generated by bibbase.org
  2020 (11)
Graph-based regularization for regression problems with alignment and highly-correlated designs. Li, Y.; Mark, B.; Raskutti, G.; Willett, R.; Song, H.; and Neiman, D. 2020. accepted to SIAM Journal on Mathematics of Data Science, \hrefhttps://arxiv.org/abs/1803.07658arXiv:1803.07658
bibtex  
Leveraging spatial textures, through machine learning, to identify aerosol and distinct cloud types from multispectral observations. Marais, W. J.; Holz, R. E.; Reid, J. S.; and Willett, R. M. 2020. Submitted
bibtex  
Deep Learning Techniquesfor Inverse Problems in Imaging. Ongie, G.; Metzler, C.; Jalal, A.; Dimakis, A.; Baraniuk, R.; and Willett, R. 2020. Submitted
bibtex  
Tensor Methods for Nonlinear Matrix Completion. Ongie, G.; Pimentel-Alarcon, D.; Balzano, L.; Nowak, R.; and Willett, R. 2020. Submitted
bibtex  
Context-dependent self-exciting point processes:models, methods, and risk bounds in high dimensions. Zheng, L.; Willett, R.; and Raskutti, G. 2020. Submitted; \hrefhttps://arxiv.org/abs/2003.07429arXiv:2003.07429
bibtex  
Graph-guided regularized regression of Pacific Ocean climate variables to increase predictive skill of southwestern US winter precipitation. Stevens, A.; Willett, R.; Mamalakis, A.; Foufoula-Georgiou, E.; Tejedor, A.; Randerson, J.; Smyth, P.; and Wright, S. J. 2020. Submitted
bibtex  
Localizing Changes in High-Dimensional Vector Autoregressive Processes. Wang, D.; Yu, Y.; Rinaldo, A.; and Willett, R. 2020. Submitted
bibtex  
An Optimal Statistical and Computational Framework for Generalized Tensor Estimation. Han, R.; Willett, R.; and Zhang, A. arXiv preprint arXiv:2002.11255. 2020.
bibtex  
Predicting in situ dry matter degradability of chopped and processed corn kernels using image analysis techniques. Luck, B. D.; Drewry, J. L.; Shaver, R. D.; Willett, R. M.; and Ferraretto, L. F. 2020. Submitted.
bibtex  
Detection and Description of Change in Visual Streams. Gilton, D.; Luo, R.; Willett, R.; and Shakhnarovich, G. 2020. Submitted
bibtex  
A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case. Ongie, G.; Willett, R.; Soudry, D.; and Srebro, N. In ICLR, 2020. arXiv preprint \hrefhttps://arxiv.org/abs/1910.01635arXiv:1910.01635
bibtex  
  2019 (9)
Statistically and Computationally Efficient Change Point Localization in Regression Settings. Wang, D.; Lin, K.; and Willett, R. arXiv preprint arXiv:1906.11364. 2019.
bibtex  
Neumann Networks for Inverse Problems in Imaging. Gilton, D.; Ongie, G.; and Willett, R. IEEE Transactions on Computational Imaging, 6(1): 328-343. 2019. arXiv preprint \hrefhttps://arxiv.org/abs/1901.03707arXiv:1901.03707
doi   bibtex  
Predicting kernel processing score of harvested and processed corn silage via image processing techniques. Drewry, J. L.; Luck, B. D.; Willett, R. M.; Rocha, E. M. C.; and Harmon, J. D. Computers and Electronics in Agriculture, 160: 144-152. 2019.
bibtex  
A data-dependent weighted LASSO under Poisson noise. Jiang, X.; Reynaud-Bouret, P.; Rivoirard, V.; Sansonnet, L.; and Willett, R. IEEE Tranactions on Information Theory, 65(3): 1589-1613. 2019. Preprint at \hrefhttp://arxiv.org/abs/1509.08892arXiv:1509.08892
bibtex  
Network Estimation from Point Process Data . Mark, B.; Raskutti, G.; and Willett, R. IEEE Transactions on Information Theory, 65. 2019. arXiv preprint \hrefarXiv:1802.04838https://arxiv.org/abs/1802.04838
bibtex  
Learned Patch-Based regularization for inverse problems in imaging. Gilton, D.; Ongie, G.; and Willett, R. In IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2019. r̆lhttps://cmsworkshops.com/CAMSAP2019/Papers/ViewPaper.asp?PaperNum=1171
bibtex  
Bilinear Bandits with Low-Rank Structure. Jun, K.; Willett, R.; Wright, S.; and Nowak, R. In Proc. ICML, 2019. arXiv preprint \hrefhttps://arxiv.org/abs/1901.02470arXiv:1901.02470
bibtex  
Estimating Network Structure from Incomplete Event Data. Mark, B.; Raskutti, G.; and Willett, R. In Proc. AISTATS, 2019. arXiv preprint \hrefhttps://arxiv.org/abs/1811.02979arXiv:1811.02979
bibtex  
Response to ``Artificial Intelligence|The Revolution Hasn't Happened Yet''. Willett, R. M. Harvard Data Science Review. 2019.
bibtex  
  2018 (2)
Missing Data in Sparse Transition Matrix Estimation for Sub-Gaussian Vector Autoregressive Processes. Jalali, A.; and Willett, R. In Proc. American Control Conference, 2018.
