\n \n \n
\n
\n\n \n \n \n \n \n Partition and inclusion hierarchies of images: A comprehensive survey.\n \n \n \n\n\n \n Bosilj, P.; Kijak, E.; and Lefèvre, S.\n\n\n \n\n\n\n
Journal of Imaging, 4(2): 33. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{bosilj2018partition,\n title={Partition and inclusion hierarchies of images: A comprehensive survey},\n author={Bosilj, Petra and Kijak, Ewa and Lef{\\`e}vre, S{\\'e}bastien},\n journal={Journal of Imaging},\n volume={4},\n number={2},\n pages={33},\n year={2018},\n publisher={MDPI}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Connected attribute morphology for unified vegetation segmentation and classification in precision agriculture.\n \n \n \n\n\n \n Bosilj, P.; Duckett, T.; and Cielniak, G.\n\n\n \n\n\n\n
Computers in industry, 98: 226–240. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{bosilj2018connected,\n title={Connected attribute morphology for unified vegetation segmentation and classification in precision agriculture},\n author={Bosilj, Petra and Duckett, Tom and Cielniak, Grzegorz},\n journal={Computers in industry},\n volume={98},\n pages={226--240},\n year={2018},\n publisher={Elsevier}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Analysis of morphology-based features for classification of crop and weeds in precision agriculture.\n \n \n \n\n\n \n Bosilj, P.; Duckett, T.; and Cielniak, G.\n\n\n \n\n\n\n
IEEE Robotics and Automation Letters, 3(4): 2950–2956. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{bosilj2018analysis,\n title={Analysis of morphology-based features for classification of crop and weeds in precision agriculture},\n author={Bosilj, Petra and Duckett, Tom and Cielniak, Grzegorz},\n journal={IEEE Robotics and Automation Letters},\n volume={3},\n number={4},\n pages={2950--2956},\n year={2018},\n publisher={IEEE}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n A novel camera based approach for automatic expiry date detection and recognition on food packages.\n \n \n \n\n\n \n Gong, L.; Yu, M.; Duan, W.; Ye, X.; Gudmundsson, K.; and Swainson, M.\n\n\n \n\n\n\n In
Artificial Intelligence Applications and Innovations: 14th IFIP WG 12.5 International Conference, AIAI 2018, Rhodes, Greece, May 25–27, 2018, Proceedings 14, pages 133–142, 2018. Springer International Publishing\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{gong2018novel,\n title={A novel camera based approach for automatic expiry date detection and recognition on food packages},\n author={Gong, Liyun and Yu, Miao and Duan, Wenting and Ye, Xujiong and Gudmundsson, Kjartan and Swainson, Mark},\n booktitle={Artificial Intelligence Applications and Innovations: 14th IFIP WG 12.5 International Conference, AIAI 2018, Rhodes, Greece, May 25--27, 2018, Proceedings 14},\n pages={133--142},\n year={2018},\n organization={Springer International Publishing}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Classification of bird species from video using appearance and motion features.\n \n \n \n\n\n \n Atanbori, J.; Duan, W.; Shaw, E.; Appiah, K.; and Dickinson, P.\n\n\n \n\n\n\n
Ecological Informatics, 48: 12–23. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{atanbori2018classification,\n title={Classification of bird species from video using appearance and motion features},\n author={Atanbori, John and Duan, Wenting and Shaw, Edward and Appiah, Kofi and Dickinson, Patrick},\n journal={Ecological Informatics},\n volume={48},\n pages={12--23},\n year={2018},\n publisher={Elsevier}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Fully automated disease severity assessment and treatment monitoring in retinopathy of prematurity using deep learning.\n \n \n \n\n\n \n Brown, J. M; Campbell, J P.; Beers, A.; Chang, K.; Donohue, K.; Ostmo, S.; Chan, R. P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; and others\n\n\n \n\n\n\n In
Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, volume 10579, pages 149–155, 2018. SPIE\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{brown2018fully,\n title={Fully automated disease severity assessment and treatment monitoring in retinopathy of prematurity using deep learning},\n author={Brown, James M and Campbell, J Peter and Beers, Andrew and Chang, Ken and Donohue, Kyra and Ostmo, Susan and Chan, RV Paul and Dy, Jennifer and Erdogmus, Deniz and Ioannidis, Stratis and others},\n booktitle={Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications},\n volume={10579},\n pages={149--155},\n year={2018},\n organization={SPIE}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks.\n \n \n \n\n\n \n Brown, J. M; Campbell, J P.; Beers, A.; Chang, K.; Ostmo, S.; Chan, R. P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.; and others\n\n\n \n\n\n\n
