var bibbase_data = {"data":"\"Loading..\"\n\n
\n\n \n\n \n\n \n \n\n \n\n \n \n\n \n\n \n
\n generated by\n \n \"bibbase.org\"\n\n \n
\n \n\n
\n\n \n\n\n
\n\n Excellent! Next you can\n create a new website with this list, or\n embed it in an existing web page by copying & pasting\n any of the following snippets.\n\n
\n JavaScript\n (easiest)\n
\n \n <script src=\"https://bibbase.org/show?bib=https://files.warwick.ac.uk/mpbarrow/files/Public/scopus.bib&jsonp=1&jsonp=1\"></script>\n \n
\n\n PHP\n
\n \n <?php\n $contents = file_get_contents(\"https://bibbase.org/show?bib=https://files.warwick.ac.uk/mpbarrow/files/Public/scopus.bib&jsonp=1\");\n print_r($contents);\n ?>\n \n
\n\n iFrame\n (not recommended)\n
\n \n <iframe src=\"https://bibbase.org/show?bib=https://files.warwick.ac.uk/mpbarrow/files/Public/scopus.bib&jsonp=1\"></iframe>\n \n
\n\n

\n For more details see the documention.\n

\n
\n
\n\n
\n\n This is a preview! To use this list on your own web site\n or create a new web site from it,\n create a free account. The file will be added\n and you will be able to edit it in the File Manager.\n We will show you instructions once you've created your account.\n
\n\n
\n\n

To the site owner:

\n\n

Action required! Mendeley is changing its\n API. In order to keep using Mendeley with BibBase past April\n 14th, you need to:\n

    \n
  1. renew the authorization for BibBase on Mendeley, and
  2. \n
  3. update the BibBase URL\n in your page the same way you did when you initially set up\n this page.\n
  4. \n
\n

\n\n

\n \n \n Fix it now\n

\n
\n\n
\n\n\n
\n \n \n
\n
\n  \n 2019\n \n \n (5)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Characterization of oil sands naphthenic acids by negative-ion electrospray ionization mass spectrometry: Influence of acidic versus basic transfer solvent.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Chemosphere,1017-1024. 2019.\n cited By 1\n\n\n\n
\n\n\n\n \n \n \"CharacterizationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Considerable effort and progress has been made over the past decade with respect to development of analytical tools for the determination of naphthenic acids and related components in environmental samples. However, experimental variables that influence the analytical results have not been fully explored. The relative contributions of O x classes are of particular interest in data obtained using negative-ion electrospray ionization mass spectrometry. Using two types of ultrahigh resolution mass spectrometers (Orbitrap and FT-ICR), the apparent pH of the transfer solvent was observed to have a significant impact upon compound class distributions. A basic transfer solvent favored the detection of O x species of lower oxygen content, while acidic pH favored the preferential observation of organic compounds with higher oxygen contents. These observed trends were independent of the instrument type. In addition, when using an acidic transfer solvent, the overall observed response was reduced by a factor of ∼20. Thus, the apparent pH of the transfer solvent has critical influence upon detection and upon the profile of different components observed within a complex mixture. In turn, this significantly impacts oil sands environmental monitoring for toxicity, forensic interpretation, and quantitation; when comparing data sets from different laboratories, these findings should therefore be taken into account. © 2019 Elsevier Ltd\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Petroleomic depth profiling of Staten Island salt marsh soil: 2ω detection FTICR MS offers a new solution for the analysis of environmental contaminants.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Science of the Total Environment, 662: 852-862. 2019.\n cited By 0\n\n\n\n
\n\n\n\n \n \n \"PetroleomicPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Staten Island is located in one of the most densely populated regions of the US: the New York/New Jersey Estuary. Marine and industrial oil spills are commonplace in the area, causing the waterways and adjacent marshes to become polluted with a range of petroleum-related contaminants. Using Rock-Eval pyrolysis, the hydrocarbon impact on a salt marsh was assessed at regular intervals down to 90 cm, with several key sampling depths of interest identified for further analysis. Ultrahigh resolution data are obtained by direct infusion (DI) atmospheric pressure photoionization (APPI) on a 12 T solariX Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) allowing trends in the compositional profile with depth to be observed, such as changes in the relative hydrocarbon intensity and the relative contributions from oxygen- and sulfur-containing groups. These trends may correlate with the timing of major oil spills and leaks of petroleum and other industrial chemicals into the waterways. The use of gas chromatography (GC) coupled to a 7 T solariX 2XR FTICR MS equipped with an atmospheric pressure chemical ionization (APCI) ion source offers retention time resolved and extensive compositional information for the complex environmental samples complementary to that obtained by DI-APPI. The compositional profile observed using GC-APCI FTICR MS includes contributions from phosphorous-containing groups, which may be indicative of contamination from other anthropogenic sources. © 2019 Elsevier B.V.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Structural analysis of peptides modified with organo-iridium complexes, opportunities from multi-mode fragmentation.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Analyst, 144(5): 1575-1581. 2019.\n cited By 0\n\n\n\n
\n\n\n\n \n \n \"StructuralPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
\n
\n\n\n
\n The most widely used anticancer drugs are platinum complexes, but complexes of other transition metals also show promise and may widen the spectrum of activity, reduce side-effects, and overcome resistance. The latter include organo-iridium(iii) 'piano-stool' complexes. To understand their mechanism of action, it is important to discover how they bind to biomolecules and how binding is affected by functionalisation of the ligands bound to iridium. We have characterised, by MS and MS/MS techniques, unusual adducts from reactions between 3 novel iridium(iii) anti-cancer complexes each possessing reactive sites both at the metal (coordination by substitution of a labile chlorido ligand) and on the ligand (covalent bond formation involving imine formation by one or two aldehyde functions). Peptide modification by the metal complex had a drastic effect on both Collisonally Activated Dissociation (CAD) and Electron Capture Dissociation (ECD) MS/MS behaviour, tuning requirements, and fragmentation channels. CAD MS/MS was effective only when studying the covalent condensation products. ECD MS/MS, although hindered by electron-quenching at the Iridium complex site, was suitable for studying many of the species observed, locating the modification sites, and often identifying them to within a single amino acid residue. © The Royal Society of Chemistry 2019.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Pushing the analytical limits: New insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Chemical Science, 10(29): 6966-6978. 2019.\n cited By 0\n\n\n\n
\n\n\n\n \n \n \"PushingPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n A new strategy has been developed for characterization of the most challenging complex mixtures to date, using a combination of custom-designed experiments and a new data pre-processing algorithm. In contrast to traditional methods, the approach enables operation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with constant ultrahigh resolution at hitherto inaccessible levels (approximately 3 million FWHM, independent of m/z). The approach, referred to as OCULAR, makes it possible to analyze samples that were previously too complex, even for high field FT-ICR MS instrumentation. Previous FT-ICR MS studies have typically spanned a broad mass range with decreasing resolving power (inversely proportional to m/z) or have used a single, very narrow m/z range to produce data of enhanced resolving power; both methods are of limited effectiveness for complex mixtures spanning a broad mass range, however. To illustrate the enhanced performance due to OCULAR, we show how a record number of unique molecular formulae (244779 elemental compositions) can be assigned in a single, non-distillable petroleum fraction without the aid of chromatography or dissociation (MS/MS) experiments. The method is equally applicable to other areas of research, can be used with both high field and low field FT-ICR MS instruments to enhance their performance, and represents a step-change in the ability to analyze highly complex samples. © 2019 The Royal Society of Chemistry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Metal Ion Binding to the Amyloid β Monomer Studied by Native Top-Down FTICR Mass Spectrometry.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry. 2019.\n cited By 0\n\n\n\n
