var bibbase_data = {"data":"\"Loading..\"\n\n
\n\n \n\n \n\n \n \n\n \n\n \n \n\n \n\n \n
\n generated by\n \n \"bibbase.org\"\n\n \n
\n \n\n
\n\n \n\n\n
\n\n Excellent! Next you can\n create a new website with this list, or\n embed it in an existing web page by copying & pasting\n any of the following snippets.\n\n
\n JavaScript\n (easiest)\n
\n \n <script src=\"https://bibbase.org/show?bib=http://vclab.science.uoit.ca/faisal-qureshi.bib&jsonp=1&filter=keywords:hyperspectral-segmentation&group0=type&jsonp=1\"></script>\n \n
\n\n PHP\n
\n \n <?php\n $contents = file_get_contents(\"https://bibbase.org/show?bib=http://vclab.science.uoit.ca/faisal-qureshi.bib&jsonp=1&filter=keywords:hyperspectral-segmentation&group0=type\");\n print_r($contents);\n ?>\n \n
\n\n iFrame\n (not recommended)\n
\n \n <iframe src=\"https://bibbase.org/show?bib=http://vclab.science.uoit.ca/faisal-qureshi.bib&jsonp=1&filter=keywords:hyperspectral-segmentation&group0=type\"></iframe>\n \n
\n\n

\n For more details see the documention.\n

\n
\n
\n\n
\n\n This is a preview! To use this list on your own web site\n or create a new web site from it,\n create a free account. The file will be added\n and you will be able to edit it in the File Manager.\n We will show you instructions once you've created your account.\n
\n\n
\n\n

To the site owner:

\n\n

Action required! Mendeley is changing its\n API. In order to keep using Mendeley with BibBase past April\n 14th, you need to:\n

    \n
  1. renew the authorization for BibBase on Mendeley, and
  2. \n
  3. update the BibBase URL\n in your page the same way you did when you initially set up\n this page.\n
  4. \n
\n

\n\n

\n \n \n Fix it now\n

\n
\n\n
\n\n\n
\n \n \n
\n
\n  \n article\n \n \n (1)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Improving hyperspectral image segmentation by applying inverse noise weighting and outlier removal for optimal scale selection.\n \n \n \n \n\n\n \n Dao, P. D.; Mantripragada, K.; He, Y.; and Qureshi, F. Z.\n\n\n \n\n\n\n ISPRS Journal of Photogrammetry and Remote Sensing, 171: 348 - 366. 2021.\n \n\n\n\n
\n\n\n\n \n \n \"ImprovingPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 4 downloads\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n\n\n\n
\n
@article{20-photo-j,\ntitle = {Improving hyperspectral image segmentation by applying inverse noise weighting and outlier removal for optimal scale selection},\njournal = {ISPRS Journal of Photogrammetry and Remote Sensing},\nvolume = {171},\npages = {348 - 366},\nyear = {2021},\nissn = {0924-2716},\ndoi = {https://doi.org/10.1016/j.isprsjprs.2020.11.013},\nurl = {http://www.sciencedirect.com/science/article/pii/S0924271620303208},\nauthor = {Phuong D. Dao and Kiran Mantripragada and Yuhong He and Faisal Z. Qureshi},\nkeywords = {hyperspectral-segmentation},\nabstract = {Optimal scale selection for image segmentation is an essential component of the Object-Based Image Analysis (OBIA) and interpretation. An optimal segmentation scale is a scale at which image objects, overall, best represent real-world ground objects and features across the entire image. At this scale, the intra-object variance is ideally lowest and the inter-object spatial autocorrelation is ideally highest, and a change in the scale could cause an abrupt change in these measures. Unsupervised parameter optimization methods typically use global measures of spatial and spectral properties calculated from all image objects in all bands as the target criteria to determine the optimal segmentation scale. However, no studies consider the effect of noise in image spectral bands on the segmentation assessment and scale selection. Furthermore, these global measures could be affected by outliers or extreme values from a small number of objects. These issues may lead to incorrect assessment and selection of optimal scales and cause the uncertainties in subsequent segmentation and classification results. These issues become more pronounced when segmenting hyperspectral data with large spectral variability across the spectrum. In this study, we propose an enhanced method that 1) incorporates the band’s inverse noise weighting in the segmentation and 2) detects and removes outliers before determining segmentation scale parameters. The proposed method is evaluated on three well-established segmentation approaches – k-means, mean-shift, and watershed. The generated segments are validated by comparing them with reference polygons using normalized over-segmentation (OS), under-segmentation (US), and the Euclidean Distance (ED) indices. The results demonstrate that this proposed scale selection method produces more accurate and reliable segmentation results. The approach can be applied to other segmentation selection criteria and are useful for automatic multi-parameter tuning and optimal scale parameter selections in OBIA methods in remote sensing.}\n}\n\n
\n
\n\n\n
\n Optimal scale selection for image segmentation is an essential component of the Object-Based Image Analysis (OBIA) and interpretation. An optimal segmentation scale is a scale at which image objects, overall, best represent real-world ground objects and features across the entire image. At this scale, the intra-object variance is ideally lowest and the inter-object spatial autocorrelation is ideally highest, and a change in the scale could cause an abrupt change in these measures. Unsupervised parameter optimization methods typically use global measures of spatial and spectral properties calculated from all image objects in all bands as the target criteria to determine the optimal segmentation scale. However, no studies consider the effect of noise in image spectral bands on the segmentation assessment and scale selection. Furthermore, these global measures could be affected by outliers or extreme values from a small number of objects. These issues may lead to incorrect assessment and selection of optimal scales and cause the uncertainties in subsequent segmentation and classification results. These issues become more pronounced when segmenting hyperspectral data with large spectral variability across the spectrum. In this study, we propose an enhanced method that 1) incorporates the band’s inverse noise weighting in the segmentation and 2) detects and removes outliers before determining segmentation scale parameters. The proposed method is evaluated on three well-established segmentation approaches – k-means, mean-shift, and watershed. The generated segments are validated by comparing them with reference polygons using normalized over-segmentation (OS), under-segmentation (US), and the Euclidean Distance (ED) indices. The results demonstrate that this proposed scale selection method produces more accurate and reliable segmentation results. The approach can be applied to other segmentation selection criteria and are useful for automatic multi-parameter tuning and optimal scale parameter selections in OBIA methods in remote sensing.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n\n\n\n
\n\n\n \n\n \n \n \n \n\n
\n"}; document.write(bibbase_data.data);