\n \n \n
\n
\n\n \n \n \n \n \n \n When Aloha and CSMA Coexist: Modeling, Fairness, and Throughput Optimization.\n \n \n \n \n\n\n \n Gao, Y.; Fang, S.; Song, X.; and Dai, L.\n\n\n \n\n\n\n
IEEE Trans. Wirel. Commun., 21(10): 8163–8178. 2022.\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{DBLP:journals/twc/GaoFSD22,\n author = {Yayu Gao and\n Shuangfeng Fang and\n Xiangchen Song and\n Lin Dai},\n title = {When Aloha and {CSMA} Coexist: Modeling, Fairness, and Throughput\n Optimization},\n journal = {{IEEE} Trans. Wirel. Commun.},\n volume = {21},\n number = {10},\n pages = {8163--8178},\n year = {2022},\n url = {https://doi.org/10.1109/TWC.2022.3164463},\n doi = {10.1109/TWC.2022.3164463},\n timestamp = {Sun, 13 Nov 2022 00:00:00 +0100},\n biburl = {https://dblp.org/rec/journals/twc/GaoFSD22.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with Graph Neural Networks (Extended Abstract).\n \n \n \n \n\n\n \n Yu, Y.; Kan, X.; Cui, H.; Xu, R.; Zheng, Y.; Song, X.; Zhu, Y.; Zhang, K.; Nabi, R.; Guo, Y.; Zhang, C.; and Yang, C.\n\n\n \n\n\n\n In Tsumoto, S.; Ohsawa, Y.; Chen, L.; den Poel, D. V.; Hu, X.; Motomura, Y.; Takagi, T.; Wu, L.; Xie, Y.; Abe, A.; and Raghavan, V., editor(s),
IEEE International Conference on Big Data, Big Data 2022, Osaka, Japan, December 17-20, 2022, pages 4995–4996, 2022. IEEE\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{DBLP:conf/bigdataconf/YuKCXZSZZNGZY22,\n author = {Yue Yu and\n Xuan Kan and\n Hejie Cui and\n Ran Xu and\n Yujia Zheng and\n Xiangchen Song and\n Yanqiao Zhu and\n Kun Zhang and\n Razieh Nabi and\n Ying Guo and\n Chao Zhang and\n Carl Yang},\n editor = {Shusaku Tsumoto and\n Yukio Ohsawa and\n Lei Chen and\n Dirk Van den Poel and\n Xiaohua Hu and\n Yoichi Motomura and\n Takuya Takagi and\n Lingfei Wu and\n Ying Xie and\n Akihiro Abe and\n Vijay Raghavan},\n title = {Learning Task-Aware Effective Brain Connectivity for fMRI Analysis\n with Graph Neural Networks (Extended Abstract)},\n booktitle = {{IEEE} International Conference on Big Data, Big Data 2022, Osaka,\n Japan, December 17-20, 2022},\n pages = {4995--4996},\n publisher = {{IEEE}},\n year = {2022},\n url = {https://doi.org/10.1109/BigData55660.2022.10020955},\n doi = {10.1109/BIGDATA55660.2022.10020955},\n timestamp = {Thu, 24 Jul 2025 01:00:00 +0200},\n biburl = {https://dblp.org/rec/conf/bigdataconf/YuKCXZSZZNGZY22.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n Attentive Knowledge-aware Graph Convolutional Networks with Collaborative Guidance for Personalized Recommendation.\n \n \n \n \n\n\n \n Chen, Y.; Yang, Y.; Wang, Y.; Bai, J.; Song, X.; and King, I.\n\n\n \n\n\n\n In
38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022, pages 299–311, 2022. IEEE\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{DBLP:conf/icde/ChenYWBSK22,\n author = {Yankai Chen and\n Yaming Yang and\n Yujing Wang and\n Jing Bai and\n Xiangchen Song and\n Irwin King},\n title = {Attentive Knowledge-aware Graph Convolutional Networks with Collaborative\n Guidance for Personalized Recommendation},\n booktitle = {38th {IEEE} International Conference on Data Engineering, {ICDE} 2022,\n Kuala Lumpur, Malaysia, May 9-12, 2022},\n pages = {299--311},\n publisher = {{IEEE}},\n year = {2022},\n url = {https://doi.org/10.1109/ICDE53745.2022.00027},\n doi = {10.1109/ICDE53745.2022.00027},\n timestamp = {Mon, 26 Jun 2023 01:00:00 +0200},\n biburl = {https://dblp.org/rec/conf/icde/ChenYWBSK22.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n Creating Training Sets via Weak Indirect Supervision.\n \n \n \n \n\n\n \n Zhang, J.; Wang, B.; Song, X.; Wang, Y.; Yang, Y.; Bai, J.; and Ratner, A.\n\n\n \n\n\n\n In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022. OpenReview.net\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{DBLP:conf/iclr/ZhangWSW00R22,\n author = {Jieyu Zhang and\n Bohan Wang and\n Xiangchen Song and\n Yujing Wang and\n Yaming Yang and\n Jing Bai and\n Alexander Ratner},\n title = {Creating Training Sets via Weak Indirect Supervision},\n booktitle = {The Tenth International Conference on Learning Representations, {ICLR}\n 2022, Virtual Event, April 25-29, 2022},\n publisher = {OpenReview.net},\n year = {2022},\n url = {https://openreview.net/forum?id=m8uJvVgwRci},\n timestamp = {Tue, 01 Jul 2025 01:00:00 +0200},\n biburl = {https://dblp.org/rec/conf/iclr/ZhangWSW00R22.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n Learning Multi-granularity Consecutive User Intent Unit for Session-based Recommendation.\n \n \n \n \n\n\n \n Guo, J.; Yang, Y.; Song, X.; Zhang, Y.; Wang, Y.; Bai, J.; and Zhang, Y.\n\n\n \n\n\n\n In Candan, K. S.; Liu, H.; Akoglu, L.; Dong, X. L.; and Tang, J., editor(s),