\n\n\n\n \n \n \"MetalPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Native top-down mass spectrometry is a fast, robust biophysical technique that can provide molecular-scale information on the interaction between proteins or peptides and ligands, including metal cations. Here we have analyzed complexes of the full-length amyloid β (1-42) monomer with a range of (patho)physiologically relevant metal cations using native Fourier transform ion cyclotron resonance mass spectrometry and three different fragmentation methods—collision-induced dissociation, electron capture dissociation, and infrared multiphoton dissociation—all yielding consistent results. Amyloid β is of particular interest as its oligomerization and aggregation are major events in the etiology of Alzheimer’s disease, and it is known that interactions between the peptide and bioavailable metal cations have the potential to significantly damage neurons. Those metals which exhibited the strongest binding to the peptide (Cu2+, Co2+, Ni2+) all shared a very similar binding region containing two of the histidine residues near the N-terminus (His6, His13). Notably, Fe3+ bound to the peptide only when stabilized toward hydrolysis, aggregation, and precipitation by a chelating ligand, binding in the region between Ser8 and Gly25. We also identified two additional binding regions near the flexible, hydrophobic C-terminus, where other metals (Mg2+, Ca2+, Mn2+, Na+, and K+) bound more weakly—one centered on Leu34, and one on Gly38. Unexpectedly, collisional activation of the complex formed between the peptide and [CoIII(NH3)6]3+ induced gas-phase reduction of the metal to CoII, allowing the peptide to fragment via radical-based dissociation pathways. This work demonstrates how native mass spectrometry can provide new insights into the interactions between amyloid β and metal cations. [Figure not available: see fulltext.]. © 2019, The Author(s).\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2018\n \n \n (7)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Coupling Electron Capture Dissociation and the Modified Kendrick Mass Defect for Sequencing of a Poly(2-ethyl-2-oxazoline) Polymer.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Analytical Chemistry, 90(19): 11710-11715. 2018.\n cited By 2\n\n\n\n
\n\n\n\n \n \n \"CouplingPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n With increasing focus on the structural elucidation of polymers, advanced tandem mass spectrometry techniques will play a crucial role in the characterization of these compounds. In this contribution, synthesis and analysis of methyl-initiated and xanthate-terminated poly(2-ethyl-2-oxazoline) using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) was achieved. Electron capture dissociation (ECD) produced full end group characterization as well as backbone fragmentation including complete sequence coverage of the polymer. A method of fragment ion characterization is also presented with the use of the high-resolution-modified Kendrick mass defect plots as a means of grouping fragments from the same fragmentation pathways together. This type of data processing is applicable to all tandem mass spectrometry techniques for polymer analysis but is made more effective with high mass accuracy methods. ECD FT-ICR MS demonstrates its promising role as a structural characterization technique for polyoxazoline species. © 2018 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 29(8): 1700-1705. 2018.\n cited By 4\n\n\n\n
\n\n\n\n \n \n \"ApplicationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. © 2018, The Author(s).\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Top-Down Deep Sequencing of Ubiquitin Using Two-Dimensional Mass Spectrometry.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Analytical Chemistry, 90(12): 7302-7309. 2018.\n cited By 4\n\n\n\n
\n\n\n\n \n \n \"Top-DownPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Two-dimensional mass spectrometry (2DMS) allows data independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors without isolation prior to fragmentation. Developments in computer capabilities and implementations in Fourier transform ion cyclotron resonance (FTICR) MS over the past decade have allowed the technique to become a useful analytical tool for bottom-up proteomics (BUP) and, more recently, in top-down protein analysis (TDP). In this work, a new method of TDP is developed using 2D FTICR MS, called MS/2D FTICR MS or MS/2DMS. In MS/2DMS, an entire protein is initially fragmented in a hexapole collision cell, e.g., with collisionally activated dissociation (CAD). The primary fragments are then sent to the ICR cell, where 2DMS is performed with infrared multiphoton dissociation (IRMPD) or electron-capture dissociation (ECD). The resulting 2D mass spectra retain information equivalent to a set of TDP MS 3 experiments on the selected protein. Up to n - 1 fragmentation steps can be added to the process, as long as an ion of interest can be unambiguously fragmented before the ICR cell, leading to an MS n /2DMS experiment whose output is a 2D mass spectrum retaining information equivalent to MS n . MS/2DMS and MS/MS/2DMS are used in this work for the structural analysis of ubiquitin (Ubi), noting several unique features which aid fragment identification. The use of CAD-MS/IRMPD-2DMS, CAD-MS/ECD-2DMS, and MS 2 /2DMS using, respectively, in-source dissociation (ISD), CAD, and ECD-2DMS led to 97% cleavage coverage for Ubi. © 2018 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Can Two-Dimensional IR-ECD Mass Spectrometry Improve Peptide de Novo Sequencing?.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Analytical Chemistry, 90(5): 3496-3504. 2018.\n cited By 2\n\n\n\n
\n\n\n\n \n \n \"CanPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Two-dimensional mass spectrometry (2D MS) correlates precursor and fragment ions without ion isolation in a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) for tandem mass spectrometry. Infrared activated electron capture dissociation (IR-ECD), using a hollow cathode configuration, generally yields more information for peptide sequencing in tandem mass spectrometry than ECD (electron capture dissociation) alone. The effects of the fragmentation zone on the 2D mass spectrum are investigated as well as the structural information that can be derived from it. The enhanced structural information gathered from the 2D mass spectrum is discussed in terms of how de novo peptide sequencing can be performed with increased confidence. 2D IR-ECD MS is shown to sequence peptides, to distinguish between leucine and isoleucine residues through the production of w ions as well as between C-terminal (b/c) and N-terminal (y/z) fragments through the use of higher harmonics, and to assign and locate peptide modifications. © 2018 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Sequence-dependent attack on peptides by photoactivated platinum anticancer complexes.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Chemical Science, 9(10): 2733-2739. 2018.\n cited By 9\n\n\n\n
\n\n\n\n \n \n \"Sequence-dependentPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Octahedral platinum(iv) complexes such as trans,trans,trans-[Pt(N3)2(OH)2(pyridine)2] (1) are stable in the dark, but potently cytotoxic to a range of cancer cells when activated by UVA or visible light, and active in vivo. Photoactivation causes the reduction of the complex and leads to the formation of unusual Pt(ii) lesions on DNA. However, radicals are also generated in the excited state resulting from photoactivation (J. S. Butler, J. A. Woods, N. J. Farrer, M. E. Newton and P. J. Sadler, J. Am. Chem. Soc., 2012, 134, 16508-16511). Here we show that once photoactivated, 1 also can interact with peptides, and therefore proteins are potential targets of this candidate drug. High resolution FT-ICR MS studies show that reactions of 1 activated by visible light with two neuropeptides Substance P, RPKPQQFFGLM-NH2 (SubP) and [Lys]3-Bombesin, pEQKLGNQWAVGHLM-NH2 (K3-Bom) give rise to unexpected products, in the form of both oxidised and platinated peptides. Further MS/MS analysis using electron-capture dissociation (ECD) dissociation pathways (enabling retention of the Pt complex during fragmentation), and EPR experiments using the spin-trap DEPMPO, show that the products generated during the photoactivation of 1 depend on the amino acid composition of the peptide. This work reveals the multi-targeting nature of excited state platinum anticancer complexes. Not only can they target DNA, but also peptides (and proteins) by sequence dependent platination and radical mechanisms. © The Royal Society of Chemistry 2018.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Bottom-Up Two-Dimensional Electron-Capture Dissociation Mass Spectrometry of Calmodulin.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 29(1): 207-210. 2018.\n cited By 5\n\n\n\n
