, geology, soil
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properties, rainfall, and vegetation. Previous modelling studies
suggest that interflow processes are governed by hillslope charac-
teristics, such as the depth to bedrock and the presence and con-
nectivity of preferential flow pathways (e.g. Tromp-van Meerveld
and McDonnell, 2006; Weiler and McDonnell, 2007; Bachmair
and Weiler, 2012). Cornelissen et al. (2014) conducted a 3D simu-
lation of the Wüstebach catchment, located in the Eifel mountain
range in Germany, using the hydrological model HydroGeoSphere
with the aim to explore forest catchment spatiotemporal soil mois-
ture variability. They showed that sharply rising discharge peaks
resulting from fast lateral subsurface flow could not be reproduced,
because of simplified spatially homogeneous soil and bedrock
properties. This demonstrates the need for considering the effect
of heterogeneity and anisotropy of soil hydraulic parameters better
simulate the mass and energy dynamics in mountainous forest
catchment. Recently, an analysis of preferential flow occurrences
in the Wüstebach catchment was presented (Wiekenkamp et al.,
submitted for publication). According to this study, fast interflow
can occur in Wüstebach especially after strong precipitation
events. In addition, the study of Stockinger et al. (2014) suggests,
that during times of high catchment wetness, hillslopes are getting
connected to the riparian zone via interflow processes. In this
study, we investigated how these interflow processes can be
represented in the framework of numerical modelling.

Another aspect, which is often overlooked in hydrological mod-
elling studies, is the litter layer in forest ecosystems, mainly due to
limitations in the direct measurement of forest floor processes. An
exception is the study of Schaap et al. (1997), who investigated the
moisture dynamics of a coniferous forest floor and derived hydrau-
lic properties of the litter layer. Recently, Bogena et al. (2013) used
these hydraulic properties to simulate temporal water dynamics in
the litter layer of the forest catchment Wüstebach demonstrating
its importance for soil moisture assessment.

A parallel, three-dimensional, variably saturated water trans-
port code ParFlow (Ashby and Falgout, 1996; Maxwell et al.,
2014) was developed for simulating large-scale, high-resolution
flow problems. The ParFlow platform was extended to consider
energy and mass balance at the land surface by incorporating the
Common Land Model (CLM; (Dai et al., 2003)) into ParFlow
(Kollet and Maxwell, 2008; Maxwell and Miller, 2005). However,
due to the limitation of availability of in-situ dataset measurement,
it was usually difficult to validate the results of long-term, high-
resolution surface-subsurface flow problems, especially for the
forested catchments.

Spatial and temporal patterns of fluxes and states in the soil-
vegetation-atmosphere continuum are inseparably intertwined,
resulting in complex feedbacks and system responses on different
spatial and temporal scales (Simmer et al., 2015). One useful way
to investigate the spatiotemporal relations between water budget
components and soil moisture is applying the method of empirical
orthogonal functions (EOF) (Graf et al., 2014; Kim and Barros,
2002; Liu, 2003; Syed et al., 2004; Jawson and Niemann, 2007;
Schmidt et al., 2008). However, the EOF analysis has not yet been
used for the spatio-temporal validation of a 3D simulation of soil
moisture patterns. Very recently, Koch et al. (2015) applied the
EOF-analysis in a novel manner for the spatial validation of a dis-
tributed hydrological model with observed satellite based land
surface temperature data and Mascaro et al. (2015) utilized EOFs
to analyze results from a high-resolution distributed hydrologic
simulation. Wavelet analysis has been applied in catchment
studies (Lauzon et al., 2004), model validation (Schaefli and Zehe,
2009), field-scale time series (Vargas et al., 2010), and also in
combination with EOF analysis (Parent et al., 2006). To our
knowledge, a combined EOF and wavelet analysis to explore
modelled spatiotemporal patterns of soil water content, runoff
and evapotranspiration has not been applied so far on catchment
scale.

The objective of this study is to perform high resolution 3D
water flow simulations of a forested headwater catchment using
the Parflow-CLM model. We selected the Wüstebach catchment
as the study area for this study to utilize the comprehensive vali-
dation data sets from atmospheric, pedological and hydrological
monitoring equipment installed in the framework of the TERENO
and SFB/TR32 projects (Bogena et al., 2010, 2015). This integrated
data ideally suited for the analysis of pattern in soil-vegetation-
atmosphere systems (Simmer et al., 2015) and of the linkage
between hydrological and atmospheric processes in complex envi-
ronments such as forest ecosystems. In our study, we conducted
high-resolution hydrological simulations of a complex forest catch-
ment using the Parflow-CLMmodel and evaluated different param-
eterization schemes. For the evaluation with employed a
combination of EOF and wavelet analysis to enable a more in-
depth analysis of the model performance. This study was to answer
the following research questions: (1) how can fast lateral flow
above the bedrock be represented in a 3D Richards-equation based
model; (2) how will different representations of heterogeneity of
soil properties affect the performance of a 3D hydrological model;
and (3) what is the value of EOF and wavelet coherence analysis for
the spatiotemporal validation of hydrological models.
2. Materials and methods