JAMA ophthalmology, 136(7): 803–810. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{brown2018automated,\n title={Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks},\n author={Brown, James M and Campbell, J Peter and Beers, Andrew and Chang, Ken and Ostmo, Susan and Chan, RV Paul and Dy, Jennifer and Erdogmus, Deniz and Ioannidis, Stratis and Kalpathy-Cramer, Jayashree and others},\n journal={JAMA ophthalmology},\n volume={136},\n number={7},\n pages={803--810},\n year={2018},\n publisher={American Medical Association}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI.\n \n \n \n\n\n \n Winzeck, S.; Hakim, A.; McKinley, R.; Pinto, J. A.; Alves, V.; Silva, C.; Pisov, M.; Krivov, E.; Belyaev, M.; Monteiro, M.; and others\n\n\n \n\n\n\n
Frontiers in neurology,679. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{winzeck2018isles,\n title={ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI},\n author={Winzeck, Stefan and Hakim, Arsany and McKinley, Richard and Pinto, Jos{\\'e} AADSR and Alves, Victor and Silva, Carlos and Pisov, Maxim and Krivov, Egor and Belyaev, Mikhail and Monteiro, Miguel and others},\n journal={Frontiers in neurology},\n pages={679},\n year={2018},\n publisher={Frontiers}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Automated diagnosis of plus disease in retinopathy of prematurity using deep learning.\n \n \n \n\n\n \n Campbell, J P.; Brown, J.; Chan, R. P.; Dy, J.; Ioannidis, S.; Erdogmus, D.; Kalpathy-Cramer, J.; and Chiang, M. F\n\n\n \n\n\n\n
Journal of American Association for Pediatric Ophthalmology and Strabismus $\\{$JAAPOS$\\}$, 22(4): e12. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{campbell2018automated,\n title={Automated diagnosis of plus disease in retinopathy of prematurity using deep learning},\n author={Campbell, J Peter and Brown, James and Chan, RV Paul and Dy, Jennifer and Ioannidis, Stratis and Erdogmus, Deniz and Kalpathy-Cramer, Jayashree and Chiang, Michael F},\n journal={Journal of American Association for Pediatric Ophthalmology and Strabismus $\\{$JAAPOS$\\}$},\n volume={22},\n number={4},\n pages={e12},\n year={2018},\n publisher={Elsevier}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n How is plus disease diagnosed in ROP? Insights from a deep learning computer-based image analysis system with occlusion analysis.\n \n \n \n\n\n \n Ghergherehchi, L. M; Brown, J. M; Ostmo, S.; Kim, S. J.; Campbell, J. P; Chan, R. P.; Kalpathy-Cramer, J.; and Chiang, M. F\n\n\n \n\n\n\n
Journal of American Association for Pediatric Ophthalmology and Strabismus $\\{$JAAPOS$\\}$, 22(4): e78. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{ghergherehchi2018plus,\n title={How is plus disease diagnosed in ROP? Insights from a deep learning computer-based image analysis system with occlusion analysis},\n author={Ghergherehchi, Layla M and Brown, James M and Ostmo, Susan and Kim, Sang Jin and Campbell, John P and Chan, RV Paul and Kalpathy-Cramer, Jayashree and Chiang, Michael F},\n journal={Journal of American Association for Pediatric Ophthalmology and Strabismus $\\{$JAAPOS$\\}$},\n volume={22},\n number={4},\n pages={e78},\n year={2018},\n publisher={Elsevier}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Application of a Quantitative Image Analysis Scale Using Deep Learning for Detection of Clinically Significant ROP.\n \n \n \n\n\n \n Redd, T.; Campbell, J P.; Brown, J. M; Kim, S. J.; Ostmo, S.; Chan, R. V. P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.; and others\n\n\n \n\n\n\n