\n\n\n\n \n \n \"Bottom-UpPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry technique that allows data-independent fragmentation of all precursors in a mixture without previous isolation, through modulation of the ion cyclotron frequency in the ICR-cell prior to fragmentation. Its power as an analytical technique has been proven particularly for proteomics. Recently, a comparison study between 1D and 2D MS has been performed using infrared multiphoton dissociation (IRMPD) on calmodulin (CaM), highlighting the capabilities of the technique in both top-down (TDP) and bottom-up proteomics (BUP). The goal of this work is to expand this study on CaM using electron-capture dissociation (ECD) 2D MS as a single complementary BUP experiment in order to enhance the cleavage coverage of the protein under analysis. By adding the results of the BUP 2D ECD MS to the 2D IRMPD MS analysis of CaM, the total cleavage coverage increased from ~40% to ~68%. [Figure not available: see fulltext.]. © 2017, American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Does deamidation of islet amyloid polypeptide accelerate amyloid fibril formation?.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Chemical Communications, 54(98): 13853-13856. 2018.\n cited By 0\n\n\n\n
\n\n\n\n \n \n \"DoesPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Mass spectrometry has been applied to determine the deamidation sites and the aggregation region of the deamidated human islet amyloid polypeptide (hIAPP). Mutant hIAPP with iso-aspartic residue mutations at possible deamidation sites showed very different fibril formation behaviour, which correlates with the observed deamidation-induced acceleration of hIAPP aggregation. © The Royal Society of Chemistry.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2017\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Polymer Analysis in the Second Dimension: Preliminary Studies for the Characterization of Polymers with 2D MS.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Analytical Chemistry, 89(18): 9892-9899. 2017.\n cited By 11\n\n\n\n
\n\n\n\n \n \n \"PolymerPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR MS or 2D MS) allows direct correlation between precursor and fragment ions without isolation prior to fragmentation. The method has been optimized for the analysis of complex mixtures and used so far for the analysis of small molecules and peptides obtained by tryptic digestion of proteins and entire proteins. In this work, a 2D MS method is developed to characterize complex mixtures of polymers using infrared multiphoton decay (IRMPD) and electron capture dissociation (ECD) as fragmentation techniques, and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Polysorbate 80, and poly(methyl methacrylate) (PMMA) as analytes. The use of 2D MS allowed generation of fragment m/z values for all the compounds in the mixture at once and allowed tandem mass spectrometry of species very close in m/z that would have been difficult to isolate with a quadrupole for standard MS/MS. Furthermore, the use of unique features of 2D MS such as the extraction of neutral-loss lines allowed the successful assignment of peaks from low abundant species that would have been more difficult with standard MS/MS. For all the samples, the amount of information obtained with 2D MS was comparable with what obtained with multiple 1D MS/MS experiments targeted on each individual component within each mixture but required a single experiment of about 20-40 min. © 2017 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Automatic assignment of metal-containing peptides in proteomic LC-MS and MS/MS data sets.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Analyst, 142(11): 2029-2037. 2017.\n cited By 5\n\n\n\n
\n\n\n\n \n \n \"AutomaticPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Transition metal-containing proteins and enzymes are critical for the maintenance of cellular function and metal-based (metallo)drugs are commonly used for the treatment of many diseases, such as cancer. Detection and characterisation of metallodrug targets is crucial for improving drug-design and therapeutic efficacy. Due to the unique isotopic ratios of many metal species, and the complexity of proteomic samples, standard MS data analysis of these species is unsuitable for accurate assignment. Herein a new method for differentiating metal-containing species within complex LCMS data is presented based upon the Smart Numerical Annotation Procedure (SNAP). SNAP-LC accounts for the change in isotopic envelopes for analytes containing non-standard species, such as metals, and will accurately identify, record, and display the particular spectra within extended LCMS runs that contain target species, and produce accurate lists of matched peaks, greatly assisting the identification and assignment of modified species and tailored to the metals of interest. Analysis of metallated species obtained from tryptic digests of common blood proteins after reactions with three candidate metallodrugs is presented as proof-of-concept examples and demonstrates the effectiveness of SNAP-LC for the fast and accurate elucidation of metallodrug targets. © The Royal Society of Chemistry 2017.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n THEMIS: Batch preprocessing for ultrahigh-resolution mass spectra of complex mixtures.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Analytical Chemistry, 89(21): 11383-11390. 2017.\n cited By 4\n\n\n\n
\n\n\n\n \n \n \"THEMIS:Paper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Fourier transform ion cyclotron resonance mass spectrometry affords the resolving power to determine an unprecedented number of components in complex mixtures, such as petroleum. The software tools required to also analyze these data struggle to keep pace with advancing instrument capabilities and increasing quantities of data, particularly in terms of combining information efficiently across multiple replicates. Improved confidence in data and the use of replicates is particularly important where strategic decisions will be based upon the analysis. We present a new algorithm named Themis, developed using R, to jointly preprocess replicate measurements of a sample with the aim of improving consistency as a preliminary step to assigning peaks to chemical compositions. The main features of the algorithm are quality control criteria to detect failed runs, ensuring comparable magnitudes across replicates, peak alignment, and the use of an adaptive mixture model-based strategy to help distinguish true peaks from noise. The algorithm outputs a list of peaks reliably observed across replicates and facilitates data handling by preprocessing all replicates in a single step. The processed data produced by our algorithm can subsequently be analyzed by use of relevant specialized software. While Themis has been demonstrated with petroleum as an example of a complex mixture, its basic framework will be useful for complex samples arising from a variety of other applications. © 2017 American Chemical Society.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2016\n \n \n (8)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n 2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 27(9): 1531-1538. 2016.\n cited By 11\n\n\n\n
\n\n\n\n \n \n \"2DPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments. [Figure not available: see fulltext.] © 2016, American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Effects of Extraction pH on the Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Profiles of Athabasca Oil Sands Process Water.\n \n \n \n \n\n\n \n Barrow, M.; Peru, K.; McMartin, D.; and Headley, J.\n\n\n \n\n\n\n Energy and Fuels, 30(5): 3615-3621. 2016.\n cited By 9\n\n\n\n