bibtex  
A Machine-Learning Based Drug Repurposing Approach Using Baseline Regularization. Kuang, Z.; Bao, Y.; Thomson, J.; Caldwell, M.; Peissig, P.; Stewart, R.; Willett, R.; and Page, D. In In Silico Repurposing. Methods in Molecular Biology Series. Springer, 2018.
bibtex  
  2017 (17)
Engineering Human CNS Morphogenesis: Controlled Induction of Singular Neural Rosette Emergence. Knight, G. T.; Lundin, B. F.; Iyer, N.; Ashton, L. M. T.; Sethares, W. A.; Willett, R. M.; and Ashton, R. 2017. sumbitted. bioRxiv 229328; doi: r̆lhttps://doi.org/10.1101/229328
bibtex  
Online learning for changing environments using coin betting. Jun, K.; Orabona, F.; Wright, S.; and Willett, R. Electronic Journal of Statistics, 11(2): 5282-5310. 2017.
bibtex  
Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3. Borkowski, K. J.; Reynolds, S. P.; Green, D. A.; Hwang, U.; Petre, R.; Krishnamurthy, K.; and Willett, R. The Astrophysical Journal Letters, 837(1): L7. 2017.
bibtex  
Scalable Generalized Linear Bandits: Online Computation and Hashing. Jun, K.; Bhargava, A.; Nowak, R.; and Willett, R. In NIPS, 2017.
bibtex  
Subspace Clustering via Tangent Cones. Jalali, A.; and Willett, R. In NIPS, 2017.
bibtex  
Online Thinning for High Volume Streaming Data. Hunt, X. J.; and Willett, R. In 23nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, \hrefhttp://www.kdd.org/kdd2017/workshopsWorkshop on Mining and Learning from Time Series, 2017.
bibtex  
Point Process Modeling of Adverse Drug Reactions with Longitudinal Observational Data. Bao, Y.; Kwong, C.; Peissig, P.; Page, D.; and Willett, R. In Proc. \hrefhttp://mucmd.org/Machine Learning and Healthcare, 2017.
bibtex  
Algebraic Variety Models for High-Rank Matrix Completion. Ongie, G.; Willett, R.; Nowak, R. D.; and Balzano, L. In Proc. ICML-2017, 2017. \hrefhttps://arxiv.org/abs/1703.09631arXiv:1703.09631
bibtex  
Sparse Linear Contextual Bandits via Relevance Vector Machines. Gilton, D.; and Willett, R. In Proc. of \hrefhttp://sampta2017.ee/SampTA, 2017.
bibtex  
Mixture Regression as Subspace Clustering. Pimentel-Alarcón, D.; Balzano, L.; Marcia, R.; Nowak, R.; and Willett, R. In Proc. of \hrefhttp://sampta2017.ee/SampTA, 2017.
bibtex  
On learning high-dimensional structured single index models. Rao, N.; Ganti, R.; Balzano, L.; Willett, R.; and Nowak, R. In AAAI-17, 2017. \hrefhttps://arxiv.org/abs/1603.03980arXiv:1603.03980
bibtex  
Low algebraic dimension matrix completion. Pimentel-Alarcón, D.; Ongie, G.; Balzano, L.; Willett, R.; and Nowak, R. In Allerton Conference on Communication, Control and Computing, 2017.
bibtex  
Network Inference via Poisson ARMA Models. Mark, B.; Raskutti, G.; and Willett, R. In \hrefhttp://www.cs.huji.ac.il/conferences/CAMSAP17/IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017.
bibtex  
Proximal-gradient Methods for Poisson Image Reconstruction with BM3D-based Regularization. W. Marais, R. W. In \hrefhttp://www.cs.huji.ac.il/conferences/CAMSAP17/IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017.
bibtex  
Signal Representations in Modern Signal Processing. Willett, R. In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2017.
bibtex  
Denoising Methods in Materials Science. Willett, R. In Simmons, J. P.; Graef, M. D.; Bouman, C. A.; and Drummy, L. F., editor(s), Statistical methods for materials science: Data Analytics in Microstructure Characterization. Taylor & Francis, 2017. to appear
bibtex  
Subspace Clustering with Missing and Corrupted Data. Charles, Z.; Jalali, A.; and Willett, R. 2017. r̆lhttps://arxiv.org/abs/1707.02461
bibtex  
  2016 (13)
Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations. Marais, W. J.; Holz, R. E.; Hu, Y. H.; Kuehn, R. E.; Eloranta, E. E.; and Willett, R. M. Applied Optics. 2016. r̆lhttps://doi-org.ezproxy.library.wisc.edu/10.1364/AO.55.008316
bibtex  
Online Data Thinning via Multi-Subspace Tracking. Jiang, X.; and Willett, R. arXiv preprint arXiv:1609.03544. 2016.
bibtex  
Inference of High-dimensional Autoregressive Generalized Linear Models. Hall, E. C.; Raskutti, G.; and Willett, R. to appear in \em IEEE Transactions on Information Theory, arXiv preprint arXiv:1605.02693. 2016.
bibtex  
Tracking dynamic point processes on networks. Hall, E. C.; and Willett, R. M. IEEE Transactions on Information Theory, 62(7): 4327–4346. 2016.