2.1. The experimental test site

This research was conducted in the Wüstebach catchment
(Fig. 1), a 38.5 ha large experimental test site of the TERENO
Eifel/Lower Rhine Valley Observatory (Zacharias et al., 2011;
TERENO, 2011) located in the National park Eifel. The altitude
ranges from 595 m in the north to 628 m in the south. The average
slope is modest (3.6%) with maximum values near the river (up to
10.4%). The geology is dominated by fractured Devonian shales
with occasional sandstone inclusions and a hydraulic conductivity
on the order of 10�9 to 10�7 m/s (Graf et al, 2014). The bedrock is
overlain by a periglacial solifluction layer of about 1–2 m thick-
ness, in which typical soil types have developed. Cambisols and
Planosols are mainly located on hill slopes, whereas Gleysols and
half-bogs have been developed in the riparian zone under the
influence of groundwater (Fig. 1). The prevailing soil texture is silty
clay loam with a medium to high fraction of coarse material, and
the litter layer has a thickness between 3 and 5 cm (Richter,
1995). More than 90% of the forest is comprised of Norway spruce
trees planted in 1946 (Etmann, 2009), with a typical canopy height
of about 25 m. The test site belongs to the temperate climate zone
with a mean temperature of about 7 �C and a long-term mean pre-
cipitation rate of 1310 mm/a for the period 1981–2010.

We made use of long-term soil moisture data from a wireless
senor network installed in the Wüstebach catchment consisting
of 150 sensor nodes (Bogena et al., 2010), each equipped with four
ECH2O EC-5 and two 5TE sensors (Decagon Devices, Inc.) To cover
the test site area the sensor locations were distributed using a ras-
ter configuration with a resolution of 60 m. Additional locations
were randomly located within each raster cell to achieve a wide
range of distance classes. Soil moisture is measured in three depths
(5, 20 and 50 cm) with a temporal resolution of 15 min (Bogena
et al., 2010). Calibration of the sensors is explained in detail in
Rosenbaum et al. (2012). We followed Cornelissen et al. (2014),
who used EMI (electromagnetic imaging) data to identify
representative sensor network locations and to remove outliers.
Accordingly, soil moisture observations at 104 sensor nodes were



Fig. 1. Map of the instrumentation of the Wüstebach experimental catchment with two soil types.
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used in the study for the inverse estimation of hydraulic parame-
ters and for comparison with simulations results. The eddy covari-
ance tower provided the actual ET data used for model validation,
see (Bogena et al., 2015) for a detailed description of the measure-
ment technique.
2.2. The ParFlow-CLM simulation platform

The core of the ParFlow-CLM simulation platform used in this
study is the ParFlow model (Ashby and Falgout, 1996), which is a
parallel, three-dimensional, variably saturated water transport
code that is especially suitable for large-scale, high-resolution flow
problems. ParFlow makes use of advanced numerical solvers and
multigrid preconditioners for massively parallel computer envi-
ronments. It uses a sophisticated octree-space partitioning algo-
rithm to depict complex structures in three-space, such as
topography, different hydrologic facies, and watershed boundaries.
ParFlow simulates the three-dimensional variably saturated sub-
surface flow by solving the Richards equation:

@h
@t

¼ r � KðwÞrwþ @KðwÞ
@z

ð1Þ

where h (–) is the volumetric moisture, K is hydraulic conductivity
(L/T), and w is the hydraulic head (L).

Advanced boundary conditions, such as free-surface overland
flow, afford the simulation of hillslope runoff and channel routing
in an integrated fashion. Distributed surface roughness can be
applied to honor different land cover types in the watershed.

The ParFlow platform was extended to consider energy and
mass balance at the land surface by incorporating the Common
Land Model (CLM; (Dai et al., 2003)) into ParFlow (Kollet and
Maxwell, 2008; Maxwell and Miller, 2005). This coupled
ParFlow-CLM model can quantitatively exchange information
between the land surface and the subsurface, such as plant inter-
ception, root uptake and evapotranspiration, in an operator split-
ting approach. For this study, we employed the version v693 of
ParFlow-CLM released on July 28, 2014.
2.3. Model setup

The model domain used for theWüstebach catchment has a size
of 1180 m � 74 m and a uniform depth of 1.6 m, which corre-
sponds to the averaged measured soil depth. In addition, following
Bogena et al. (2013) a litter layer was considered with a uniform
depth of 0.05 m. We used the DEM of the Land Surveying Office
of North Rhine-Westphalia with a spatial resolution of 10 m to spa-
tially discretize the model domain and to assign slope values to
each grid. The vertical resolution of the model domain was set to
0.025 m. The total number of spatially uniform grids in the model
domain was 118 � 74 � 66. The flow direction grid was generated
using GRASS software. We utilized the terrain following grid (TFG)
method (Maxwell, 2013) to decrease the number of vertical grid
cells.

The CLM model is used to define the top boundary of the
ParFlow-CLM simulation platform. We used hourly information
on global radiation, precipitation rate, air temperature, wind speed,
air pressure, and specific humidity from the Kalterherberg climate
station of the German Weather Service (located 9.6 km west of the
Wüstebach catchment) to force the CLM model. This climate sta-
tion is well representative for our test site as demonstrated in
the study of Graf et al. (2014). The lateral boundary condition
was set as a constant head of �0.88 m, which corresponds to the
average depth of observed water table in the area. No flux bound-
ary condition was chosen for the bottom of the model domain
since the bedrock of the Wüstebach catchment has a very low per-
meability, and deep drainage into the bedrock was found to be
negligible (Graf et al., 2014).