\n\n\n\n \n \n \"EffectsPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Barrow20163615,\nauthor={Barrow, M.P. and Peru, K.M. and McMartin, D.W. and Headley, J.V.},\ntitle={Effects of Extraction pH on the Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Profiles of Athabasca Oil Sands Process Water},\njournal={Energy and Fuels},\nyear={2016},\nvolume={30},\nnumber={5},\npages={3615-3621},\ndoi={10.1021/acs.energyfuels.5b02086},\nnote={cited By 9},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84971245066&doi=10.1021%2facs.energyfuels.5b02086&partnerID=40&md5=c94b87ebd339842e16189b5c847a5211},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Environment Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada; University of Regina, Regina, Saskatchewan, S4S 0A2, Canada},\nabstract={A comparison of the acidic and basic extracts of oil sands process water (OSPW) was performed using positive- and negative-ion electrospray ionization (ESI) and atmospheric pressure photoionization (APPI), coupled with a 12 T solariX Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS). In general, the acid-neutral extracts showed higher oxygen content within the negative-ion profiles (both APPI and ESI). The hydrocarbon class was readily observed in the base-neutral extract. Furthermore, a comparison of O2S (radical ion) and O2S [H] (protonated) classes in positive-ion APPI data showed significant differences in the distribution of double-bond equivalent (DBE) versus carbon number, which are indicative of differences in structures of the two classes. The S-containing species were relatively more abundant in the base-neutral extract, and the radical O2S ions displayed the characteristic profile of thiophenic compounds. ESI profiles for samples extracted at both pH values (2 and 11) investigated were suitable for characterization of the most polar components within the complex OSPW mixture, while APPI was suitable for the ionization of a broader range of heteroatom classes. Because profile comparisons are important for environmental forensics, this study highlights the need for careful attention to extraction pH effects on the measured profiles of OSPW components. © 2015 American Chemical Society.},\nkeywords={Atmospheric ionization;  Atmospheric pressure;  Carbon;  Cyclotron resonance;  Cyclotrons;  Drug products;  Electron cyclotron resonance;  Electrospray ionization;  Equivalence classes;  Ionization;  Ionization of liquids;  Ions;  Mass spectrometry;  Negative ions;  Oil fields;  Oil sands;  pH effects;  Positive ions, Athabasca oil sands;  Atmospheric pressure photoionization;  Environmental forensics;  Fourier transform ion cyclotron resonance mass spectrometers;  Fourier transform ion cyclotron resonance mass spectrometry;  Ion electrospray ionization;  Oil sands process waters;  Polar components, Extraction},\nreferences={Burrowes, A., Marsh, R., Evans, C., Teare, M., Ramos, S., Rahnama, F., Kirsch, M.-A., Harrison, P., (2009) Albertas Energy Reserves 2008 and Supply/Demand Outlook 2009-2018, p. 220. , Energy Resources Conservation Board, Government of Alberta: Calgary, Alberta, Canada; Headley, J.V., McMartin, D.W., A review of the occurrence and fate of naphthenic acids in aquatic environments (2004) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 39 (8), pp. 1989-2010; Headley, J.V., Peru, K.M., Mohamed, M.H., Frank, R.A., Martin, J.W., Hazewinkel, R.R.O., Humphries, D., Wrona, F.J., Chemical fingerprinting of naphthenic acids and oil sands process waters: A review of analytical methods for environmental samples (2013) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 48, pp. 1145-1163; Headley, J.V., Peru, K.M., Barrow, M.P., Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil-a review (2015) Mass Spectrom. Rev.; Headley, J.V., Peru, K.M., Barrow, M.P., Mass Spectrometric Characterization of Naphthenic Acids in Environmental Samples: A Review (2009) Mass Spectrom. Rev., 28, pp. 121-134; Headley, J.V., Peru, K.M., Fahlman, B., Colodey, A., McMartin, D.W., Selective solvent extraction and characterization of the acid extractable fraction of Athabasca oils sands process waters by Orbitrap mass spectrometry (2013) Int. J. Mass Spectrom., 345-347, pp. 104-108; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., Characterization of Naphthenic Acids from Athabasca Oil Sands Using Electrospray Ionization: The Significant Influence of Solvents (2007) Anal. Chem., 79, pp. 6222-6229; Huang, R., Sun, N., Chelme-Ayala, P., McPhedran, K.N., Changalov, M., Gamal El-Din, M., Fractionation of oil sands-process affected water using pH-dependent extractions: A study of dissociation constants for naphthenic acids species (2015) Chemosphere, 127, pp. 291-296; Headley, J.V., Peru, K.M., McMartin, D.W., Winkler, M., Determination of dissolved naphthenic acids in natural waters by using negative-ion electrospray mass spectrometry (2002) J. AOAC Int., 85, pp. 182-187; Zhang, K., Pereira, A.S., Martin, J.W., Estimates of octanol-water partitioning for thousands of dissolved organic species in oil sands process-affected water (2015) Environ. Sci. Technol., 49, pp. 8907-8913; Klamerth, N., Moreira, J., Li, C., Singh, A., McPhedran, K.N., Chelme-Ayala, P., Belosevic, M., Gamal El-Din, M., Effect of ozonation on the naphthenic acids speciation and toxicity of pH-dependent organic extracts of oil sands process-affected water (2015) Sci. Total Environ., 506-507, pp. 66-75; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2011) Rapid Commun. Mass Spectrom., 25, pp. 1899-1909; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Data Visualization for the Characterization of Naphthenic Acids within Petroleum Samples (2009) Energy Fuels, 23, pp. 2592-2599; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization (2011) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 46, pp. 844-854; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-Ion microelectrospray high-field fourier transform ion cyclotron resonance mass spectrometry (2001) Energy Fuels, 15, pp. 1505-1511; Nyakas, A., Han, J., Peru, K.M., Headley, J.V., Borchers, C., The comprehensive analysis of oil sands processed water by direct-infusion fourier-transform ion cyclotron resonance mass spectrometry with and without offline UHPLC sample prefractionation (2013) Environ. Sci. Technol., 47 (9), pp. 4471-4479; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation (2006) Anal. Chem., 78, pp. 8354-8361; Ross, M.S., Dos Santos Pereira, A., Fennell, J., Davies, M., Johnson, J., Sliva, L., Martin, J.W., Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry (2012) Environ. Sci. Technol., 46, pp. 12796-12805; Frank, R.A., Roy, J.W., Bickerton, G., Rowland, S.J., Headley, J.V., Scarlett, A.G., West, C.E., Hewitt, L.M., Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification (2014) Environ. Sci. Technol., 48, pp. 2660-2670; Brunswick, P., Shang, D., Van Aggelen, G., Hindle, R., Hewitt, L.M., Frank, R.A., Haberl, M., Kim, M., Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupoletime of flight mass spectrometry direct injection (2015) J. Chromatogr. A, 1405, pp. 49-71; Yue, S., Ramsay, B.A., Brown, R.S., Wang, J., Ramsay, J.A., Identification of estrogenic compounds in oil sands process waters by effect directed analysis (2015) Environ. Sci. Technol., 49, pp. 570-577; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem., 82, pp. 3727-3735; Purcell, J.M., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis (2006) Anal. Chem., 78, pp. 5906-5912; Barrow, M.P., Peru, K.M., Fahlman, B., Hewitt, L.M., Frank, R.A., Headley, J.V., Beyond naphthenic acids: Environmental screening of water from natural sources and the Athabasca oil sands industry using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (2015) J. Am. Soc. Mass Spectrom., 26 (9), pp. 1508-1521; Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K., Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra (2001) Anal. Chem., 73, pp. 4676-4681; Headley, J.V., Akre, C., Conly, F.M., Peru, K.M., Dickson, L.C., Preliminary characterization and source assessment of PAHs in tributary sediments of the Athabasca River, Canada (2001) Environ. Forensics, 2, pp. 335-345; Griffiths, M.T., Da Campo, R., Oconnor, P.B., Barrow, M.P., Throwing Light on Petroleum: Simulated Exposure of Crude Oil to Sunlight and Characterization Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (2014) Anal. Chem., 