\n \n \n
\n
\n\n \n \n \n \n \n \n Evaluation of wet tensile shear strength and surface properties of finger-jointed acetylated beech (Fagus sylvatica L.) laminated veneer lumber.\n \n \n \n \n\n\n \n Slabohm, M.; Stolze, H.; and Militz, H.\n\n\n \n\n\n\n
European Journal of Wood and Wood Products, 0(0): 9. June 2023.\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{slabohm_evaluation_2023,\n\ttitle = {Evaluation of wet tensile shear strength and surface properties of finger-jointed acetylated beech ({Fagus} sylvatica {L}.) laminated veneer lumber},\n\tvolume = {0},\n\tissn = {0018-3768, 1436-736X},\n\turl = {https://link.springer.com/10.1007/s00107-023-01970-3},\n\tdoi = {10.1007/s00107-023-01970-3},\n\tabstract = {Abstract\n \n Experiments on finger-jointing acetylated beech (\n Fagus sylvatica\n L.) laminated veneer lumber (LVL) have been made. The specimens were examined on its wet tensile shear strength (TSS) using three adhesives, including phenol resorcinol formaldehyde (PRF), one-component polyurethane (PUR) (without primer), and melamine urea formaldehyde (MUF). Contact angles (CA) of uncured and drop-applied MUF, PRF, and PUR adhesives on freshly cut finger-joints were evaluated. Surface roughness was measured using a laser-scanning-microscope (LSM). Results showed that PRF bonded acetylated specimens had highest wet TSS, followed by specimens with PUR bonding. MUF performed poorly, which was most likely caused by its inadequate water resistance and changes in chemical reactions due to remaining acetic acid. Acetylated finger-joints had a topography similar to untreated joints. Moreover, CA were just barely lower for MUF and PRF on acetylated wood than on untreated references.},\n\tlanguage = {en},\n\tnumber = {0},\n\turldate = {2023-06-26},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Slabohm, Maik and Stolze, Hannes and Militz, Holger},\n\tmonth = jun,\n\tyear = {2023},\n\tpages = {9},\n\tfile = {Slabohm et al. - 2023 - Evaluation of wet tensile shear strength and surfa.pdf:C\\:\\\\Users\\\\Eva\\\\Zotero\\\\storage\\\\BRR5ZSPB\\\\Slabohm et al. - 2023 - Evaluation of wet tensile shear strength and surfa.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Abstract Experiments on finger-jointing acetylated beech ( Fagus sylvatica L.) laminated veneer lumber (LVL) have been made. The specimens were examined on its wet tensile shear strength (TSS) using three adhesives, including phenol resorcinol formaldehyde (PRF), one-component polyurethane (PUR) (without primer), and melamine urea formaldehyde (MUF). Contact angles (CA) of uncured and drop-applied MUF, PRF, and PUR adhesives on freshly cut finger-joints were evaluated. Surface roughness was measured using a laser-scanning-microscope (LSM). Results showed that PRF bonded acetylated specimens had highest wet TSS, followed by specimens with PUR bonding. MUF performed poorly, which was most likely caused by its inadequate water resistance and changes in chemical reactions due to remaining acetic acid. Acetylated finger-joints had a topography similar to untreated joints. Moreover, CA were just barely lower for MUF and PRF on acetylated wood than on untreated references.\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Effects of preservative impregnations on wettability and surface free energy properties of Eucalyptus grandis wood.\n \n \n \n\n\n \n Alade, A. A.; Wessels, C. B.; Stolze, H.; and Militz, H.\n\n\n \n\n\n\n In
Proceedings IRG Annual Meeting, pages 13, Cairns, Australia, June 2023. \n
\n\n
\n\n
\n\n
\n\n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{alade_effects_2023,\n\taddress = {Cairns, Australia},\n\ttitle = {Effects of preservative impregnations on wettability and surface free energy properties of {Eucalyptus} grandis wood},\n\tdoi = {IRG/WP 23-40978},\n\tabstract = {Wettability and surface free energy (SFE) are crucial parameters for evaluating the adhesion thermodynamics of solid surfaces. Hence, this study investigated the effects of copper azole (CA) and disodium octaborate tetrahydrate (DOT) preservative impregnations on Eucalyptus grandis wood wettability and SFE. Wettability was determined in terms of contact angles with polar (water) and non-polar (diiodomethane) probe liquids by sessile drop measurement. SFE was determined based on the Owens-Wendt-Rabel-Kaelble model. Results obtained showed that CA and DOT impregnations reduced the wettability and SFE of E. grandis wood. CA impregnation had higher effects on water wettability recording a 22\\% increase in mean water contact angle, and a 90\\% reduction of mean polar SFE component. On the other hand, DOT impregnation had higher effects on diiodomethane wettability recording a 28\\% increase in mean diiodomethane contact angle, and a 10\\% reduction of mean dispersive SFE component. Adapting adhesive application and bonding protocols would be critical to mitigating the adverse effects of CA and DOT impregnations on adhesive bonding of treated E. grandis wood. These recommendations could apply to other preservative-impregnated woods with similar surface thermodynamic modifications.