bibtex  
Structured Illumination Microscopy and a Quantitative Image Analysis for the Detection of Positive Margins in a Pre-Clinical Genetically Engineered Mouse Model of Sarcoma. Fu, H. L.; Mueller, J. L.; Whitley, M. J.; Cardona, D. M.; Willett, R. M.; Kirsch, D. G.; Brown, J. Q.; and Ramanujam, N. PloS one, 11(1). 2016.
bibtex  
Rapid staining and imaging of subnuclear features to differentiate between malignant and benign breast tissues at a point-of-care setting. Mueller, J. L.; Gallagher, J. E.; Chitalia, R.; Krieger, M.; Erkanli, A.; Willett, R. M.; Geradts, J.; and Ramanujam, N. Journal of cancer research and clinical oncology,1–12. 2016.
bibtex  
Non-rigid registration and non-local principle component analysis to improve electron microscopy spectrum images. Yankovich, A. B.; Zhang, C.; Oh, A.; Slater, T. J. A.; Azough, F.; Freer, R.; Haigh, S. J.; Willett, R.; and Voyles, P. M. Nanotechnology, 27(36): 364001. 2016.
bibtex  
Rapid staining and imaging of sub-nuclear features to differentiate between malignant and benign breast tissues at a point-of-care setting. Mueller, J.; Gallagher, J.; Chitalia, R.; Krieger, M.; Erkanli, A.; Willett, R.; Geradts, J.; and Ramanujam, N. Journal of cancer research and clinical oncology, 142(7): 1475–1486. 2016.
bibtex  
Improved Strongly Adaptive Online Learning using Coin Betting. Jun, K.; Orabona, F.; Willett, R.; and Wright, S. In Proc. AISTATS-2017, 2016. \hrefhttp://arxiv.org/abs/1610.04578arXiv:1610.04578
bibtex  
Regret minimization algorithms for single-controller zero-sum stochastic games. Guan, P.; Raginsky, M.; Willett, R.; and Zois, D. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pages 7075–7080, 2016. IEEE
bibtex  
Inferring high-dimensional Poisson autoregressive models. Hall, E. C.; Raskutti, G.; and Willett, R. In Statistical Signal Processing Workshop (SSP), 2016 IEEE, pages 1–5, 2016. IEEE
bibtex  
Group-sparse subspace clustering with missing data. Pimentel-Alarcón, D.; Balzano, L.; Marcia, R.; Nowak, R.; and Willett, R. In IEEE Statistical Signal Processing Workshop, 2016.
bibtex  
Atmospheric lidar imaging and Poisson inverse problems. Marais, W.; Holz, R.; Hu, Y. H.; and Willett, R. In Image Processing (ICIP), 2016 IEEE International Conference on, pages 983–987, 2016. IEEE
bibtex  
  2015 (6)
A quantitative microscopic approach to predict local recurrence based on in vivo intraoperative imaging of sarcoma tumor margins. Mueller, J.; Fu, H.; Mito, J.; Whitley, M.; Chitalia, R.; Erkanli, A.; Dodd, L.; Cardona, D.; Geradts, J.; Willett, R.; Kirsch, D.; and Ramanujam, N. International Journal of Cancer, 137(10): 2403-12. 2015.
bibtex  
Online Convex Optimization in Dynamic Environments. Hall, E.; and Willett, R. IEEE Journal of Selected Topics in Signal Processing – Signal Processing for Big Data, 9(4). 2015. \hrefhttp://arxiv.org/abs/1307.5944arXiv:1307:5944, winner for 2018 IEEE Signal Processing Society Young Author Best Paper Award
bibtex  
Minimax Optimal Rates for Poisson Inverse Problems with Physical Constraints. Jiang, X.; Raskutti, G.; and Willett, R. IEEE Transactions on Information Theory, 61(8). 2015. \hrefhttp://arxiv.org/abs/1403.6532arXiv:1403:6532
bibtex  
Monotonic Matrix Completion. Ganti, R.; Balzano, L.; and Willett, R. In Proc. Neural Information Processing Systems, 2015.
bibtex  
Online Learning of Neural Network Structure from Spike Trains. Hall, E.; and Willett, R. In Proceedings of the 7th International IEEE EMBS Neural Engineering Conference (NER'15), 2015.
bibtex  
Regularized Non-Gaussian Image Denoising. Oh, A.; and Willett, R. 2015. \hrefhttp://arxiv.org/abs/1508.02971arXiv:1508.02971
bibtex  
  2014 (9)
PMU based Detection of Imbalance in Three-Phase Power Systems. Routtenberg, T.; Xie, Y.; Willett, R.; and Tong, L. IEEE Transactions on Power Systems, 30(4). 2014.