The soil profile was differentiated into four different soil hori-
zons with specific hydraulic properties following Bogena et al.
(2013): a soil covering litter layer (+0.05–0 m), a top A horizon
(0–0.1 m), an intermediate B horizon (0.1–0.4 m), and a C horizon
(0.4–1.6 m) overlaying the bedrock (see Fig. 2).

Soil hydraulic properties were parameterized using the van
Genuchten – Mualem model (VGM):

hðhÞ ¼ hr þ hs�hr
ð1þjahn jÞm ; h < 0

hs; h P 0

(
ð2Þ



Fig. 2. Schematic model of the Wüstebach catchment.
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Se ¼ h� hr
hs � hr

ð4Þ

m ¼ 1� 1
n

ð5Þ

where Ks is the saturated soil hydraulic conductivity (m day-1), Se is
the effective saturation, hr and hs (m3 m�3) represent the residual
and saturated SWC, a (m�1), n and m (both dimensionless) are
parameters for fitting the soil water retention function. Due to lack
of measurements, the hydraulic parameters hr, a, n, and Ks were
estimated for each soil layer using inverse modelling, see Sec-
tion 2.4. The parameter hs was fixed to the maximum value of the
observed soil moisture during the study period for each soil layer.
This simple approach is valid, because high precipitation amounts
have led to an observed saturation of the whole soil profile several
times during the study period.

Following Bogena et al. (2013), we adopted the study of Schaap
et al. (1997) to define appropriate values for the parameters hr, a, n
and Ks of the litter layer. The paramter hs was estimated from the
mean porosity of eight litter layer samples collected in the site
(Bogena et al., 2013). The corresponding hydraulic parameters
used for the ParFlow-CLM simulation are as follows: Ks = 200.0 -
cm/day, hr = 0, hs = 0.87, a = 0.0264 cm�1, and n = 1.286.

The simulation was conducted on hourly time steps for
1216 days from May 1 2010 to April 30 2013, before the deforesta-
tion work started (Bogena et al., 2015). A spinup phase from Jan-
uary 1 to April 30, 2010 was conducted with an initial condition
of constant head in �2.0 m. Actually, several testing simulation
runnings indicated that the initial condition between -0.1 m to
5.0 m gave almost same results after one to two months running.
Therefore the spinup phase was fairly effective. The simulations
were performed on the high performance computer JUROPA in
Centre for High-Performance Scientific Computing in Terrestrial
Systems, HPSC TerrSys, Geoverbund ABC/J and clusters of the
Forschungszentrum Jülich GmbH. It took around 40–60 h for the
3-year simulations to complete. Considering its long term and
the complicated interacted atmospheric-hydrological system in
this study, such computational times are well accepted.

2.4. Inverse estimation of hydraulic parameters

Soil hydraulic parameters can be determined either by direct or
indirect methods. In case of direct methods, the hydraulic
parameters are estimated by fitting the water retention and unsat-
urated hydraulic conductivity curve to experimental data obtained
from soil cores in the laboratory. However, soil heterogeneity
requires that a very large number of samples would be needed to
adequately represent the variability of soil properties in the study
area, which is very expensive and time consuming. Since measured
time series of soil moisture at several depths are available as for
this study, inverse modelling may be an appropriate alternative
to obtain in-situ soil hydraulic parameter estimates (e.g. Vrugt
et al., 2003; Zhang et al., 2004). However, inverse modelling is
computationally demanding and not feasible for 3D models based
on the Richard’s equation even in the presence of high performance
computing facilities. Recently, Qu et al. (2014) showed that most of
the spatial variability of soil moisture in the Wüstebach catchment
can be described using a 1D vertical Richard’s equation approach.
Thus, we followed the approach of Bogena et al. (2013) and used
an inverse HYDRUS-1D model (Simunek and van Genuchten,
2008) to estimate the parameters of the Mualem-van Genuchten
model.

The initial soil profile for HYDRUS 1-D was set to be saturated,
and a 6-month spin up period with actual meteorological data was
applied. Therefore, the simulation period was from 1 July 2009 to
30 April 2013. The reference potential evapotranspiration (ET0)
was computed by the Penman-Monteith equation (Allen et al.,
1998). Potential evaporation (E) and transpiration (T) were sepa-
rated based on the leaf area index (LAI):

T ¼ ET0ð1� e�kLAIÞ ð6Þ
E ¼ ET0e�kLAI ð7Þ

where k is a parameter (–) that governs the radiation extinction of
the canopy. Given that the study area was homogenously covered
by Norway spruce forest, it was found that a k value of 0.75 and a
LAI value of 4 are appropriate (Bogena et al., 2013).

The root distribution was set to decrease linearly from maxi-
mum value at the soil surface to zero at 50 cm depth with a unit
gradient. Root water uptake was computed by the Feddes approach
(Feddes et al., 1976) implemented in HYDRUS-1D. The lower
boundary was set to be three different types for comparison: free
drainage (FD), constant head (CH), and seepage face (SF).

We discretized the soil profile in HYDRUS-1D in the same way
the ParFlow-CLM model (three soil horizons plus a litter layer of
organic material on top of the soil) and applied the global
optimization algorithm SCE-UA (Duan et al., 1994) to estimate
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VGM parameters. We used spatially averaged SoilNet soil moisture
data for three depths (5, 20 and 50 cm) from January 1 2009 and
April 30 2013 to estimate soil hydraulic parameters for each of
the three soil horizons (Fig. 2). The litter layer was parameterized
in the same way as the ParFlow-CLM model.