86, pp. 527-534; Barrow, M.P., Peru, K.M., Headley, J.V., An Added Dimension: GC Atmospheric Pressure Chemical Ionization FTICR MS and the Athabasca Oil Sands (2014) Anal. Chem., 86, pp. 8281-8288},\ncorrespondence_address1={Barrow, M.P.; Department of Chemistry, University of WarwickUnited Kingdom; email: m.p.barrow@warwick.ac.uk},\npublisher={American Chemical Society},\nissn={08870624},\ncoden={ENFUE},\nlanguage={English},\nabbrev_source_title={Energy Fuels},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n A comparison of the acidic and basic extracts of oil sands process water (OSPW) was performed using positive- and negative-ion electrospray ionization (ESI) and atmospheric pressure photoionization (APPI), coupled with a 12 T solariX Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS). In general, the acid-neutral extracts showed higher oxygen content within the negative-ion profiles (both APPI and ESI). The hydrocarbon class was readily observed in the base-neutral extract. Furthermore, a comparison of O2S (radical ion) and O2S [H] (protonated) classes in positive-ion APPI data showed significant differences in the distribution of double-bond equivalent (DBE) versus carbon number, which are indicative of differences in structures of the two classes. The S-containing species were relatively more abundant in the base-neutral extract, and the radical O2S ions displayed the characteristic profile of thiophenic compounds. ESI profiles for samples extracted at both pH values (2 and 11) investigated were suitable for characterization of the most polar components within the complex OSPW mixture, while APPI was suitable for the ionization of a broader range of heteroatom classes. Because profile comparisons are important for environmental forensics, this study highlights the need for careful attention to extraction pH effects on the measured profiles of OSPW components. © 2015 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Two-Dimensional Mass Spectrometry for Proteomics, a Comparative Study with Cytochrome c.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Analytical Chemistry, 88(8): 4409-4417. 2016.\n cited By 11\n\n\n\n
\n\n\n\n \n \n \"Two-DimensionalPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows the correlation between precursor and fragment ions in tandem mass spectrometry without the need to isolate the precursor ion beforehand. 2D FT-ICR MS has been optimized as a data-independent method for the structural analysis of compounds in complex samples. Data processing methods and denoising algorithms have been developed to use it as an analytical tool. In the present study, the capabilities of 2D FT-ICR MS are explored with a tryptic digest of cytochrome c with both ECD and IRMPD as fragmentation modes. The 2D mass spectra showed useful fragmentation patterns of peptides over a dynamic range of almost 400. By using a quadratic calibration, fragment ion peaks could be successfully assigned. The correlation between precursor and fragment ions in the 2D mass spectra was more accurate than in MS/MS spectra after quadrupole isolation, due to the limitations of quadrupole isolation. The use of the second dimension allowed for successful fragment assignment from precursors that were separated by only m/z 0.0156. The resulting cleavage coverage of cytochrome c almost matched data provided by high-resolution FT-ICR MS/MS analysis, but the 2D FT-ICR MS method required only one experimental scan. © 2016 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Analysis of the molecular weight distribution of vacuum residues and their molecular distillation fractions by laser desorption ionization mass spectrometry.\n \n \n \n \n\n\n \n Palacio Lozano, D.; Orrego-Ruiz, J.; Barrow, M.; Cabanzo Hernandez, R.; and Mejía-Ospino, E.\n\n\n \n\n\n\n Fuel, 171: 247-252. 2016.\n cited By 6\n\n\n\n
\n\n\n\n \n \n \"AnalysisPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{PalacioLozano2016247,\nauthor={Palacio Lozano, D.C. and Orrego-Ruiz, J.A. and Barrow, M.P. and Cabanzo Hernandez, R. and Mejía-Ospino, E.},\ntitle={Analysis of the molecular weight distribution of vacuum residues and their molecular distillation fractions by laser desorption ionization mass spectrometry},\njournal={Fuel},\nyear={2016},\nvolume={171},\npages={247-252},\ndoi={10.1016/j.fuel.2015.12.058},\nnote={cited By 6},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84953791261&doi=10.1016%2fj.fuel.2015.12.058&partnerID=40&md5=a944635b52c601e853af51866afd338e},\naffiliation={Laboratorio de Espectroscopía Atómica y Molecular, Science Faculty, Universidad Industrial de Santander, Bucaramanga, 680002, Colombia; Instituto Colombiano Del Petróleo ICP, ECOPETROL, Bucaramanga, Colombia; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={Average molecular weight analysis of vacuum residues using laser desorption ionization (LDI) can be a difficult task due to the significant influence of the experimental parameters and gas-phase reactions. In this paper, laser desorption/ionization time-of-flight mass spectrometry in reflectron mode (LDI TOF MS) was used to analyze vacuum residues and their molecular distillations (MD) fractions obtained at distillation cuts of 510-603 °C, 510-645 °C and 510-687 °C. Those samples associated with the lowest distillation temperature presented the narrowest molecular weight distributions and lowest average molecular weight (Mw) indicating lower complexity. American Petroleum Institute gravity, or API gravity (API°), is a measure of the weight of liquid petroleum compared to water, as expected a correlation between Mw and API° was determined, where lower API° correlated with higher molecular weight. When using higher laser energies mass spectra were acquired with a spacing of 24 Da between the peaks, indicating the production of carbon clusters or "fullerenes". This suggests that asphaltenes could be the precursors of the clusters that extend over 2500 Da in reflectron mode. Under appropriate experimental conditions, it was possible to produce repeatable molecular distribution for all the samples. Likewise, mass spectrometric data can be used in Principal Component Analysis (PCA) and Partial Least Square (PLS) analysis to discriminate and to predict density of the samples with low percentage of errors. © 2016 Elsevier Ltd. All rights reserved.},\nauthor_keywords={Mass spectrometry;  Molecular distillation;  Partial least square;  Time-of-flight;  Vacuum residues},\nkeywords={Carbon;  Chemical reactions;  Desorption;  Distillation;  Drug products;  Ionization;  Ionization of gases;  Mass spectrometers;  Mass spectrometry;  Molecular weight;  Molecular weight distribution;  Phase interfaces;  Spectrometry, American Petroleum Institute;  Laser desorption ionization;  Laser desorption ionization mass spectrometry;  Laser desorption/ionization time of flights;  Molecular distillation;  Partial least square (PLS);  Time of flight;  Vacuum residue, Principal component analysis},\nreferences={Becker, C., Qian, K., Russell, D.H., (2008) Anal Chem, 80, pp. 8592-8597; Suelves, I., Islas, C., Millan, M., Galmes, C., Carter, J., Herod, A., (2003) Fuel, 82, pp. 1-14; Sbaite, P., Batistella, C.B., Winter, A., Vasconcelos, C.J.G., Maciel, M.R.W., Filho, R.M., (2006) Petrol Sci Technol, 24, pp. 265-274; Liñan, L.Z., Lopes, M.S., Wolf Maciel, M.R., Nascimento Lima, N.M., Filho, R.M., Embirucu, M., (2010) J Chem Eng Data, 55, pp. 3068-3076; Lima, N.M.N., Liñan, L.Z., Manenti, F., Filho, R.M., Maciel, M.R.W., Embiruçu, M., (2011) Chem Eng Res des, 89, pp. 471-479; Liñan, L.Z., Lima, N.M.N., Maciel, M.R.W., Filho, R.M., Medina, L.C., Embiruçu, M., (2011) J Petrol Sci Eng, 78, pp. 78-85; Rocha, E.R.L., Lopes, M.S., Wolf Maciel, M.R., Maciel Filho, R., Medina, L.C., (2013) Indus Eng Chem Res, 52, pp. 15488-15493; Cho, Y., Na, J.-G., Nho, N.