Investigative Ophthalmology & Visual Science, 59(9): 2782–2782. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{redd2018application,\n title={Application of a Quantitative Image Analysis Scale Using Deep Learning for Detection of Clinically Significant ROP},\n author={Redd, Travis and Campbell, J Peter and Brown, James M and Kim, Sang Jin and Ostmo, Susan and Chan, Robison Vernon Paul and Dy, Jennifer and Erdogmus, Deniz and Ioannidis, Stratis and Kalpathy-Cramer, Jayashree and others},\n journal={Investigative Ophthalmology \\& Visual Science},\n volume={59},\n number={9},\n pages={2782--2782},\n year={2018},\n publisher={The Association for Research in Vision and Ophthalmology}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Artificial intelligence in retinopathy of prematurity: development of a fully automated deep convolutional neural network (DeepROP) for plus disease diagnosis.\n \n \n \n\n\n \n Brown, J. M; Campbell, J P.; Ostmo, S.; Tian, P.; Yildiz, V.; Kim, S. J.; Chan, R. V. P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; and others\n\n\n \n\n\n\n
Investigative Ophthalmology & Visual Science, 59(9): 3938–3938. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{brown2018artificial,\n title={Artificial intelligence in retinopathy of prematurity: development of a fully automated deep convolutional neural network (DeepROP) for plus disease diagnosis},\n author={Brown, James M and Campbell, J Peter and Ostmo, Susan and Tian, Peng and Yildiz, Veysi and Kim, Sang Jin and Chan, Robison Vernon Paul and Dy, Jennifer and Erdogmus, Deniz and Ioannidis, Stratis and others},\n journal={Investigative Ophthalmology \\& Visual Science},\n volume={59},\n number={9},\n pages={3938--3938},\n year={2018},\n publisher={The Association for Research in Vision and Ophthalmology}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Automated Computer-Based Image Analysis in Monitoring Disease Progression for Retinopathy of Prematurity.\n \n \n \n\n\n \n Taylor, S.; Gupta, K.; Campbell, J P.; Brown, J. M; Ostmo, S.; Chan, R. V. P.; Dy, J.; Ioannidis, S.; Kalpathy-Cramer, J.; Kim, S. J.; and others\n\n\n \n\n\n\n
Investigative Ophthalmology & Visual Science, 59(9): 3937–3937. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{taylor2018automated,\n title={Automated Computer-Based Image Analysis in Monitoring Disease Progression for Retinopathy of Prematurity},\n author={Taylor, Stanford and Gupta, Kishan and Campbell, J Peter and Brown, James M and Ostmo, Susan and Chan, Robison Vernon Paul and Dy, Jennifer and Ioannidis, Stratis and Kalpathy-Cramer, Jayashree and Kim, Sang Jin and others},\n journal={Investigative Ophthalmology \\& Visual Science},\n volume={59},\n number={9},\n pages={3937--3937},\n year={2018},\n publisher={The Association for Research in Vision and Ophthalmology}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Artificial intelligence in retinopathy of prematurity: identification of clinically significant retinal vascular findings using computer-based image analysis.\n \n \n \n\n\n \n Chiang, M. F; Brown, J. M; Yildiz, V.; Tian, P.; Ghergherehchi, L.; Campbell, J P.; Ostmo, S.; Kim, S. J.; Chan, R. V. P.; Dy, J.; and others\n\n\n \n\n\n\n
Investigative Ophthalmology & Visual Science, 59(9): 2764–2764. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{chiang2018artificial,\n title={Artificial intelligence in retinopathy of prematurity: identification of clinically significant retinal vascular findings using computer-based image analysis},\n author={Chiang, Michael F and Brown, James M and Yildiz, Veysi and Tian, Peng and Ghergherehchi, Layla and Campbell, J Peter and Ostmo, Susan and Kim, Sang Jin and Chan, Robison Vernon Paul and Dy, Jennifer and others},\n journal={Investigative Ophthalmology \\& Visual Science},\n volume={59},\n number={9},\n pages={2764--2764},\n year={2018},\n publisher={The Association for Research in Vision and Ophthalmology}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Monitoring response to treatment in severe retinopathy of prematurity using a deep learning based quantitative severity scale.\n \n \n \n\n\n \n Gupta, K.; Campbell, J P.; Taylor, S.; Brown, J. M; Ostmo, S.; Chan, R. P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.; and others\n\n\n \n\n\n\n