2.5. Model scenarios

Two scenarios were simulated in order to illustrate how we can
improve model performance by introducing anisotropy (different
parameter values at different directions) and heterogeneity (differ-
ent parameter values at different points) using Parflow-CLM. Dur-
ing strong precipitation events the soils in the study area often
reached saturation, which activated fast lateral water flow path-
ways above the impermeable bedrock (Rosenbaum et al., 2012;
Stockinger et al., 2014). We mimic the fast interflow process by
assuming a strong horizontal anisotropy in the bottom soil layer
(C horizon). Due to the high computational demand of ParFlow-
CLM required for a 3-year simulation period, it was impossible to
inversely estimate the optimal horizontal Ks value. Therefore, we
investigated different scaling factors for the horizontal component
of Ks to find the best representation of the interflow process in the
Wüstebach catchment (modelling scenario SC1). We used a series
of the scaling factors of anisotropy (10, 20, 40, and 80, respec-
tively). During this study, the vertical Ks value was kept unchanged
and isotropy in Ks in the upper two soil horizons was assumed
because fast lateral flow typically occurs above the bedrock inter-
face (e.g. Lin, 2006; Hopp and McDonnell, 2009; Uchida et al.,
2005). To evaluate the quality of the different scenarios we com-
pared observed and simulated runoff, evapotranspiration, and soil
moisture time series and used the root mean square error (RMSE)
and Nash-Sutcliffe efficiency (NSE) as simulation quality criteria.
The scaling factor that resulted in the best simulation results was
used for all following simulations.

In a second modeling scenario (SC2), we investigated the effect
of spatial heterogeneity of soil porosity on the simulation results.
We considered a homogeneous case (SH1) and heterogeneous case
(SH2), in which soil porosity was fully distributed. The distributed
porosity was determined from the maximum observed soil mois-
ture at 104 monitoring locations, then interpolated to the whole
domain using a Geographical Information System (ArcGIS, Esri,
Redlands, CA), and subsequently clustered into 6 groups per layer
(Fig. 3, Table 1).

2.6. Validation data

The validation of the simulation results was performed using
observed states and fluxes in the Wüstebach catchment (i.e. soil
moisture, runoff, and evapotranspiration) in daily resolution from
January 2009 to May 2013. Using the same data, Graf et al.
(2014) were able to close the local water balance of the Wüstebach
catchment. Thus, this comprehensive data set is ideally suited for
the validation of hydrological models like ParFlow-CLM.

2.7. Empirical Orthogonal Function (EOF) analysis

We employed the EOF method (Perry and Niemann, 2008) for a
detailed analysis of the spatiotemporal pattern of simulated and
observed soil moisture. Both observed and simulated soil moisture
data sets contained 312 variables (104 monitoring points by 3 lay-
ers). Thus, we applied the EOF to the matrix of 312 measurement
locations and 1096 days. This formed a 312 � 1096 matrix Y0
with the soil moisture data, the rows representing the 312
measurement locations and the columns representing the 1096
measurement days. Then a new 312 � 1096 matrix Y was formed,
each column of the matrix was average to zero with a prior
removal of the means. Matrix Y can be expressed as a linear com-
bination of new, statistically independent (orthogonal) columns Y’
and their loadings (eigenvectors) E in matrix notation:

Y ¼ Y 0 � ET ð8Þ
where the superscript T indicates the matrix transpose. The matrix
Y0 contains the EOFs that can be used to create spatial patterns
through interpolation. The first column of Y0 describes as much as
possible of the variance of Y, and can be used together with the first
row of ET as a memory-saving representation of a noise-reduced
version of Y; the second and any further column of Y0 describe as
much as possible of the remaining variance.

As for the purpose of model validation, we followed the
approach of Graf et al. (2014) and used only the first two EOF
and loading time series. That means we only used the first two col-
umns of Y0, Y0⁄, with the largest two variance of Y, and the first two
eigenvectors E⁄ to express a reconstructed 312 � 1096 matrix Y⁄ in
Eq. (9):

Y� ¼ Y 0� � E�T ð9Þ
Then the reconstructed soil moisture matrix yr was calculated

using:

yrij ¼ y�ij þ y0i ð10Þ
where y0i refers to the prior removal of the means.

The advantage of EOF analysis is that the spatiotemporal pat-
tern of soil moisture can be represented by a largely reduced num-
ber of variables (from 312 � 1096 to 2 � 1096). Following Graf
et al. (2014), we focus in our validation analysis on the loadings
EOF1 and EOF2 because they contain most of the soil moisture pat-
tern information (see Chapter 3.6).