-S., Kim, S., Kim, S., (2012) Energy Fuels, 26, pp. 2558-2565; De Oliveira, L.P., Vazquez, A.T., Verstraete, J.J., Kolb, M., (2013) Energy Fuels, 27, pp. 3622-3641; Qian, K., Edwards, K.E., Siskin, M., Olmstead, W.N., Mennito, A.S., Dechert, G.J., (2007) Energy Fuels, 21, pp. 1042-1047; Zhang, L., Hou, Z., Horton, S.R., Klein, M.T., Shi, Q., Zhao, S., (2014) Energy Fuels, 28, pp. 1736-1749; Mullins, O.C., Martínez-Haya, B., Marshall, A.G., (2008) Energy Fuels, 3, pp. 1765-1773; Morgan, T.J., George, A., Lvarez, P., Millan, M., Herod, A.A., Kandiyoti, R., (2008) Energy Fuels, 22, pp. 3275-3292; Cho, Y., Witt, M., Kim, Y.H., Kim, S., (2012) Anal Chem, 84, pp. 8587-8594; Hortal, A.R., Martínez-Haya, B., Lobato, M.D., Pedrosa, J.M., Lago, S., (2006) J Mass Spectrom, 41, pp. 960-968; Martínez-Haya, B., Hortal, A.R., Hurtado, P., Lobato, M.D., Pedrosa, J.M., (2007) J Mass Spectrom, 42, pp. 701-713; Hurtado, P., Gámez, F., Martínez-Haya, B., (2010) Energy Fuels, 24, pp. 6067-6073; Hortal, A.R., Hurtado, P., Martínez-Haya, B., Mullins, O.C., (2007) Energy Fuels, 21, pp. 2863-2868; Apicella, B., Alfè, M., Amoresano, A., Galano, E., Ciajolo, A., (2010) Int J Mass Spectrom, 295, pp. 98-102; Pereira, T.M., Vanini, G., Tose, L.V., Cardoso, F.M., Fleming, F.P., Rosa, P.T., (2014) Fuel, 131, pp. 49-58; Baek, S.J., Kim, J., Kim, H.S., (2015) Chem Phys Lett, 636, pp. 35-38; Wu, Q., Pomerantz, A., Mullins, O., Zare, R., (2013) J Am Soc Mass Spectrom, 24, pp. 1116-1122; Smaniotto, A., Montanari, L., Flego, C., Rizzi, A., Ragazzi, E., Seraglia, R., (2008) Rapid Commun Mass Spectrom, 22, pp. 1597-1606; Zahlsen, K., Eide, I., (2006) Energy Fuels, 20, pp. 265-270; Karas, M., Hillenkamp, F., (1988) Anal Chem, 60, pp. 2299-2301; Meléndez, L.V., Lache, A., Orrego-Ruiz, J.A., Pachón, Z., Meja-Ospino, E., (2012) J Petrol Sci Eng, 9091, pp. 56-60; Orrego-Ruiz, J.A., Mejía-Ospino, E., Carbognani, L., López-Linares, F., Pereira-Almao, P., (2012) Energy Fuels, 26, pp. 586-593; Hammond, M.R., Zare, R.N., (2008) Geochim Cosmochim Acta, 72, pp. 5521-5529; Rizzi, A., Cosmina, P., Flego, C., Montanari, L., Seraglia, R., Traldi, P., (2006) J Mass Spectrom, 41, pp. 1232-1241; Rizzi, A., Cosmina, P., Flego, C., Montanari, L., Smaniotto, A., Seraglia, R., (2007) J Mass Spectrom, 42, pp. 874-880; Barrow, M.P., Cammack, J., Goebel, M., Wasser, I.M., Vollhardt, K.C., Drewello, T., (1999) J Organometal Chem, 572, pp. 135-139; Barrow, M.P., Drewello, T., (2000) Int J Mass Spectrom, 203, pp. 111-125; Möder, M., Nüchter, M., Ondruschka, B., Czira, G., Vékey, K., Barrow, M.P., (2000) Int J Mass Spectrom, 195, pp. 599-607; Barrow, M.P., Nicole, R.T., Tower, J., Drewello, T., (1998) Chem Phys Lett, 293, pp. 302-308; Boduszynski, M.M., (1987) Energy Fuels, 1, pp. 2-11; Boduszynski, M.M., (1988) Energy Fuels, 2, pp. 597-613; Altgelt, K.H., Boduszynski, M.M., (1992) Energy Fuels, 6, pp. 68-72; Boduszynski, M.M., Altgelt, K.H., (1992) Energy Fuels, 6, pp. 72-76},\ncorrespondence_address1={Palacio Lozano, D.C.; Faculty of Science, Department of Physics, Universidad Industrial de Santander, Universitay City, Cra 27 Street 9, Colombia; email: catalina.palacio.fisica@gmail.co},\npublisher={Elsevier Ltd},\nissn={00162361},\ncoden={FUELA},\nlanguage={English},\nabbrev_source_title={Fuel},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Average molecular weight analysis of vacuum residues using laser desorption ionization (LDI) can be a difficult task due to the significant influence of the experimental parameters and gas-phase reactions. In this paper, laser desorption/ionization time-of-flight mass spectrometry in reflectron mode (LDI TOF MS) was used to analyze vacuum residues and their molecular distillations (MD) fractions obtained at distillation cuts of 510-603 °C, 510-645 °C and 510-687 °C. Those samples associated with the lowest distillation temperature presented the narrowest molecular weight distributions and lowest average molecular weight (Mw) indicating lower complexity. American Petroleum Institute gravity, or API gravity (API°), is a measure of the weight of liquid petroleum compared to water, as expected a correlation between Mw and API° was determined, where lower API° correlated with higher molecular weight. When using higher laser energies mass spectra were acquired with a spacing of 24 Da between the peaks, indicating the production of carbon clusters or \"fullerenes\". This suggests that asphaltenes could be the precursors of the clusters that extend over 2500 Da in reflectron mode. Under appropriate experimental conditions, it was possible to produce repeatable molecular distribution for all the samples. Likewise, mass spectrometric data can be used in Principal Component Analysis (PCA) and Partial Least Square (PLS) analysis to discriminate and to predict density of the samples with low percentage of errors. © 2016 Elsevier Ltd. All rights reserved.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Amyloid Hydrogen Bonding Polymorphism Evaluated by 15N17OREAPDOR Solid-State NMR and Ultra-High Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.\n \n \n \n \n\n\n \n Wei, J.; Antzutkin, O.; Filippov, A.; Iuga, D.; Lam, P.; Barrow, M.; Dupree, R.; Brown, S.; and O'Connor, P.\n\n\n \n\n\n\n Biochemistry, 55(14): 2065-2068. 2016.\n cited By 8\n\n\n\n
\n\n\n\n \n \n \"AmyloidPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Wei20162065,\nauthor={Wei, J. and Antzutkin, O.N. and Filippov, A.V. and Iuga, D. and Lam, P.Y. and Barrow, M.P. and Dupree, R. and Brown, S.P. and O'Connor, P.B.},\ntitle={Amyloid Hydrogen Bonding Polymorphism Evaluated by 15N{17O}REAPDOR Solid-State NMR and Ultra-High Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry},\njournal={Biochemistry},\nyear={2016},\nvolume={55},\nnumber={14},\npages={2065-2068},\ndoi={10.1021/acs.biochem.5b01095},\nnote={cited By 8},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964308549&doi=10.1021%2facs.biochem.5b01095&partnerID=40&md5=9ec2454521e5cbc2881ee8de75dc00da},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom; Chemistry of Interfaces, Luleå University of Technology, Luleå, SE-971 87, Sweden},\nabstract={A combined approach, using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and solid-state NMR (Nuclear Magnetic Resonance), shows a high degree of polymorphism exhibited by Aβ species in forming hydrogen-bonded networks. Two Alzheimer's Aβ peptides, Ac-Aβ16-22-NH2 and Aβ11-25, selectively labeled with 17O and 15N at specific amino acid residues were investigated. The total amount of peptides labeled with 17O as measured by FTICR-MS enabled the interpretation of dephasing observed in 15N{17O}REAPDOR solid-state NMR experiments. Specifically, about one-third of the Aβ peptides were found to be involved in the formation of a specific &gt;C=17O···H-15N hydrogen bond with their neighbor peptide molecules, and we hypothesize that the rest of the molecules undergo ± n off-registry shifts in their hydrogen bonding networks. © 2016 American Chemical Society.},\nkeywords={Cyclotron resonance;  Cyclotrons;  Electron cyclotron resonance;  Light polarization;  Mass spectrometry;  Molecules;  Nuclear magnetic resonance;  Nuclear magnetic resonance spectroscopy;  Peptides;  Proteins;  Resonance;  Spectrometry, Alzheimer's;  Amino acid residues;  Dephasing;  Fourier transform ion cyclotron resonance mass spectrometry;  Hydrogen bonded network;  Hydrogen bonding network;  Solid state NMR;  Ultrahigh resolution, Hydrogen bonds, amino acid;  amyloid beta protein;  hydrogen;  isotope;  nitrogen 15;  oxygen 17;  oxygen 18;  amyloid;  amyloid beta protein;  amyloid beta-protein (11-25);  amyloid beta-protein (16-22);  nitrogen;  oligopeptide;  oxygen;  peptide fragment, Article;  controlled study;  gene mutation;  hydrogen bond;  ion cyclotron resonance mass spectrometry;  nitrogen nuclear magnetic resonance;  priority journal;  protein interaction;  protein polymorphism;  protein structure;  proton nuclear magnetic resonance;  solid state;  transmission electron microscopy;  Alzheimer disease;  chemical structure;  chemistry;  cyclotron;  Fourier analysis;  human;  hydrogen bond;  isotope labeling;  mass spectrometry;  metabolism;  nuclear magnetic resonance;  protein folding;  protein stability;  tandem mass spectrometry, Alzheimer Disease;  Amyloid;  Amyloid beta-Peptides;  Cyclotrons;  Fourier Analysis;  Humans;  Hydrogen Bonding;  Isotope Labeling;  Mass Spectrometry;  Models, Molecular;  Nitrogen Isotopes;  Nuclear Magnetic Resonance, Biomolecular;  Oligopeptides;  Oxygen Isotopes;  Peptide Fragments;  Protein Folding;  Protein Stability;  Tandem Mass Spectrometry},\nchemicals_cas={amino acid, 65072-01-7; amyloid beta protein, 109770-29-8; hydrogen, 12385-13-6, 1333-74-0; nitrogen 15, 14390-96-6; oxygen 17, 13968-48-4; oxygen 18, 14797-71-8; amyloid, 11061-24-8; nitrogen, 7727-37-9; oxygen, 7782-44-7; Amyloid; Amyloid beta-Peptides; amyloid beta-protein (11-25); amyloid beta-protein (16-22); Nitrogen Isotopes; Oligopeptides; Oxygen Isotopes; Peptide Fragments},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/F017901/1},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/J000302/1},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/N021630/1},\nreferences={Lansbury, P.T., Costa, P.R., Griffiths, J.M., Simon, E.J., Auger, M., Halverson, K.J., Kocisko, D.A., Griffin, R.G., (1995) Nat. Struct. Biol., 2, pp. 990-998; Benzinger, T.L.S., Gregory, D.M., Burkoth, T.S., Miller-Auer, H., Lynn, D.G., Botto, R.E., Meredith, S.C., (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 13407-13412; Tycko, R., Ishii, Y., (2003) J. Am. Chem. Soc., 125, pp. 6606-6607; Petkova, A.T., Leapman, R.D., Guo, Z.H., Yau, W.M., Mattson, M.P., Tycko, R., (2005) Science, 307, pp. 262-265; Tycko, R., (2011) Annu. Rev. Phys. Chem., 62, pp. 279-299; Benzinger, T.L.S., Gregory, D.M., Burkoth, T.S., Miller-Auer, H., Lynn, D.G., Botto, R.E., Meredith, S.C., (2000) Biochemistry, 39, pp. 3491-3499; Balbach, J.J., Ishii, Y., Antzutkin, O.N., Leapman, R.D., Rizzo, N.W., Dyda, F., Reed, J., Tycko, R., (2000) Biochemistry, 39, pp. 13748-13759; Petkova, A.T., Buntkowsky, G., Dyda, F., Leapman, R.D., Yau, W.M., Tycko, R., (2004) J. Mol. Biol., 335, pp. 247-260; Antzutkin, O.N., Iuga, D., Filippov, A.V., Kelly, R.T., Becker-Baldus, J., Brown, S.P., Dupree, R., (2012) Angew. Chem., Int. Ed., 51, pp. 10289-10292; Hung, I., Uldry, A.