bibtex  
Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3. Borkowski, K. J.; Reynolds, S. P.; Green, D. A.; Hwang, U.; Petre, R.; Krishnamurthy, K.; and Willett, R. The Astrophysical Journal Letters, 790(2). 2014. \hrefhttp://arxiv.org/abs/1406.2287arXiv:1406.2287
bibtex  
Reducing Basis Mismatch in Harmonic Signal Recovery via Alternating Convex Search. Nichols, J. M.; Oh, A. K.; and Willett, R. Signal Processing Letters, 21(8): 1007-1011. 2014. \hrefhttp://arxiv.org/abs/1406.5231arXiv:1406.5231
bibtex  
Poisson noise reduction with non-local PCA. Salmon, J.; Harmany, Z.; Deledalle, C.; and Willett, R. Journal of Mathematical Imaging and Vision, 48(2): 279-294. 2014. \hrefhttp://arxiv.org/abs/1206.0338arXiv:1206:0338
bibtex  
Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, and target detection. Willett, R. M.; Duarte, M. F.; Davenport, M. A.; and Baraniuk, R. G. IEEE Signal Processing Magazine, 31(1): 116-126. 2014. \hrefhttp://dx.doi.org/10.1109/MSP.2013.227950710.1109/MSP.2013.2279507
bibtex  
Online Markov decision processes with Kullback-Leibler control cost. Guan, P.; Raginsky, M.; and Willett, R. IEEE Transactions on Automatic Control, 59(6): 1423-1438. 2014. \hrefhttp://arxiv.org/abs/1401.3198arXiv:1401:3198
bibtex  
To $e$ or not to $e$ in Poisson image reconstruction. Oh, A. K.; Harmany, Z. T.; and Willett, R. M. In Proceedings of the IEEE International Conference on Image Processing (ICIP), 2014. ``Top 10% Paper''
bibtex  
From minimax value to low-regret algorithms for online Markov decision processes. Guan, P.; Raginsky, M.; and Willett, R. In American Control Conference, 2014.
bibtex  
The Dark Side of Image Reconstruction: Emerging Methods for Photon-limited Imaging. Willett, R. SIAM News. 2014. \hrefhttps://sinews.siam.org/DetailsPage/tabid/607/ArticleID/220/The-Dark-Side-of-Image-Reconstruction.aspxOnline version here
bibtex  
  2013 (10)
Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3. Borkowski, K. J.; Reynolds, S. P.; Green, D. A.; Hwang, U.; Petre, R.; Krishnamurthy, K.; and Willett, R. The Astrophysical Journal Letters, 771(1). 2013. \hrefhttp://arxiv.org/abs/1305.7399arXiv:1305.7399
bibtex  
Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Application to the detection of residual disease in tumor margins. Mueller, J. L.; Harmany, Z. T.; Mito, J. K.; Kennedy, S. A.; Kim, Y.; Dodd, L.; Geradts, J.; Kirsch, D. G.; Willett, R. M.; Brown, J. Q.; and Ramanujam, N. PLoS ONE. 2013. \hrefhttp://dx.plos.org/10.1371/journal.pone.0066198DOI:10.1371/journal.pone.0066198
bibtex  
Level set estimation from projection measurements: Performance guarantees and fast computation. Krishnamurthy, K.; Bajwa, W. U.; and Willett, R. SIAM J. Imaging Sciences, 6(4): 2047-2074. 2013. \hrefhttp://arxiv.org/abs/1209.3990arxiv:1209.3990
bibtex  
A recursive procedure for density estimation on the binary hypercube. Raginsky, M.; Silva, J.; Lazebnik, S.; and Willett, R. Electronic Journal of Statistics, 7: 820-858. 2013. \hrefhttp://arxiv.org/abs/1112:1450arXiv:1112.1450
bibtex  
Logarithmic total variation regularization for cross-validation in photon-limited imaging. Oh, A.; Harmany, Z.; and Willett, R. In IEEE International Conference on Image Processing (ICIP), 2013.
bibtex  
Online Optimization in Parametric Dynamic Environments. Hall, E.; and Willett, R. In Proc. Allerton Conference on Communication, Control and Computing, 2013.
bibtex  
Foreground and background reconstruction in Poisson video. Hall, E.; and Willett, R. In IEEE International Conference on Image Processing (ICIP), 2013.
bibtex  
Online Logistic Regression on Manifolds. Xie, Y.; and Willett, R. In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013.
bibtex  
Dynamical Models and Tracking Regret in Online Convex Programming. Hall, E.; and Willett, R. In Proc. International Conference on Machine Learning (ICML), 2013. \hrefhttp://arxiv.org/abs/1301.1254arXiv.org:1301.1254
bibtex  
Relax but stay in control: from value to algorithms for online Markov decision processes. Guan, P.; Raginsky, M.; and Willett, R. 2013. \hrefhttp://arxiv.org/abs/1310.7300arXiv:1310.7300
bibtex  
  2012 (12)
Changepoint detection for high-dimensional time series with missing data. Xie, Y.; Huang, J.; and Willett, R. IEEE Journal of Selected Topics in Signal Processing, 7(1): 12-27. 2012. \hrefhttp://arxiv.org/abs/1208.5062arXiv:1208.5062
bibtex  
Oracle inequalities and minimax rates for non-local means and related adaptive kernel-based methods. Arias-Castro, E.; Salmon, J.; and Willett, R. SIAM Journal on Imaging Sciences, 5(3): 944-992. 2012. \hrefhttp://dx.doi.org/10.1137/110859403doi:10.1137/110859403
bibtex  
Target Detection Performance Bounds in Compressive Imaging. Krishnamurthy, K.; Willett, R.; and Raginsky, M. EURASIP Journal on Advances in Signal Processing. 2012. \hrefhttp://asp.eurasipjournals.com/content/2012/1/205doi:10.1186/1687-6180-2012-205
bibtex  
Sequential anomaly detection in the presence of noise and limited feedback. Raginsky, M.; Willett, R.; Horn, C.; Silva, J.; and Marcia, R. IEEE Transactions on Information Theory, 58(8): 5544-5562. 2012. \hrefhttp://dx.doi.org/10.1109/TIT.2012.2201375doi:10.1109/TIT.2012.2201375
bibtex  
This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms � Theory and Practice. Harmany, Z.; Marcia, R.; and Willett, R. IEEE Transactions on Image Processing, 21(3). 2012. \hrefhttp://dx.doi.org/10.1109/TIP.2011.2168410doi:10.1109/TIP.2011.2168410
bibtex  
Coded-aperture Raman imaging for standoff explosive detection. McCain, S. T.; Guenther, B. D.; Brady, D. J.; and Willett, K. K. R. In Proc. SPIE 8358, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, 2012.