2.8. Wavelet coherence analysis

Wavelet analysis has been applied in catchment studies
(Lauzon et al., 2004), model validation (Schaefli and Zehe, 2009),
field-scale time series (Vargas et al., 2010), and in combination
with EOF analysis (Parent et al., 2006). The continuous wavelet
transform of a time-dependent variable y(t) for a specific location
along the time axis s and a specific time scale s is given by Eq.
(11) (Si, 2008):

Wðs; sÞ ¼
Z 1

�1
yðtÞ 1ffiffi

s
p u� t � s

s

� �
dt ð11Þ

where u* is the complex conjugate of the mother wavelet u which
can be selected from a variety of functions. In this study we used
the Morlet wavelet as the wavelet function. Two kinds of wavelet
analysis were applied in our study: The global wavelet power spec-
trum analysis and the cross-wavelet spectrum analysis. The global
wavelet power is calculated by averaging the wavelet powers over
the localized time instances using:

W2ðsÞ ¼ 1
N

XN�1

n¼0

jWnðsÞj2 ð12Þ

Similarly to Fourier analysis (e.g., Mauder et al., 2007), the
wavelet transforms of two simultaneous samples variables can
be used to compute the cross-wavelet spectrum. The cross-
wavelet spectrum of two time series x and y can be calculated
using:

Wxy
n ðsÞ ¼ Wx

n ðsÞWy
n � ðsÞ ð13Þ

where Wn
x(s) and Wn

y(s) refer to the wavelet transform of time series
x and y, respectively. Detailed descriptions of wavelet coherence
methods are given in (Torrence and Compo, 1998; Grinsted et al.,
2004; Si, 2008; Rahman et al., 2014).
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Fig. 3. Estimated porosity distributions for three soil layers (0–10 cm, 10–40 cm, and 40–160 cm, respectively).

Table 1
Distributed porosity hs.

Hillslope (1) Porosity_5 cm Porosity_20 cm Porosity_50 cm

Low 0.52 0.44 0.36
Medium 0.59 0.49 0.41
High 0.65 0.55 0.52

Riparian (2) Porosity_5 cm Porosity_20 cm Porosity_50 cm

Low 0.57 0.54 0.42
Medium 0.66 0.57 0.54
High 0.72 0.64 0.61

Table 2
Estimated parameters of each layer of the whole domain under bottom boundary of
FD and SF from HYDRUS inversion.

hs Ks (cm/d) hr a (1/cm) n RMSE NSE

5 cm
FD 0.57 803.35 0.122 0.010 1.26 0.0494 0.512
SF 0.55 1167.80 0.146 0.022 1.39 0.0483 0.533

20 cm
FD 0.49 1495.62 0.148 0.010 1.19 0.0277 0.521
SF 0.47 1494.36 0.149 0.031 1.22 0.0279 0.521

50 cm
FD 0.43 98.76 0.120 0.010 1.21 0.0211 0.3420
SF 0.40 138.52 0.075 0.027 1.27 0.0316 �0.475
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As for the purpose of model validation, we followed the simpli-
fied setup as described in (Graf et al., 2014) to calculate the cross
spectrum of simulated and observed variables such as averaged
soil moisture, runoff, and evapotranspiration to illustrate the tem-
poral variation in different seasons and time scales. In addition,
global wavelet power was also calculated to provide comparison
of temporal pattern between simulation and observation of soil
moisture. The Matlab code for wavelet coherence analysis used
in this study is described in detail in (Grinsted et al., 2004).
Table 3
Statistical analysis of comparison of the five anisotropic simulation scenarios.

RMSE ET Runoff h 5 cm h 20 cm h 50 cm

Isotropy 0.146 0.330 0.113 0.066 0.078
10 � Ksh 0.139 0.204 0.065 0.036 0.041
20 � Ksh 0.136 0.170 0.059 0.042 0.027
40 � Ksh 0.133 0.162 0.070 0.059 0.028
80 � Ksh 0.130 0.159 0.088 0.077 0.043
3. Results and discussions

3.1. Estimation of hydraulic parameters

Using HYDRUS-1D and SCE-UA, soil hydraulic parameters for
the whole model domain were inversely estimated. We tested
two bottom boundary conditions: free drainage (FD) and seepage
face (SF). The optimized parameters are listed in Table 2. Except
for parameter a, both FD and SF boundary condition produced sim-
ilar parameters. Both cases also produced similar soil moisture
dynamics in 5 cm and 20 cm depth, indicated by the close RMSE
and NSE values. However, we found that FD gives much better cor-
respondence with observed soil moisture dynamics in 50 cm level
compared to the SF boundary condition (RMSE and NSE increased
from 0.021 to 0.032 and �0.475 to 0.342, respectively). This indi-
cates that FD is the best boundary condition approximation,
although the low permeability of the underlying bedrock in the
Wüstebach impedes deep drainage. Clearly, the simple HYDRUS-
1D model cannot fully account for the complex soil-bedrock pro-
cesses at the catchment scale. Nevertheless, given the reasonable
simulation results of the HYDRUS-1D model, we selected the
VGM parameters estimated using FD boundary condition for the
ParFlow-CLM simulations. Further studies with more computa-
tional resources are needed to estimate heterogeneous hydraulic
parameters from 3-D inverse calibration procedures with more dif-
ferentiated boundary conditions.

3.2. Representation of the interflow process (SC1)

The results of our scenario analysis indicate that ET shows only
very low sensitivity to the different Ks anisotropies (Table 3). In
contrast, the soil moisture and runoff simulations are more
strongly affected by the Ks scaling. For instance, a scaling factor
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of 20 provided much lower RMSE for soil moisture at both 5 cm
and 50 cm depth (0.059 and 0.026, respectively). Increasing hori-
zontal Ks also improved simulated runoff with RMSE reduced from
0.330 to 0.159. As a trade-off, we chose a scaling factor of 20 as a
best compromise for the following ParFlow-CLM simulations.