-C., Becker-Baldus, J., Webber, A.L., Wong, A., Smith, M.E., Joyce, S.A., Brown, S.P., (2009) J. Am. Chem. Soc., 131, pp. 1820-1834; Shi, S.D.-H., Hendrickson, C.L., Marshall, A.G., (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 11532-11537; Nikolaev, E.N., Jertz, R., Grigoryev, A., Baykut, G., (2012) Anal. Chem., 84, pp. 2275-2283; Liu, Q., Easterling, M.L., Agar, J.N., (2014) Anal. Chem., 86, pp. 820-825; Nakabayashi, R., Sawada, Y., Yamada, Y., Suzuki, M., Hirai, M.Y., Sakurai, T., Saito, K., (2013) Anal. Chem., 85, pp. 1310-1315; Qi, Y., Witt, M., Jertz, R., Baykut, G., Barrow, M.P., Nikolaev, E.N., O'Connor, P.B., (2012) Rapid Commun. Mass Spectrom., 26, pp. 2021-2026; Drader, J.J., Shi, S.D.H., Blakney, G.T., Hendrickson, C.L., Laude, D.A., Marshall, A.G., (1999) Anal. Chem., 71, pp. 4758-4763; Qi, Y., Barrow, M.P., Li, H., Meier, J.E., Van Orden, S.L., Thompson, C.J., O'Connor, P.B., (2012) Anal. Chem., 84, pp. 2923-2929; Qi, Y., Thompson, C., Van Orden, S., O'Connor, P., (2011) J. Am. Soc. Mass Spectrom., 22, pp. 138-147; Naito, Y., Inoue, M., (1996) Int. J. Mass Spectrom. Ion Processes, pp. 85-96. , 157158; Mitchell, D.W., Smith, R.D., (1995) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 52, pp. 4366-4386; Caravatti, P., Allemann, M., (1991) Org. Mass Spectrom., 26, pp. 514-518; Favrin, G., Irbäck, A., Mohanty, S., (2004) Biophys. J., 87, pp. 3657-3664; Xie, L., Luo, Y., Wei, G., (2013) J. Phys. Chem. B, 117, pp. 10149-10160; Verel, R., Tomka, I.T., Bertozzi, C., Cadalbert, R., Kammerer, R.A., Steinmetz, M.O., Meier, B.H., (2008) Angew. Chem., Int. Ed., 47, pp. 5842-5845; Nielsen, J.T., Bjerring, M., Jeppesen, M.D., Pedersen, R.O., Pedersen, J.M., Hein, K.L., Vosegaard, T., Nielsen, N.Ch., (2009) Angew. Chem., Int. Ed., 48, pp. 2118-2121; Norlin, N., Hellberg, M., Filippov, A., Sousa, A.A., Gröbner, G., Leapman, R.D., Almqvist, N., Antzutkin, O.N., (2012) J. Struct. Biol., 180, pp. 174-189},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of WarwickUnited Kingdom; email: p.oconnor@warwick.ac.uk},\npublisher={American Chemical Society},\nissn={00062960},\ncoden={BICHA},\npubmed_id={26983928},\nlanguage={English},\nabbrev_source_title={Biochemistry},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n A combined approach, using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and solid-state NMR (Nuclear Magnetic Resonance), shows a high degree of polymorphism exhibited by Aβ species in forming hydrogen-bonded networks. Two Alzheimer's Aβ peptides, Ac-Aβ16-22-NH2 and Aβ11-25, selectively labeled with 17O and 15N at specific amino acid residues were investigated. The total amount of peptides labeled with 17O as measured by FTICR-MS enabled the interpretation of dephasing observed in 15N17OREAPDOR solid-state NMR experiments. Specifically, about one-third of the Aβ peptides were found to be involved in the formation of a specific >C=17O···H-15N hydrogen bond with their neighbor peptide molecules, and we hypothesize that the rest of the molecules undergo ± n off-registry shifts in their hydrogen bonding networks. © 2016 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil - A review.\n \n \n \n \n\n\n \n Headley, J.; Peru, K.; and Barrow, M.\n\n\n \n\n\n\n Mass Spectrometry Reviews, 35(2): 311-328. 2016.\n cited By 71\n\n\n\n
\n\n\n\n \n \n \"AdvancesPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Headley2016311,\nauthor={Headley, J.V. and Peru, K.M. and Barrow, M.P.},\ntitle={Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil - A review},\njournal={Mass Spectrometry Reviews},\nyear={2016},\nvolume={35},\nnumber={2},\npages={311-328},\ndoi={10.1002/mas.21472},\nnote={cited By 71},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957435260&doi=10.1002%2fmas.21472&partnerID=40&md5=d9eb3cd2a20b9366a6ab202fd4ada2d5},\naffiliation={Aquatic Contaminants Research Division, Water Science and Technology Direct., Environment Canada, 11 Innovation Boulevard, Saskatoon, SK  S7N 3H5, Canada; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all CcHhNnOoSs, species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (&lt;20,000 resolving power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine the correlation with toxicity or corrosion, (ii) verification of characterization studies based on authentic reference standards and reference materials, and (iii) integrated approaches based on multiple-methods and ionization methods for more-reliable oil sands environmental forensics. © 2015 Wiley Periodicals, Inc.},\nauthor_keywords={crude oil;  environment;  naphthenic acids;  oil sands;  petroleum},\nkeywords={Characterization;  Chromatography;  Corrosion;  Environmental technology;  Gas chromatography;  Impact ionization;  Ionization;  Ionization of gases;  Liquid chromatography;  Mass spectrometers;  Mass spectrometry;  Oil sands;  Oil shale;  Organic acids;  Sand;  Spectrometry;  Toxicity, Characterization studies;  Environment;  Environmental forensics;  Environmental Monitoring;  Mass spectrometric analysis;  Naphthenic acid;  Oil sands process waters;  Toxicity identification, Crude oil},\nreferences={Ahad, J.M.E., Pakdel, H., Savard, M.M., Calderhead, A.I., Gammon, P.R., Rivera, A., Headley, J.V., Peru, K.M., Characterization and quantification of mining-related "naphthenic acids" in groundwater near a major oil sands tailings pond (2013) Environ Sci Technol, 47, pp. 5023-5030; Avila, B.M.F., Pereira, V.B., Gomes, A.O., Azevedo, D.A., Speciation of organic sulfur compounds using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry: A powerful tool for petroleum refining (2014) Fuel, 126, pp. 188-193; Barrow, M.P., Petroleomics: Study of the old and the new (2010) Biofuels, 1, pp. 651-655; Barrow, M.P., (2011) Oil Sands Process Water: Characterization Using Atmospheric Pressure Photoionization and Electrospray Ionization Coupled with High Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, , Analytical Strategies for Naphthenic Acids, Saskatoon, Saskatchewan, Canada, November 24th-25th; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Data visualization for the characterization of naphthenic acids within petroleum samples (2009) Energy Fuels, 23, pp. 2592-2599; Barrow, M.P., Headley, J.V., Peru, K.M., Fahlman, B., Frank, R.A., Hewitt, L.M., Comparison of Water from Natural Sources and Areas of Oil Sands Activity Using APPI FTICR Mass Spectrometry (2012) 60th ASMS Conference on Mass Spectrometry, , Vancouver, Canada, May 20th-24th, 2012, Abstract T P 621; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion (2003) Anal Chem, 75, pp. 860-866; Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Hewitt, L.M., Headley, J.V., Profiling waters from natural sources and areas of oil sands activity using Fourier transform ion cyclotron resonance mass spectrometry (2012) 19th International Mass Spectrometry Conference, , Kyoto, Japan, September 15th-21st, 2012, Abstract PTh-056; Barrow, M.P., Peru, K.M., Headley, J.V., An added dimension: GC-APCI-FTICR MS and the Athabasca oil sands (2014) Anal Chem, 86, pp. 8281-8288; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Anal Chem, 82, pp. 3727-3735; Blakney, G.T., Hendrickson, C.L., Marshall, A.G., Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments (2011) Int J Mass Spectrom, 306, pp. 246-252; Colati, K.A., Dalmaschio, G.P., De Castro, E.V., Gomes, A.O., Vaz, B.G., Romão, W., Monitoring the liquid/liquid extraction of naphthenic acids in brazilian