Investigative Ophthalmology & Visual Science, 59(9): 3766–3766. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{gupta2018monitoring,\n title={Monitoring response to treatment in severe retinopathy of prematurity using a deep learning based quantitative severity scale},\n author={Gupta, Kishan and Campbell, J Peter and Taylor, Stanford and Brown, James M and Ostmo, Susan and Chan, RV Paul and Dy, Jennifer and Erdogmus, Deniz and Ioannidis, Stratis and Kalpathy-Cramer, Jayashree and others},\n journal={Investigative Ophthalmology \\& Visual Science},\n volume={59},\n number={9},\n pages={3766--3766},\n year={2018},\n publisher={The Association for Research in Vision and Ophthalmology}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Risk assessment in retinopathy of prematurity: improvement of clinical models using automated image analysis.\n \n \n \n\n\n \n Kalpathy-Cramer, J.; Brown, J. M; Campbell, J P.; Ostmo, S.; Tian, P.; Yildiz, V.; Kim, S. J.; Chan, R. V. P.; Dy, J.; Erdogmus, D.; and others\n\n\n \n\n\n\n
Investigative Ophthalmology & Visual Science, 59(9): 2767–2767. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{kalpathy2018risk,\n title={Risk assessment in retinopathy of prematurity: improvement of clinical models using automated image analysis},\n author={Kalpathy-Cramer, Jayashree and Brown, James M and Campbell, J Peter and Ostmo, Susan and Tian, Peng and Yildiz, Veysi and Kim, Sang Jin and Chan, Robison Vernon Paul and Dy, Jennifer and Erdogmus, Deniz and others},\n journal={Investigative Ophthalmology \\& Visual Science},\n volume={59},\n number={9},\n pages={2767--2767},\n year={2018},\n publisher={The Association for Research in Vision and Ophthalmology}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Deep learning for image quality assessment of fundus images in retinopathy of prematurity.\n \n \n \n\n\n \n Coyner, A. S; Swan, R.; Brown, J. M; Kalpathy-Cramer, J.; Kim, S. J.; Campbell, J P.; Jonas, K.; Chan, R. P.; Ostmo, S.; and Chiang, M. F\n\n\n \n\n\n\n
Investigative Ophthalmology & Visual Science, 59(9): 2762–2762. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{coyner2018deep,\n title={Deep learning for image quality assessment of fundus images in retinopathy of prematurity},\n author={Coyner, Aaron S and Swan, Ryan and Brown, James M and Kalpathy-Cramer, Jayashree and Kim, Sang Jin and Campbell, J Peter and Jonas, Karyn and Chan, RV Paul and Ostmo, Susan and Chiang, Michael F},\n journal={Investigative Ophthalmology \\& Visual Science},\n volume={59},\n number={9},\n pages={2762--2762},\n year={2018},\n publisher={The Association for Research in Vision and Ophthalmology}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Deep feature transfer between localization and segmentation tasks.\n \n \n \n\n\n \n Hu, S.; Beers, A.; Chang, K.; Höbel, K.; Campbell, J P.; Erdogumus, D.; Ioannidis, S.; Dy, J.; Chiang, M. F; Kalpathy-Cramer, J.; and others\n\n\n \n\n\n\n
arXiv preprint arXiv:1811.02539. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{hu2018deep,\n title={Deep feature transfer between localization and segmentation tasks},\n author={Hu, Szu-Yeu and Beers, Andrew and Chang, Ken and H{\\"o}bel, Kathi and Campbell, J Peter and Erdogumus, Deniz and Ioannidis, Stratis and Dy, Jennifer and Chiang, Michael F and Kalpathy-Cramer, Jayashree and others},\n journal={arXiv preprint arXiv:1811.02539},\n year={2018}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n NCOG-04. EFFECTS OF PROTON RADIATION ON BRAIN STRUCTURE AND FUNCTION IN LOW GRADE GLIOMA.\n \n \n \n\n\n \n Parsons, M.; Hoebel, K.; Chang, K.; Pongpitakmetha, T.; Beers, A.; Brown, J.; Kalpathy-Cramer, J.; Sherman, J.; Shih, H.; and Dietrich, J.\n\n\n \n\n\n\n
Neuro-Oncology, 20(suppl_6): vi173–vi173. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{parsons2018ncog,\n title={NCOG-04. EFFECTS OF PROTON RADIATION ON BRAIN STRUCTURE AND FUNCTION IN LOW GRADE GLIOMA},\n author={Parsons, Michael and Hoebel, Katharina and Chang, Ken and Pongpitakmetha, Thanakit and Beers, Andrew and Brown, James and Kalpathy-Cramer, Jayashree and Sherman, Janet and Shih, Helen and Dietrich, Jorg},\n journal={Neuro-Oncology},\n volume={20},\n number={suppl\\_6},\n pages={vi173--vi173},\n year={2018},\n publisher={Oxford University Press US}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n High-resolution medical image synthesis using progressively grown generative adversarial networks.\n \n \n \n\n\n \n Beers, A.; Brown, J.; Chang, K.; Campbell, J P.; Ostmo, S.; Chiang, M. F; and Kalpathy-Cramer, J.\n\n\n \n\n\n\n