3.3. Effect of heterogeneity

Based on the parameterization described above and the addi-
tion of the litter layer, we conducted three simulation cases with
different spatial heterogeneity of soil porosity (see Chapter 2.5).
Fig. 4 shows a comparison between average simulated and
observed soil moisture of the two heterogeneity cases using the
ParFlow-CLM model as well as the HYDRUS-1D simulation results.
Whereas soil depths of 20 and 50 cm showmainly good correspon-
dence between the simulations and observation, soil moisture sim-
ulations at 5 cm depth show distinct deviations from the
observations. For instance, ParFlow-CLM overestimated in both
cases soil moisture at 5 cm especially after strong precipitation
events during the dry seasons. This bias is especially distinct for
the dry spring season in 2011, which was also the driest spring sea-
son of the last 100 years. Interestingly, HYDRUS-1D was able to
simulate this drying-up much better. One possible reason for the
bias in the ParFlow-CLM simulations is that the drainage from
the catchment is to some extent delayed due to the low topo-
graphic gradients in the riparian zone.

Another possible reason for the overestimation during drying
phases is the presence of fast vertical bypass flow during strong
precipitation events at the Wüstebach site as already suggested
by Cornelissen et al. (2014). Recently, Wiekenkamp et al.
(submitted for publication) analysed the preferential flow
Table 4
Statistical analysis of comparison of the simulation scenarios SH1 and SH2.

RMSE

ET Runoff h 5 cm h 20 cm h 50 cm

SH1 0.142 0.173 0.064 0.035 0.025
SH2 0.141 0.173 0.052 0.032 0.022
occurrence of the Wüstebach catchment in detail and found that
bypass flow occurs especially during intensive rainfall and low
antecedent soil moisture conditions induced by hydrophobicity.
This finding supports our assumption that soil moisture overesti-
mation is mainly caused by preferential in the topsoil especially
during dry periods.

The simulation results of the two heterogeneity cases in terms
of RMSE and NSE are presented in Table 4. We found that the
ParFlow-CLM model was not very sensitive to the different cases
of spatial heterogeneity in soil porosity in terms of ET and runoff.
Whereas almost no difference in RMSE was found, NSE indicates
that the simulation results were slightly worse in case of heteroge-
neous soil porosities. In contrast, the soil moisture simulation was
clearly positively influenced by the application of heterogeneous
soil porosities (the NSE value was 34% higher compared to SH1).

Fig. 5 compares the simulated and observed soil moisture (aver-
age of the period between May 2010 and April 2013) for the three
depths. The distributed case (SH2) better captures the main fea-
tures of the observed soil moisture pattern, which is supported
by the scatter plots shown in Fig. 6. The Pearson linear correlation
(r) increased considerable for all depths (Fig. 6), but especially at
5 cm depth (r increased by �60%). Clearly, this indicates that dis-
tributed information on porosity is important for an accurate sim-
ulation of soil moisture pattern.

3.4. Water balance closing

Fig. 7 and Table 5 compare observed and simulated water bud-
gets of the homogeneous and fully distributed cases for the three
years simulation period. Both simulation cases gave very similar
results. This was expected given the very similar runoff and ET
NSE

ET Runoff h 5 cm h 20 cm h 50 cm

�0.159 0.697 0.087 0.235 0.206
�0.152 0.694 0.388 0.356 0.268
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Fig. 5. Observed and simulated soil moisture pattern at 5, 20, and 50 cm depth (3-year average between May 1, 2010 and April 30, 2013) of the two heterogeneity scenarios
SH1 and SH2.

Fig. 6. Scatter plot of observed and simulated 3-year averaged soil moisture of the two heterogeneity scenarios for the three soil depths.
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simulation results of both cases (Table 5 shows results of SH2). The
total simulated residual r = P – ET – R of the three years period was
�27.44 cm in SH1 and �27.10 cm in SH2, of which �18.91 (SH1)
and �18.58 cm (SH2) is contributed by the first year. Since the
ET measurements started on June 23 2010, this data gap had to
be filled with a less reliable ET model (Graf et al., 2014), which is
the main reason for the water budget discrepancy in the first year.
In the latter two years, the annual residual of simulation is �3.7 cm
and the annual residual percentage r% = r/P is �3.25%, which is
lower than the SH1 case (��3.26%), and is acceptable compared
to the residual of observation (��0.25%).

3.5. EOF analysis

In the following we show results of our EOF analysis focusing on
the loadings EOF1 and EOF2 which together describe more than
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Table 5
Observed and simulated water budget elements (precipitation, ET, runoff, residual, and residual percentage) of the Wüstebach catchment for the total study period and annual
sub-periods (case SH2).