bibtex  
The Value of Multispectral Observations in Photon-Limited Quantitative Tissue Analysis. Harmany, Z. T.; Jiang, X.; and Willett, R. In Proc. Statistical Signal Processing Workshop, 2012.
bibtex  
A Two-Stage Denoising Filter: The Preprocessed Yaroslavsky Filter. Salmon, J. A.; Willett, R.; and Arias-Castro, E. In Proc. Statistical Signal Processing Workshop, 2012. \hrefhttp://arxiv.org/abs/1208.6516arXiv:1208:6516
bibtex  
Multiscale Online Tracking of Manifolds. Xin, Y.; Huang, J.; and Willett, R. In Proc. Statistical Signal Processing Workshop, 2012.
bibtex  
Online Markov decision processes with Kullback-Leibler control cost. Guan, P.; Raginsky, M.; and Willett, R. In Proc. American Control Conference, 2012.
bibtex  
Poisson Noise Reduction with Non-Local PCA. Salmon, J.; Deledalle, C.; Willett, R.; and Harmany, Z. In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012.
bibtex  
A two-stage denoising filter: the preprocessed Yaroslavsky filter. Salmon, J.; Arias-Castro, E.; and Willett, R. 2012. \hrefhttp://arxiv.org/abs/1208.6516arXiv:1208.6516
bibtex  
  2011 (14)
Performance bounds for expander-based compressed sensing in Poisson noise. Raginsky, M.; Jafarpour, S.; Harmany, Z.; Marcia, R.; Willett, R.; and Calderbank, R. IEEE Transactions on Signal Processing, 59(9). 2011. \hrefhttp://arxiv.org/abs/1007.2377arXiv:1007.2377
bibtex  
Integrated Sensing and Information Processing Theme-Based Redesign of the Undergraduate Electrical and Computer Engineering Curriculum at Duke University. Ybarra, G. A.; Collins, L. M.; Huettel, L. G.; Coonley, K. D.; Massoud, H. Z.; Board, J. A.; Cummer, S. A.; Choudhury, R. R.; Gustafson, M. R.; Jokerst, N. M.; Brooke, M. A.; Willett, R. M.; Kim, J.; and Absher, M. S. Advances in Engineering Education, 2(4). 2011.
bibtex  
Fast level set estimation from projection measurements. Krishnamurthy, K.; Bajwa, W. U.; Willett, R.; and Calderbank, R. In Proc. Statistical Signal Processing Workshop, 2011.
bibtex  
Decentralized online convex programming with local information. Raginsky, M.; Kiarashi, N.; and Willett, R. In Proc. American Control Conference, 2011.
bibtex  
Errata: Sampling Trajectories for Sparse Image Recovery. Willett, R. 2011. Errata pertains to: ``Short and Smooth Sampling Trajectories for Compressed Sensing'' (\em ICASSP 2011), ``Smooth Sampling Trajectories for Sparse Recovery in MRI'' (\em ISBI 2011), and ``Sampling Trajectories for Sparse Image Recovery'' (\em SAMPTA 2011)
bibtex  
Online anomaly detection with expert system feedback in social networks. Horn, C.; and Willett, R. In Proc. International Conference on Acoustics, Speech, and Signal Processing, 2011.
bibtex  
Time-Evolving Modeling of Social Networks. Wang, E.; Silva, J.; Willett, R.; and Carin, L. In Proc. International Conference on Acoustics, Speech, and Signal Processing, 2011.
bibtex  
Tissue Quantification in Photon-Limited Microendoscopy. Harmany, Z. T.; Mueller, J.; Brown, Q.; Ramanujam, N.; and Willett, R. In Proc. SPIE Optics and Photonics, 2011.
bibtex  
Motion-adaptive compressive coded apertures. Harmany, Z. T.; Oh, A.; Marcia, R.; and Willett, R. In Proc. SPIE Optics and Photonics, 2011.
bibtex  
Poisson Compressed Sensing. Willett, R.; and Raginsky, M. In Proc. of Defense Applications of Signal Processing, 2011.