arXiv preprint arXiv:1805.03144. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{beers2018high,\n title={High-resolution medical image synthesis using progressively grown generative adversarial networks},\n author={Beers, Andrew and Brown, James and Chang, Ken and Campbell, J Peter and Ostmo, Susan and Chiang, Michael F and Kalpathy-Cramer, Jayashree},\n journal={arXiv preprint arXiv:1805.03144},\n year={2018}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Machine learning for health (ML4H) workshop at NeurIPS 2018.\n \n \n \n\n\n \n Antropova, N.; Beam, A. L; Beaulieu-Jones, B. K; Chen, I.; Chivers, C.; Dalca, A.; Finlayson, S.; Fiterau, M.; Fries, J. A.; Ghassemi, M.; and others\n\n\n \n\n\n\n
arXiv preprint arXiv:1811.07216. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{antropova2018machine,\n title={Machine learning for health (ML4H) workshop at NeurIPS 2018},\n author={Antropova, Natalia and Beam, Andrew L and Beaulieu-Jones, Brett K and Chen, Irene and Chivers, Corey and Dalca, Adrian and Finlayson, Sam and Fiterau, Madalina and Fries, Jason Alan and Ghassemi, Marzyeh and others},\n journal={arXiv preprint arXiv:1811.07216},\n year={2018}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge.\n \n \n \n\n\n \n Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R. T.; Berger, C.; Ha, S. M.; Rozycki, M.; and others\n\n\n \n\n\n\n
arXiv preprint arXiv:1811.02629. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{bakas2018identifying,\n title={Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge},\n author={Bakas, Spyridon and Reyes, Mauricio and Jakab, Andras and Bauer, Stefan and Rempfler, Markus and Crimi, Alessandro and Shinohara, Russell Takeshi and Berger, Christoph and Ha, Sung Min and Rozycki, Martin and others},\n journal={arXiv preprint arXiv:1811.02629},\n year={2018}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Semi-Supervised Deep Learning for Abnormality Classification in Retinal Images.\n \n \n \n\n\n \n Lecouat, B.; Chang, K.; Foo, C.; Unnikrishnan, B.; Brown, J. M; Zenati, H.; Beers, A.; Chandrasekhar, V.; Kalpathy-Cramer, J.; and Krishnaswamy, P.\n\n\n \n\n\n\n
arXiv preprint arXiv:1812.07832. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{lecouat2018semi,\n title={Semi-Supervised Deep Learning for Abnormality Classification in Retinal Images},\n author={Lecouat, Bruno and Chang, Ken and Foo, Chuan-Sheng and Unnikrishnan, Balagopal and Brown, James M and Zenati, Houssam and Beers, Andrew and Chandrasekhar, Vijay and Kalpathy-Cramer, Jayashree and Krishnaswamy, Pavitra},\n journal={arXiv preprint arXiv:1812.07832},\n year={2018}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Anatomical DCE-MRI phantoms generated from glioma patient data.\n \n \n \n\n\n \n Beers, A.; Chang, K.; Brown, J.; Zhu, X.; Sengupta, D.; Willke, T. L; Gerstner, E.; Rosen, B.; and Kalpathy-Cramer, J.\n\n\n \n\n\n\n In
Medical Imaging 2018: Physics of Medical Imaging, volume 10573, pages 743–748, 2018. SPIE\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{beers2018anatomical,\n title={Anatomical DCE-MRI phantoms generated from glioma patient data},\n author={Beers, Andrew and Chang, Ken and Brown, James and Zhu, Xia and Sengupta, Dipanjan and Willke, Theodore L and Gerstner, Elizabeth and Rosen, Bruce and Kalpathy-Cramer, Jayashree},\n booktitle={Medical Imaging 2018: Physics of Medical Imaging},\n volume={10573},\n pages={743--748},\n year={2018},\n organization={SPIE}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Artificial intelligence in retinopathy of prematurity: clinical validation of a fully automated deep learning system (i-ROP DL) for plus disease diagnosis.\n \n \n \n\n\n \n Campbell, J P.; Brown, J. M; Ostmo, S.; Chan, R. P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.; and Chiang, M. F\n\n\n \n\n\n\n
Investigative Ophthalmology & Visual Science, 59(9): 3936–3936. 2018.\n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{campbell2018artificial,\n title={Artificial intelligence in retinopathy of prematurity: clinical validation of a fully automated deep learning system (i-ROP DL) for plus disease diagnosis},\n author={Campbell, J Peter and Brown, James M and Ostmo, Susan and Chan, RV Paul and Dy, Jennifer and Erdogmus, Deniz and Ioannidis, Stratis and Kalpathy-Cramer, Jayashree and Chiang, Michael F},\n journal={Investigative Ophthalmology \\& Visual Science},\n volume={59},\n number={9},\n pages={3936--3936},\n year={2018},\n publisher={The Association for Research in Vision and Ophthalmology}\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n