WSDM '22: The Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event / Tempe, AZ, USA, February 21 - 25, 2022, pages 343–352, 2022. ACM\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{DBLP:conf/wsdm/Guo0SZWBZ22,\n author = {Jiayan Guo and\n Yaming Yang and\n Xiangchen Song and\n Yuan Zhang and\n Yujing Wang and\n Jing Bai and\n Yan Zhang},\n editor = {K. Selcuk Candan and\n Huan Liu and\n Leman Akoglu and\n Xin Luna Dong and\n Jiliang Tang},\n title = {Learning Multi-granularity Consecutive User Intent Unit for Session-based\n Recommendation},\n booktitle = {{WSDM} '22: The Fifteenth {ACM} International Conference on Web Search\n and Data Mining, Virtual Event / Tempe, AZ, USA, February 21 - 25,\n 2022},\n pages = {343--352},\n publisher = {{ACM}},\n year = {2022},\n url = {https://doi.org/10.1145/3488560.3498524},\n doi = {10.1145/3488560.3498524},\n timestamp = {Fri, 07 Mar 2025 00:00:00 +0100},\n biburl = {https://dblp.org/rec/conf/wsdm/Guo0SZWBZ22.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic Representations.\n \n \n \n \n\n\n \n Jiang, M.; Song, X.; Zhang, J.; and Han, J.\n\n\n \n\n\n\n In Laforest, F.; Troncy, R.; Simperl, E.; Agarwal, D.; Gionis, A.; Herman, I.; and Médini, L., editor(s),
WWW '22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022, pages 925–934, 2022. ACM\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{DBLP:conf/www/JiangSZ022,\n author = {Minhao Jiang and\n Xiangchen Song and\n Jieyu Zhang and\n Jiawei Han},\n editor = {Fr{\\'{e}}d{\\'{e}}rique Laforest and\n Rapha{\\"{e}}l Troncy and\n Elena Simperl and\n Deepak Agarwal and\n Aristides Gionis and\n Ivan Herman and\n Lionel M{\\'{e}}dini},\n title = {TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic\n Representations},\n booktitle = {{WWW} '22: The {ACM} Web Conference 2022, Virtual Event, Lyon, France,\n April 25 - 29, 2022},\n pages = {925--934},\n publisher = {{ACM}},\n year = {2022},\n url = {https://doi.org/10.1145/3485447.3511935},\n doi = {10.1145/3485447.3511935},\n timestamp = {Tue, 01 Jul 2025 01:00:00 +0200},\n biburl = {https://dblp.org/rec/conf/www/JiangSZ022.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic Representations.\n \n \n \n \n\n\n \n Jiang, M.; Song, X.; Zhang, J.; and Han, J.\n\n\n \n\n\n\n
CoRR, abs/2202.04887. 2022.\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{DBLP:journals/corr/abs-2202-04887,\n author = {Minhao Jiang and\n Xiangchen Song and\n Jieyu Zhang and\n Jiawei Han},\n title = {TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic\n Representations},\n journal = {CoRR},\n volume = {abs/2202.04887},\n year = {2022},\n url = {https://arxiv.org/abs/2202.04887},\n eprinttype = {arXiv},\n eprint = {2202.04887},\n timestamp = {Tue, 01 Jul 2025 01:00:00 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2202-04887.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n Prompt Learning with Optimal Transport for Vision-Language Models.\n \n \n \n \n\n\n \n Chen, G.; Yao, W.; Song, X.; Li, X.; Rao, Y.; and Zhang, K.\n\n\n \n\n\n\n
CoRR, abs/2210.01253. 2022.\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{DBLP:journals/corr/abs-2210-01253,\n author = {Guangyi Chen and\n Weiran Yao and\n Xiangchen Song and\n Xinyue Li and\n Yongming Rao and\n Kun Zhang},\n title = {Prompt Learning with Optimal Transport for Vision-Language Models},\n journal = {CoRR},\n volume = {abs/2210.01253},\n year = {2022},\n url = {https://doi.org/10.48550/arXiv.2210.01253},\n doi = {10.48550/ARXIV.2210.01253},\n eprinttype = {arXiv},\n eprint = {2210.01253},\n timestamp = {Sun, 04 Aug 2024 01:00:00 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2210-01253.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with Graph Neural Networks.\n \n \n \n \n\n\n \n Yu, Y.; Kan, X.; Cui, H.; Xu, R.; Zheng, Y.; Song, X.; Zhu, Y.; Zhang, K.; Nabi, R.; Guo, Y.; Zhang, C.; and Yang, C.\n\n\n \n\n\n\n
CoRR, abs/2211.00261. 2022.\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{DBLP:journals/corr/abs-2211-00261,\n author = {Yue Yu and\n Xuan Kan and\n Hejie Cui and\n Ran Xu and\n Yujia Zheng and\n Xiangchen Song and\n Yanqiao Zhu and\n Kun Zhang and\n Razieh Nabi and\n Ying Guo and\n Chao Zhang and\n Carl Yang},\n title = {Learning Task-Aware Effective Brain Connectivity for fMRI Analysis\n with Graph Neural Networks},\n journal = {CoRR},\n volume = {abs/2211.00261},\n year = {2022},\n url = {https://doi.org/10.48550/arXiv.2211.00261},\n doi = {10.48550/ARXIV.2211.00261},\n eprinttype = {arXiv},\n eprint = {2211.00261},\n timestamp = {Thu, 24 Jul 2025 01:00:00 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2211-00261.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n