bibtex  
Compressed sensing for practical optical systems: a tutorial. Willett, R.; Marcia, R.; and Nichols, J. Optical Engineering, 50(7): 072601 1-13. 2011. ``There were actually ten Optical Engineering papers from prior years that exhibited higher download rates than any 2016 paper, indicating that the journal continues to serve as an archival resource for the optical engineering community. One of these is a tutorial on compressed optical sensing,'' \hrefhttp://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=2604685Annual highlights
bibtex  
Compressive Optical Imaging: Architectures and Algorithms. Marcia, R.; Willett, R.; and Harmany, Z. T. In Cristobal, G.; Schelkens, P.; and Thienpont, H., editor(s), Optical and Digital Image Processing Fundamentals and Applications. Wiley, 2011.
bibtex  
Spatio-temporal Compressed Sensing with Coded Apertures and Keyed Exposures. Harmany, Z.; Marcia, R.; and Willett, R. 2011. Based on 2008 ICASSP paper ``Compressive coded aperture superresolution image reconstruction.'' \hrefhttp://arxiv.org/abs/1111.7247arXiv:1111.7247
bibtex  
  2010 (9)
Radioactive Scandium in the Youngest Galactic Supernova Remnant G1.9+0.3. Borkowski, K. J.; Reynolds, S. P.; Green, D. A.; Hwang, U.; Petre, R.; Krishnamurthy, K.; and Willett, R. The Astrophysical Journal Letters, 724(2). 2010. \hrefhttp://adsabs.harvard.edu/cgi-bin/nph-abs_connect?fforward=http://dx.doi.org/10.1088/2041-8205/724/2/L161doi:10.1088/2041-8205/724/2/L161
bibtex  
Multiscale photon-limited spectral image reconstruction. Krishnamurthy, K.; Raginsky, M.; and Willett, R. SIAM Journal on Imaging Sciences, 3(3): 619 - 645. 2010. \hrefhttp://epubs.siam.org/doi/abs/10.1137/090756259doi:10.1137/090756259
bibtex  
Compressed sensing performance bounds under Poisson noise. Raginsky, M.; Willett, R.; Harmany, Z.; and Marcia, R. IEEE Transactions on Signal Processing, 58(8): 3990-4002. 2010. \hrefhttp://arxiv.org/abs/0910.5146arXiv:0910.5146
bibtex  
Poisson image reconstruction with total variation regularization. Willett, R.; Harmany, Z.; and Marcia, R. In Proc. IEEE International Conference on Image Processing, 2010.
bibtex  
Hyperspectral target detection from incoherent projections: Nonequiprobable targets and inhomogeneous SNR. Krishnamurthy, K.; Raginsky, M.; and Willett, R. In Proc. IEEE International Conference on Image Processing, 2010.
bibtex  
Fishing in Poisson streams: focusing on the whales, ignoring the minnows. Raginsky, M.; Jafarpour, S.; Willett, R.; and Calderbank, R. In Proc. Forty-Fourth Conference on Information Sciences and Systems, 2010. \hrefhttp://arxiv.org/abs/1003:2836arXiv:1003.2836
bibtex  
Gradient projection for linearly constrained convex optimization in sparse signal recovery. Harmany, Z.; Thompson, D.; Willett, R.; and Marcia, R. In Proc. IEEE International Conference on Image Processing, 2010.
bibtex  
Hyperspectral target detection from incoherent projections. Krishnamurthy, K.; Raginsky, M.; and Willett, R. In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010.
bibtex  
SPIRAL out of convexity: Sparsity-regularized algorithms for photon-limited imaging. Harmany, Z. T.; Marcia, R. F.; and Willett, R. M. In Proc. SPIE Computational Imaging, 2010.
bibtex  
  2009 (9)
The False Discovery Rate for Statistical Pattern Recognition. Scott, C.; Bellala, G.; and Willett, R. Electronic Journal of Statistics, 3: 651 - 677. 2009. \hrefhttp://arxiv.org/abs/0901.4184arXiv:0901.4184
bibtex  
Hypergraph-based anomaly detection in very large networks. Silva, J.; and Willett, R. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3): 563-569. 2009. \hrefhttp://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.232doi:10.1109/TPAMI.2008.232
bibtex  
Performance Bounds for Expander-Based Compressed Sensing in the Presence of Poisson Noise. Jafarpour, S.; Willett, R.; Raginsky, M.; and Calderbank, R. In Proc. Asilomar Conference on Signals, Systems and Computers, 2009. Winner of best student paper award. \hrefhttp://arxiv.org/abs/0911.1368arXiv:0911.1368
bibtex  
Sparse Poisson Intensity Reconstruction Algorithms. Harmany, Z. T.; Marcia, R.; and Willett, R. In IEEE Workshop on Statistical Signal Processing, 2009. \hrefhttp://arxiv.org/abs/0905.0483arXiv:0905.0483
bibtex  
Image Reconstruction of Multiphoton Microscopy Data. Doot, H. J.; Eliceiri, K.; Nowak, R.; and Willett, R. In IEEE International Symposium on Biomedical Imaging, 2009.
bibtex  
Performance bounds for compressed sensing with Poisson noise. Willett, R.; and Raginsky, M. In Proc. of IEEE Int. Symp. on Inf. Theory, 2009.
bibtex  
Sequential Probability Assignment Via Online Convex Programming Using Exponential Families. Raginsky, M.; Marcia, R.; Silva, J.; and Willett, R. In Proc. of IEEE International Symposium on Information Theory, 2009.