},\n\tlanguage = {en},\n\tbooktitle = {Proceedings {IRG} {Annual} {Meeting}},\n\tauthor = {Alade, Adefemi Adebisi and Wessels, Coenraad Brand and Stolze, Hannes and Militz, Holger},\n\tmonth = jun,\n\tyear = {2023},\n\tpages = {13},\n\tfile = {Alade et al. - Effects of preservative impregnations on wettabili.pdf:C\\:\\\\Users\\\\Eva\\\\Zotero\\\\storage\\\\2IUV9XMP\\\\Alade et al. - Effects of preservative impregnations on wettabili.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Wettability and surface free energy (SFE) are crucial parameters for evaluating the adhesion thermodynamics of solid surfaces. Hence, this study investigated the effects of copper azole (CA) and disodium octaborate tetrahydrate (DOT) preservative impregnations on Eucalyptus grandis wood wettability and SFE. Wettability was determined in terms of contact angles with polar (water) and non-polar (diiodomethane) probe liquids by sessile drop measurement. SFE was determined based on the Owens-Wendt-Rabel-Kaelble model. Results obtained showed that CA and DOT impregnations reduced the wettability and SFE of E. grandis wood. CA impregnation had higher effects on water wettability recording a 22% increase in mean water contact angle, and a 90% reduction of mean polar SFE component. On the other hand, DOT impregnation had higher effects on diiodomethane wettability recording a 28% increase in mean diiodomethane contact angle, and a 10% reduction of mean dispersive SFE component. Adapting adhesive application and bonding protocols would be critical to mitigating the adverse effects of CA and DOT impregnations on adhesive bonding of treated E. grandis wood. These recommendations could apply to other preservative-impregnated woods with similar surface thermodynamic modifications.\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n Determination of the Bonding Strength of Finger Joints Using a New Test Specimen Geometry.\n \n \n \n \n\n\n \n Stolze, H.; Gurnik, M.; Kegel, S.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n
Processes, 11(2): 445. February 2023.\n
\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@article{stolze_determination_2023,\n\ttitle = {Determination of the {Bonding} {Strength} of {Finger} {Joints} {Using} a {New} {Test} {Specimen} {Geometry}},\n\tvolume = {11},\n\tissn = {2227-9717},\n\turl = {https://www.mdpi.com/2227-9717/11/2/445},\n\tdoi = {10.3390/pr11020445},\n\tabstract = {In this study, a specimen geometry for testing finger joints was developed using finite element simulation and proofed by experimental testing. Six different wood species and three adhesives were used for finger-jointing specimens. With the test specimen geometry, the bonding strength of the finger joints was determined without the usual self-locking of the joint. Under load, the test specimen geometry introduces maximum stress at the beginning of the bond line (adhesive zone). However, the test specimen geometry does not generate a symmetric stress state. The main difficulty here is the flank angle of the finger joint geometry. The wood species and adhesives significantly influenced the performance of the finger joints.},\n\tlanguage = {en},\n\tnumber = {2},\n\turldate = {2023-02-03},\n\tjournal = {Processes},\n\tauthor = {Stolze, Hannes and Gurnik, Michael and Kegel, Sebastian and Bollmus, Susanne and Militz, Holger},\n\tmonth = feb,\n\tyear = {2023},\n\tpages = {445},\n\tfile = {Stolze et al. - 2023 - Determination of the Bonding Strength of Finger Jo.pdf:C\\:\\\\Users\\\\Eva\\\\Zotero\\\\storage\\\\HISDKZQN\\\\Stolze et al. - 2023 - Determination of the Bonding Strength of Finger Jo.