Unit in cm P Obs ET Sim ET Obs R Sim R Obs r Obs r (%) Sim r Sim r (%)

May 2010 – April 2011 129.57 49.21 69.26 79.15 78.89 1.22 0.94 �18.58 �14.34
May 2011 – April 2012 130.32 62.11 64.54 59.58 66.40 8.62 6.62 �0.62 �0.48
May 2012 – April 2013 131.28 61.29 62.05 79.34 77.13 �9.35 �7.12 �7.89 �6.01
Sum 391.18 172.61 196.53 218.08 218.81 0.49 0.13 �27.10 �6.93

Fig. 8. Loadings of the first two spatial soil moisture EOFs and spatial standard deviation at the 5 cm level against depth-averaged soil moisture h for the soil moisture
observation and ParFlow simulations using the three heterogeneity scenarios.
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90% of the total variance of observed soil moisture pattern (Graf
et al., 2014). Fig. 8 shows the loadings of EOF1 and EOF2 of the
observed and simulated soil moisture time series plotted against
spatially averaged soil moisture. From Fig. 8 it becomes apparent
that model case SH1 produced more scatter in the loadings of
EOF1 as the heterogeneous cases SH2. EOF1 captures the most



Fig. 9. Cross wavelet coherence analysis for scenario SH2 for runoff. Phase arrows indicate the relative phase relationship between the series (pointing right: delayless
correlation; left: anti-correlation; down: observation leading simulation by 90�).
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important spatial soil moisture variation in the Wüstebach catch-
ment, which is the soil moisture contrast between the hillslope
and riparian zones (Fig. 3). This contrast is mainly produced by
the higher soil porosity in the riparian zone due to higher contents
of organic matter (Fig. 1).

Both heterogeneity cases are able to reproduce the general pat-
tern of the relationship between EOF2 loadings and mean soil
moisture. In contrast to EOF1, the two cases did not produce strong
differences in the EOF2 loadings. As the EOF2 loadings represent
the second important spatial soil moisture variation, this indicates
that the different heterogeneity in porosity did not produced fur-
ther distinct differences in soil moisture patterns.
Fig. 10. Cross wavelet coherence analysis for scenario SH2 for ET. Phase arrows indi
correlation; left: anti-correlation; down: observation leading simulation by 90�).
The EOFs of the soil moisture simulations also indicate the exis-
tence of a turning point ht as already found in the study by Graf
et al. (2014) suggesting different spatial soil moisture pattern for
mean soil moisture below and above ht. For example, the loadings
of EOF1 show a decreasing trend below ht and an increasing trend
above ht for all cases. In contrast, EOF2 shows an increasing trend
below and above ht. The value of ht case SH1 corresponds with
the observations (�0.35). Introduction of heterogeneity ht is shifted
very slightly to the wetter part that is negligible.

Fig. 8 also shows the relationship between standard deviation of
soil moisture and spatially averaged soil moisture. Clearly, both
modelling cases produced less spatial variability in soil moisture
cate the relative phase relationship between the series (pointing right: delayless



Fig. 11. Cross wavelet coherence analysis for observed and simulated soil moisture at 5 cm depth (case SH2). Phase arrows indicate the relative phase relationship between
the series (pointing right: delayless correlation; left: anti-correlation; down: observation leading simulation by 90�).

Fig. 12. Cross wavelet coherence analysis for observed and simulated soil moisture at 20 cm depth (case SH2). Phase arrows indicate the relative phase relationship between
the series (pointing right: delayless correlation; left: anti-correlation; down: observation leading simulation by 90�).
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compared to the observations. Standard deviation (STD) of scenario
case SH1 is 32.0% lower and STD of scenario case SH2 is 14.8%
lower compared to STD of the observations (�0.14). This is not sur-
prising given the fact that the heterogeneity of the vegetation
cover is not represented in the modelling. Interestingly, both cases
did not reproduce the decrease in spatial variability towards the
dry end. The main reason for this discrepancy is a generally longer
lasting wetness contrast between the hillslope and riparian zones
in the soil moisture simulations. For instance, the soil moisture
observations indicated a dry-out of the riparian zone during the
extremely dry spring season 2011, which was not reproduced by
the ParFlow-CLM model (see Fig. 4).

The ParFlow-CLM simulation also produced less scatter in the
STD versus mean soil moisture relationship. As discussed by
Rosenbaum et al. (2012) this scattering is the result of complex
hysteresis loops at the event scale. After strong rainfall events,
STD increases sharply indicating strong spatial variability in infil-
tration intensity due to small scale heterogeneities in soil proper-
ties and vegetation density. Since both soil and vegetation
properties are homogeneous (expect for soil porosity for case



Fig. 13. Power spectrum of observed and simulated (case SH2) soil moisture at 20 cm.

Fig. 14. Cross wavelet coherence analysis for scenario SH2 for soil moisture at 50 cm. Phase arrows indicate the relative phase relationship between the series (pointing right:
delayless correlation; left: anti-correlation; down: observation leading simulation by 90�).
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SH2), it is not surprising that the STD versus mean soil moisture
relationship shows less scattering.