bibtex  
Integrating sensing and processing in an electrical and computer engineering curriculum. Ybarra, G.; Collins, L. M.; Huettel, L. G.; Massoud, H. Z.; Board, J.; Brooke, M.; Jokerst, N.; Choudhury, R. R.; Gustafson, M. R.; Willett, R. M.; and Coonley, K. In Proc. Frontiers in Education Conference, 2009.
bibtex  
Compressive Coded Aperture Imaging. Marcia, R.; Harmany, Z.; and Willett, R. In SPIE Electronic Imaging, 2009.
bibtex  
  2008 (10)
Multi-excitation Raman spectroscopy technique for fluorescence rejection. McCain, S.; Willett, R.; and Brady, D. Optics Express, 16(15): 10975-10991. 2008.
bibtex  
Superimposed video disambiguation for increased field of view. Marcia, R.; Kim, C.; Kim, J.; Brady, D.; and Willett, R. Optics Express, 16(31): 16352-16363. 2008.
bibtex  
Thin infrared imaging systems through multi-channel sampling. Shankar, M.; Willett, R.; Pitsianis, N.; Schulz, T.; Gibbons, R.; Kolste, R. T.; Carriere, J.; Chen, C.; Prather, D.; and Brady, D. Applied Optics, 47(10): B1-B10. 2008.
bibtex  
Single disperser design for coded aperture snapshot spectral imaging. Wagadarikar, A.; John, R.; Willett, R.; and Brady, D. Applied Optics, 47(10): B44-B51. 2008.
bibtex  
Near-Minimax Recursive Density Estimation on the Binary Hypercube. Raginsky, M.; Lazebnik, S.; Willett, R.; and Silva, J. In Proc. Neural Information Processing Systems, 2008.
bibtex  
Controlling the error in fMRI: Hypothesis testing or set estimation?. Harmany, Z.; Willett, R.; Singh, A.; and Nowak, R. In Proc. IEEE International Symposium on Biomedical Imaging � ISBI, 2008.
bibtex  
Compressive Coded Aperture Video Reconstruction. Marcia, R.; and Willett, R. In Proc. European Signal Processing Conference � EUSIPCO, 2008.
bibtex  
Fast disambiguation of superimposed images for increased field of view. Marcia, R. F.; Kim, C.; Kim, J.; Brady, D. J.; and Willett, R. M. In Proceedings of the IEEE International Conference on Image Processing (ICIP), pages 2620–2623, San Diego, CA, October 2008.
bibtex  
Detection of anomalous meetings in a social network. Silva, J.; and Willett, R. In Proc. Conference on Information Sciences and Systems (CISS), 2008.
bibtex  
Compressive Coded Aperture Superresolution Image Reconstruction. Marcia, R.; and Willett, R. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), 2008.
bibtex  
  2007 (12)
Single-shot compressive spectral imaging with a dual-disperser architecture. Gehm, M.; John, R.; Brady, D.; Willett, R.; and Schultz, T. Optics Express, 15(21): 14013-14027. 2007. \hrefhttp://dx.doi.org/10.1364/OE.15.014013doi:10.1364/OE.15.014013
bibtex  
Minimax optimal level set estimation. Willett, R.; and Nowak, R. IEEE Transactions on Image Processing, 16(12): 2965-2979. 2007.
bibtex  
Multiscale Poisson intensity and density estimation. Willett, R.; and Nowak, R. IEEE Transactions on Information Theory, 53(9): 3171-3187. 2007. \hrefhttp://dx.doi.org/10.1109/TIT.2007.903139doi:10.1109/TIT.2007.903139
bibtex  
Multiscale-Analysis of Photon-Limited Astronomical Images. Willett, R. In Statistical Challenges in Modern Astronomy IV, volume 371, of Astronomical Society of the Pacific Conference Series, 2007.
bibtex  
Single disperser design for compressive, single-snapshot spectral imaging. Wagadarikar, A.; John, R.; Willett, R.; and Brady, D. In Proceedings of SPIE Optics and Photonics, 2007.
bibtex  
Generalization error analysis for FDR controlled classification. Scott, C.; Bellala, G.; and Willett, R. In Proceedings of IEEE Statistical Signal Processing Workshop (SSP), 2007.
bibtex  
Multiscale reconstruction for photon-limited hyperspectral data. Krishnamurthy, K.; and Willett, R. In Proceedings of IEEE Statistical Signal Processing Workshop (SSP), 2007.
bibtex  
Multiscale intensity estimation for multi-photon microscopy. Willett, R. In Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), 2007.
bibtex  
Multiscale reconstruction for photon-limited shifted excitation Raman spectroscopy. Willett, R. In Proceedings of IEEE Int. Conf. Acoust., Speech, Signal Processing (Proc. International Conference on Acoustics, Speech, and Signal Processing), 2007.
bibtex  
Multiscale intensity estimation for marked Poisson processes. Willett, R. In Proceedings IEEE Int. Conf. Acoust., Speech, Signal Processing (Proc. International Conference on Acoustics, Speech, and Signal Processing), 2007.
bibtex  
Multiscale reconstruction for computational spectral imaging. R. Willett, M. G.; and Brady, D. In Proceedings of SPIE Electronic Imaging, Computational Imaging V, 2007.