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n In this study, a specimen geometry for testing finger joints was developed using finite element simulation and proofed by experimental testing. Six different wood species and three adhesives were used for finger-jointing specimens. With the test specimen geometry, the bonding strength of the finger joints was determined without the usual self-locking of the joint. Under load, the test specimen geometry introduces maximum stress at the beginning of the bond line (adhesive zone). However, the test specimen geometry does not generate a symmetric stress state. The main difficulty here is the flank angle of the finger joint geometry. The wood species and adhesives significantly influenced the performance of the finger joints.\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n Finger-jointing of recycled wood – potential technology for improved circular use of wood.\n \n \n \n\n\n \n Stolze, H.; Gedde, K. B.; and Militz, H.\n\n\n \n\n\n\n In
Proceedings of the 19th Meeting of the Northern European Network for Wood Science and Engineering (WSE), pages 37–39, Ås, Norway, October 2023. \n
\n\n
\n\n
\n\n
\n\n \n\n \n\n \n link\n \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n\n\n\n
\n
@inproceedings{stolze_finger-jointing_2023,\n\taddress = {Ås, Norway},\n\ttitle = {Finger-jointing of recycled wood – potential technology for improved circular use of wood},\n\tbooktitle = {Proceedings of the 19th {Meeting} of the {Northern} {European} {Network} for {Wood} {Science} and {Engineering} ({WSE})},\n\tauthor = {Stolze, Hannes and Gedde, Kristina B. and Militz, Holger},\n\tmonth = oct,\n\tyear = {2023},\n\tpages = {37--39},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n\n\n
\n
\n\n \n \n \n \n \n \n Determination of the Bonding Strength of Finger Joints Using a New Test Specimen Geometry.\n \n \n \n \n\n\n \n Stolze, H.; Gurnik, M.; Kegel, S.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n
Processes, 11(2): 445. February 2023.\n
Number: 2 Publisher: Multidisciplinary Digital Publishing Institute\n\n
\n\n
\n\n
\n\n \n \n
Paper\n \n \n\n \n \n doi\n \n \n\n \n link\n \n \n\n bibtex\n \n\n \n \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@article{stolze_determination_2023-1,\n\ttitle = {Determination of the {Bonding} {Strength} of {Finger} {Joints} {Using} a {New} {Test} {Specimen} {Geometry}},\n\tvolume = {11},\n\tcopyright = {http://creativecommons.org/licenses/by/3.0/},\n\tissn = {2227-9717},\n\turl = {https://www.mdpi.com/2227-9717/11/2/445},\n\tdoi = {10.3390/pr11020445},\n\tabstract = {In this study, a specimen geometry for testing finger joints was developed using finite element simulation and proofed by experimental testing. Six different wood species and three adhesives were used for finger-jointing specimens. With the test specimen geometry, the bonding strength of the finger joints was determined without the usual self-locking of the joint. Under load, the test specimen geometry introduces maximum stress at the beginning of the bond line (adhesive zone). However, the test specimen geometry does not generate a symmetric stress state. The main difficulty here is the flank angle of the finger joint geometry. The wood species and adhesives significantly influenced the performance of the finger joints.},\n\tlanguage = {en},\n\tnumber = {2},\n\turldate = {2024-01-11},\n\tjournal = {Processes},\n\tauthor = {Stolze, Hannes and Gurnik, Michael and Kegel, Sebastian and Bollmus, Susanne and Militz, Holger},\n\tmonth = feb,\n\tyear = {2023},\n\tnote = {Number: 2\nPublisher: Multidisciplinary Digital Publishing Institute},\n\tkeywords = {hardwoods, softwoods, bonding strength, finger joints, adhesive joint design, finite element simulation},\n\tpages = {445},\n\tfile = {Full Text PDF:C\\:\\\\Users\\\\Eva\\\\Zotero\\\\storage\\\\Q42YXSYZ\\\\Stolze et al. - 2023 - Determination of the Bonding Strength of Finger Jo.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n In this study, a specimen geometry for testing finger joints was developed using finite element simulation and proofed by experimental testing. Six different wood species and three adhesives were used for finger-jointing specimens. With the test specimen geometry, the bonding strength of the finger joints was determined without the usual self-locking of the joint. Under load, the test specimen geometry introduces maximum stress at the beginning of the bond line (adhesive zone). However, the test specimen geometry does not generate a symmetric stress state. The main difficulty here is the flank angle of the finger joint geometry. The wood species and adhesives significantly influenced the performance of the finger joints.\n
\n\n\n
\n\n\n\n\n\n