3.6. Wavelet coherence analysis

In the following we present the results of the cross-wavelet
coherence analysis using observed and simulated runoff, ET and
soil moisture time series. Since both heterogeneity cases produced
similar temporal dynamics in terms of catchment scale states and
fluxes we focus on case SH2. Fig. 9 presents the time series and the
cross wavelet coherence plot of observed and simulated runoff.
For the wavelet coherence plot it become apparent that good
agreement between observed and simulated runoff exist especially
for longer time scales, i.e. larger than one month, with R2 being
mostly larger than 0.9 throughout all the three years periods. Some
breakdowns in coherence can be especially observed for shorter
time scales less than 15 days. High coherence exists during very
wet seasons, e.g. from October 2010 to January 2011 and from
January to March 2012, and during distinct runoff events. Taking
January 1 2012 as an example for a wetting period, high correlation
exists for time scales larger than 15 days indicating that simulated
and observed runoff are in good agreement. This is also confirmed
by the almost uniform rightward arrowheads indicating delayless
correlation.
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The cross-wavelet coherence plot shown in Fig. 10 reveals gen-
erally lower coherence between observed and simulated evapo-
transpiration compared to runoff. For the dry season from March
to June 2011, coherence is especially low and with presence of
anti-correlation (leftward arrow) with a time scale around 30 days.
On the other hand, during the wet season from April to December
2012, zones of high coherence exist with time scales larger than
60 days. These findings indicate seasonality of ET simulation accu-
racy. During wet seasons, the ParFlow-CLMmodel provides reason-
able simulation results, while during dry seasons, delays and anti-
correlation in the coherence plots indicate the model is not able to
reproduce short-term fluctuations in evapotranspiration.

Figs. 11, 12, and 14 show cross-wavelet coherence plots of
observed and simulated soil moisture at 5, 20 and 50 cm depth,
respectively. In general, the wavelet coherence plots show similar
pattern for all depths. For instance, the plots reveal breakdowns in
coherence for shorter time scales (i.e. less than 15 days) for all
three depths. Higher coherence exists mainly for time scales larger
than 30 days with few delays and anti-correlations. Interestingly,
for time scales between 64 and 128 days two distinctive zones of
low coherence exist for all soil depths (between January to June
2011, and between August to December 2012, respectively). Both
zones of low coherence are coincident with dry periods. The first
zone coincident with the extraordinary dry period between March
to June 2011 with only 0.24 cm of precipitation during that time.

To further analyze the reason for these breakdowns in coher-
ence, we also present time localized powers wavelet plots taking
the soil moisture times series at 20 cm as an example (Fig. 13).
In the first period, two distinct zones at time scale of about 64 days
are noticeable in the power spectrum of the simulation results,
which are not present in observational data. This indicates that
the ParFlow-CLM model produced artefacts in the soil moisture
simulation at a time scale of about 64 days. These artefacts are
coincident with the dry periods as already discussed in Chapter 3.3.

At all depths, soil moisture was simulated by ParFlow-CLMwith
high coherence between August 2011 to June 2012 at a time scale
of 64 days as well as 128 days almost without delay (Figs. 11, 12,
and 14). Also for the period from July 2011 to March 2012, which
is characterized by generally higher soil saturations, good agree-
ment between simulated and observed soil moisture time series
can be found (R2: �0.9). This indicates that the ParFlow-CLMmodel
was better able to reproduce soil moisture dynamics during wet
conditions.
4. Conclusions

We applied the 3-D hydrological model Parflow-CLM to the
forested headwater catchment Wüstebach. We tested different
parameterization strategies with respect to soil properties taking
the anisotropy of Ks and the heterogeneity of soil porosity as exam-
ples. Finally, we explored the methods of EOF and cross-wavelet
coherence for an in-depth analysis of our model results.

We found that scaling factor of 20 for the horizontal Ks of the
soil layer that overlies the impermeable bedrock increased the
model performance in terms of runoff and soil moisture dynamics,
but not for ET. This indicates that the interflow process plays an
important role for the generation of runoff in theWüstebach catch-
ment. Furthermore, we could show that spatial information on
porosity can significantly improve the simulation of spatial pattern
of soil moisture using a 3D hydrological model.

Our EOF analysis showed that the spatial pattern of observed
soil moisture content is better reproduced by the ParFlow-CLM
model with distributed soil porosity information used. However,
given the limited heterogeneity in the input parameters, the spatial
variability of simulated soil moisture was clearly lower compared
to the observations. Nevertheless, the EOF analysis indicated the
ParFlow-CLM model was able to reproduce a characteristic turning
point ht as already found in the study by Graf et al. (2014), suggest-
ing different spatial soil moisture pattern for mean soil moisture
below and above ht.

Using the cross-wavelet coherence analysis we were able to
analyze the model results in more detail. For instance, the analyses
revealed that the ParFlow-CLMmodel can reproduce the soil mois-
ture observations better during wet seasons. Dry seasons were suf-
fered from delays of correlation and even anti-correlation between
simulated and observed soil moisture.

Our detailed analysis of the ParFlow-CLM model results reveals
a general overestimated of soil moisture content during dry
seasons. We attribute this shortcoming to the low topographic
gradients of the riparian zone that may have led to an underesti-
mation of lateral drainage and thus overestimation of riparian zone
wetness. Another possible reason is the presence of fast vertical
bypass flow during strong precipitation events at the Wüstebach
catchment, which cannot be considered by ParFlow-CLM.

Future studies should consider heterogeneous hydraulic param-
eters to increase the model performance. Such information could
be generated by 3-D inverse calibration, which is, however, not
feasible at the moment because of computational constraints. In
addition, higher spatial resolution could help to reduce low topo-
graphic gradients effect in flat area like riparian zones. The effect
of terrain on ParFlow simulation results was not regarded in this
study and but should be investigated in future studies. Finally, by
enhancing the ParFlow-CLM to consider by-pass flow during infil-
tration, a better agreement of the soil moisture simulation during
dry periods could be achieved.
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