bibtex  
Multiscale-Analysis of Photon-Limited Astronomical Images. Willett, R. In Statistical Challenges in Modern Astronomy IV, volume 371, of Astronomical Society of the Pacific Conference Series, 2007.
bibtex  
  2006 (3)
Multiscale Analysis of Photon-Limited Astronomical Images. Willett, R. In Proceedings of Statistical Challenges in Modern Astronomy (SCMA) IV, 2006.
bibtex  
Toward a Model for Sources of Internet Background Radiation. Barford, P.; R. Nowak, R. W.; and Yegneswaran, V. In Proceedings of the Passive and Active Measurement Conference (PAM '06), 2006.
bibtex  
Ultra-thin Multiple-channel LWIR Imaging Systems. Shankar, M.; Willett, R.; Pitsianis, N.; Kolste, R. T.; Chen, C.; Gibbons, R.; and Brady, D. In Proceedings of SPIE Optics and Photonics, 2006.
bibtex  
  2005 (4)
Level Set Estimation via Trees. Willett, R.; and Nowak, R. In Proceedings of IEEE Int. Conf. Acoust., Speech, Signal Processing (Proc. International Conference on Acoustics, Speech, and Signal Processing), 2005.
bibtex  
Level Set Estimation in Medical Imaging. Willett, R.; and Nowak, R. In Proceedings of IEEE Statistical Signal Processing Workshop, 2005.
bibtex  
Faster Rates in Regression via Active Learning. Castro, R.; Willett, R.; and Nowak, R. In Neural Information Processing Systems, 2005.
bibtex  
Minimax Optimal Level Set Estimation. Willett, R.; and Nowak, R. In Proceedings of Wavelets XI at the SPIE Annual Meeting, 2005.
bibtex  
  2004 (7)
Estimating Inhomogeneous Fields Using Wireless Sensor Networks. Nowak, R.; Mitra, U.; and Willett, R. IEEE Journal on Selected Areas in Communications, 22(6): 999-1006. 2004.
bibtex  
Fast, Near-Optimal, Multiresolution Estimation of Poisson Signals and Images. Willett, R.; and Nowak, R. In Proc. Twelfth European Signal Processing Conference — EUSIPCO~'04, 6-10 Sept., Vienna, Austria, 2004.
bibtex  
Complexity-Regularized Multiresolution Density Estimation. Willett, R.; and Nowak, R. In Proc. IEEE Int. Sym. Information Theory — ISIT~'04, 27 June - 2 July, Chicago, IL, USA, 2004.
bibtex  
Adaptive Sampling for Wireless Sensor Networks. Willett, R.; Martin, A.; and Nowak, R. In Proc. IEEE Int. Sym. Information Theory — ISIT~'04, 27 June - 2 July, Chicago, IL, USA, 2004.
bibtex  
Fast Multiresolution Photon-Limited Image Reconstruction. Willett, R.; and Nowak, R. In Proc. IEEE Int. Sym. Biomedical Imaging — ISBI~'04, 15-18 April, Arlington, VA, USA, 2004.
bibtex  
Coarse-to-Fine Manifold Learning . Castro, R.; Willett, R.; and Nowak, R. In Proc. International Conference on Acoustics, Speech, and Signal Processing~'04, 17-21 May, Montreal, CA, 2004.
bibtex  
Backcasting: Adaptive Sampling for Sensor Networks. Willett, R.; Martin, A.; and Nowak, R. In Proc. Information Processing in Sensor Networks, 26-27 April, Berkeley, CA, USA, 2004.
bibtex  
  2003 (4)
Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging. Willett, R.; and Nowak, R. IEEE Transactions on Medical Imaging, 22(3): 332-350. 2003. r̆lhttp://dx.doi.org/10.1109/TMI.2003.809622doi:10.1109/TMI.2003.809622
bibtex  
Wavelet-Based Superresolution in Astronomy . Willett, R.; Jermyn, I.; Nowak, R.; and Zerubia, J. In Proc. Astronomical Data Analysis Software and Systems XIII , 12-15 October, Strasbourg, France, 2003.
bibtex  
CORT: Classification \em Or Regression Trees. Scott, C.; Willett, R.; and Nowak, R. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing — Proc. International Conference on Acoustics, Speech, and Signal Processing~'03, 6-10 April, Hong Kong, 2003.
bibtex  
Multiscale Likelihood Analysis and Image Reconstruction . Willett, R.; and Nowak, R. In Proc. SPIE Vol. 5207, Wavelets X, 4-8 August, San Diego, CA, USA, 2003.
bibtex  
  2002 (3)
Platelets for Multiscale Analysis in Medical Imaging. Willett, R.; and Nowak, R. In Proc. of the 2nd Joint Meeting of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society — EMBS-BMES~'02, 23-26 Oct., Houston, TX, USA, 2002.
bibtex  
Platelets for Multiscale Analysis in Photon-Limited Imaging. Willett, R.; and Nowak, R. In Proc. IEEE Int. Conf. Image Processing — ICIP~'02, 22-25 Sept., Rochester, NY, USA, 2002.
bibtex  
Multiresolution Nonparametric Intensity and Density Estimation. Willett, R.; and Nowak, R. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing — Proc. International Conference on Acoustics, Speech, and Signal Processing~'02, 13-17 May, Orlando, FL, USA, 2002.
bibtex