\n \n \n
\n
\n\n \n \n \n \n \n Useful bounds on the extreme eigenvalues and vectors of matrices for Harper's operators.\n \n \n \n\n\n \n Bump, D.; Diaconis, P.; Hicks, A.; Miclo, L.; and Widom, H.\n\n\n \n\n\n\n In
Large truncated Toeplitz matrices, Toeplitz operators, and related topics, volume 259, of Oper. Theory Adv. Appl., pages 235–265. Birkhäuser/Springer, Cham, 2017.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@incollection {MR3644519,\r\n\tAUTHOR = {Bump, Daniel and Diaconis, Persi and Hicks, Angela and Miclo,\r\n\t\tLaurent and Widom, Harold},\r\n\tTITLE = {Useful bounds on the extreme eigenvalues and vectors of\r\n\t\tmatrices for {H}arper's operators},\r\n\tBOOKTITLE = {Large truncated {T}oeplitz matrices, {T}oeplitz operators, and\r\n\t\trelated topics},\r\n\tSERIES = {Oper. Theory Adv. Appl.},\r\n\tVOLUME = {259},\r\n\tPAGES = {235--265},\r\n\tPUBLISHER = {Birkh\\"auser/Springer, Cham},\r\n\tYEAR = {2017},\r\n\tMRCLASS = {60B15 (20P05)},\r\n\tMRNUMBER = {3644519},\r\n}\r\n\r\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n A $q,t$-analogue of Narayana numbers.\n \n \n \n\n\n \n Aval, J.; D'Adderio, M.; Dukes, M.; Hicks, A.; and Le Borgne, Y.\n\n\n \n\n\n\n In
25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), of Discrete Math. Theor. Comput. Sci. Proc., AS, pages 623–634. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2013.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@incollection {MR3091027,\r\n\tAUTHOR = {Aval, Jean-Christophe and D'Adderio, Michele and Dukes, Mark\r\n\tand Hicks, Angela and Le Borgne, Yvan},\r\n\tTITLE = {A {$q,t$}-analogue of {N}arayana numbers},\r\n\tBOOKTITLE = {25th {I}nternational {C}onference on {F}ormal {P}ower {S}eries\r\n\tand {A}lgebraic {C}ombinatorics ({FPSAC} 2013)},\r\n\tSERIES = {Discrete Math. Theor. Comput. Sci. Proc., AS},\r\n\tPAGES = {623--634},\r\n\tPUBLISHER = {Assoc. Discrete Math. Theor. Comput. Sci., Nancy},\r\n\tYEAR = {2013},\r\n\tMRCLASS = {05B50 (05Axx 05E05)},\r\n\tMRNUMBER = {3091027},\r\n}\r\n\r\n
\n
\n\n\n\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Connections between a family of recursive polynomials and parking function theory.\n \n \n \n\n\n \n Hicks, A.\n\n\n \n\n\n\n In
24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), of Discrete Math. Theor. Comput. Sci. Proc., AR, pages 111–121. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2012.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@incollection {MR2957990,\r\n\tAUTHOR = {Hicks, Angela},\r\n\tTITLE = {Connections between a family of recursive polynomials and\r\n\tparking function theory},\r\n\tBOOKTITLE = {24th {I}nternational {C}onference on {F}ormal {P}ower {S}eries\r\n\tand {A}lgebraic {C}ombinatorics ({FPSAC} 2012)},\r\n\tSERIES = {Discrete Math. Theor. Comput. Sci. Proc., AR},\r\n\tPAGES = {111--121},\r\n\tPUBLISHER = {Assoc. Discrete Math. Theor. Comput. Sci., Nancy},\r\n\tYEAR = {2012},\r\n\tMRCLASS = {05E05},\r\n\tMRNUMBER = {2957990},\r\n}\r\n\r\n
\n
\n\n\n\n
\n\n\n\n\n\n