crude oil using electrospray ionization FT-ICR mass spectrometry (ESI FT-ICR MS) (2013) Fuel, 108, pp. 647-655; Dalmaschio, G.P., Malacarne, M.M., De Almeida, V.M., Pereira, T.M., Gomes, A.O., De Castro, E.V., Greco, S.J., Romão, W., Characterization of polar compounds in a true boiling point distillation system using electrospray ionization FT-ICR mass spectrometry (2014) Fuel, 115, pp. 190-202; Dias, H.P., Pereira, T.M., Vanini, G., Dixini, P.V., Celante, V.G., Castro, E.V., Vaz, B.G., Romão, W., Monitoring the degradation and the corrosion of naphthenic acids by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and atomic force microscopy (2014) Fuel, 126, pp. 85-95; Fasciotti, M., Lalli, P.M., Heerdt, G., Steffen, R.A., Corilo, Y.E., De Sa, G.F., Daroda, R.J., Klitzke, C.F., Structure-drift time relationships in ion mobility mass spectrometry (2013) Int J Ion Mobil Spec, 16, pp. 117-132; Flego, C., Galasso, L., Montanari, L., Gennaro, M.E., Evolution of naphthenic acids during the corrosion process (2013) Energy Fuels, 28, pp. 1701-1708; Frank, R.A., Roy, J.W., Bickerton, G., Rowland, S.J., Headley, J.V., Scarlett, A.G., West, C.E., Hewitt, L.M., Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification (2014) Environ Sci Technol, 48, pp. 2660-2670; Freitas, S., Malacarne, M., Romão, W., Dalmaschio, P., Castro, V.R., Celante, G., Freitas, M., Analysis of the heavy oil distillation cuts corrosion by electrospray ionization FT-ICR mass spectrometry, electrochemical impedance spectroscopy, and scanning electron microscopy (2013) Fuel, 104, pp. 656-663; Grewer, D.M., Young, R.F., Whittal, R.M., Fedorak, P.M., Naphthenic acids and other acid-extractables in water samples from Alberta: What is being measured? (2010) Sci Total Environ, 408, pp. 5997-6010; Griffiths, M.T., Da Campo, R., O'Connor, P.B., Barrow, M.P., Throwing light on petroleum: Simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry (2014) Anal Chem, 86, pp. 527-534; Han, J., Lin, K., Borchers, C.H., Determination of molecular distribution and concentration of naphthenic acids in oil sands process water by ultra-performance LC-FTMS (2014) 97th Canadian Chemistry Conference and Exhibition, , Vancouver, Canada, June 1st-5th, 2014, Abstract EN4 872; Han, X.M., Mackinnon, M.D., Martin, J.W., Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS (2009) Chemosphere, 76, pp. 63-70; Hao, C., Headley, J.V., Peru, K.M., Frank, R., Yang, P., Solomon, K.R., Characterization and pattern recognition of oil-sand naphthenic acids using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (2005) J Chromatogr A, 1067, pp. 277-284; He, Y., Wiseman, S.B., Zhang, X.W., Hecker, M., Jones, P.D., El-Din, M.G., Martin, J.W., Giesy, J.P., Ozonation attenuates the steroidogenic disruptive effects of sediment free oil sands process water in the H295 cell line (2010) Chemosphere, 80, pp. 578-584; Headley, J.V., Armstrong, S.A., Peru, K.M., Mikula, R.J., Germida, J.J., Mapolelo, M.M., Rodgers, R.P., Marshall, A.G., Ultrahigh-resolution mass spectrometry of simulated runoff from treated oil sands mature fine tailings (2010) Rapid Commun Mass Spectrom, 24, pp. 2400-2406; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2011) Rapid Commun Mass Spectrom, 25, pp. 1899-1909; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization (2011) J Environ Sci Health, Part A, 46, pp. 844-854; Headley, J.V., McMartin, D.W., A review of the occurrence and fate of naphthenic acids in aquatic environments (2004) J Environ Sci Health, Part A, 39, pp. 1989-2010; Headley, J.V., Peru, K.M., Armstrong, S.A., Han, X., Martin, J.W., Mapolelo, M.M., Smith, D.F., Marshall, A.G., Aquatic plant-derived changes in oil sands naphthenic acid signatures determined by low-, high- and ultrahigh-resolution mass spectrometry (2009) Rapid Commun Mass Spectrom, 23, pp. 515-522; Headley, J.V., Peru, K.M., Barrow, M.P., Mass spectrometric characterization of naphthenic acids in environmental samples: A review (2009) Mass Spectrom Rev, 28, pp. 121-134; Headley, J., Peru, K.M., Barrow, M.P., Derrick, P.J., Characterization of naphthenic acids from Athabasca oil sands using electrospray ionization: The Significant Influence of Solvents (2007) Anal Chem, 79, pp. 6222-6229; Headley, J.V., Peru, K.M., Fahlman, B., Colodey, A., McMartin, D.W., Selective solvent extraction and characterization of the acid extractable fraction of Athabasca oils sands process waters by Orbitrap mass spectrometry (2013) J Mass Spectrom, 345-347, p. 104; Headley, J.V., Peru, K.M., Janfada, A., Fahlma, B., Gu, C., Hassan, S., Characterization of oil sands acids in plant tissue using orbitrap ultrahigh resolution mass spectrometry with electrospray ionization (2011) Rapid Commun Mass Spectrom, 25, pp. 459-462; Headley, J.V., Peru, K.M., Mishra, S., Meda, V., Dalai, A.K., McMartin, D.W., Mapolelo, M.M., Marshall, A.G., Characterization of oil sands naphthenic acids treated with ultraviolet and microwave radiation by negative ion electrospray fourier transform ion cyclotron resonance mass spectrometry (2010) Rapid Commun Mass Spectrom, 24, pp. 3121-3126; Headley, J.V., Peru, K.M., Mohamed, M.H., Frank, R.A., Martin, J.W., Hazewinkel, R.R.O., Humphries, D., Wrona, F.J., Chemical fingerprinting of naphthenic acids and oil sands process waters - A review of analytical methods for environmental samples (2013) J Environ Sci Health, Part A, 48, pp. 1145-1163; Hindle, R., Noestheden, M., Peru, K., Headley, J., Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry (2013) J Chromatogr A, 1286, pp. 166-174; Hughey, C.A., Galasso, S.A., Zumberge, J.E., Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (2007) Fuel, 86, pp. 758-768; Hur, M., Yeo, I., Kim, E., No, M.H., Koh, J., Cho, Y.J., Lee, J.W., Kim, S.V., Correlation of FT-ICR mass spectra with the chemical and physical properties of associated crude oils (2010) Energy Fuels, 24, pp. 5524-5532; Jones, D., West, C.E., Scarlett, A.G., Frank, R.A., Rowland, S.J., Isolation and estimation of the 'aromatic' naphthenic acid content of an oil sands process-affected water extract (2012) J Chromatogr A, 1247, pp. 171-175; Kaiser, N., Quinn, J., Blakney, G., Hendrickson, C., Marshall, A., A novel 9.4 T FTICR mass spectrometer with improved sensitivity, mass resolution, and mass range (2011) J Am Soc Mass Spectrom, 22, pp. 1343-1351; Lemkau, K.L., McKenna, A.M., Podgorski, D.C., Rodgers, R.P., Reddy, C.M., Molecular evidence of heavy-oil weathering following the M/V Cosco busan spill: Insights from Fourier transform ion cyclotron resonance mass spectrometry (2014) Environ Sci Technol, 48, pp. 3760-3767; MacLennan, M.S., Tie, C., Chen, D.D.Y., Peru, K.M., Headley, J.V., Capillary electrophoresis-mass spectrometry technology for analysis of naphthenic acids fraction compounds in oil sands process water (2014) 97th Canadian Chemistry Conference and Exhibition, , Vancouver, Canada, June 1st-5th, 2014, Abstract EN4 871; Malle, H., Simser, J., Headley, J.V., Evaluation of a Naphthenic Acids Interlaboratory Calibration Study (2014) 97th Canadian Chemistry Conference and Exhibition, , Vancouver, Canada, June 1st-5th, 2014, Abstract EN4 872; Mapolelo, M.M., Rodgers, R.P., Blakney, G.T., Yen, A.T., Asomaning, S., Marshall, G., Characterization of naphthenic acids in crude oils and naphthenates by electrospray ionization FT-ICR mass spectrometry (2011) Int J Mass Spectrom, 300, pp. 149-157; Mapolelo, M.M., Stanford, L.A., Rodgers, R.P., Yen, A.T., Debord, J.D., Asomaning, S., Marshall, A.G., Hughes, B., Chemical speciation of calcium and sodium naphthenate deposits by electrospray ionization FT-ICR mass spectrometry (2009) Energy Fuels, 23, pp. 349-335; Marshall, A.G., Rodgers, R.P., Petroleomics: Chemistry of the underworld (2008) Proc Natl Acad Sci USA, 105, pp. 18090-18095; Martin, J.W., Han, X., Peru, K.M., Headley, J.V., Comparison of high- and low-resolution electrospray ionization mass spectrometry for the analysis of naphthenic acid mixtures in oil sands process water (2008) Rapid Commun Mass Spectrom, 22, pp. 1919-1924; Mohammed, M.A., Sorbie, K.S., Naphthenic acid extraction and characterization from naphthenate field deposits and crude oils using ESMS and APCI-MS (2009) Colloids Surf A, 349, pp. 1-18; Noestheden, M.R., Headley, J.V., Peru, K.M., Barrow, M.P., Burton, L., Sakuma, T., Winkler, P., Campbell, L., Analyzing naphthenic acids using differential mobility spectrometry with unique gas-phase separations (2014) Environ Sci Technol, 48, pp. 10264-10272; Nyakas, A., Han, J., Peru, K.M., Headley, J.V., Borchers, C.H., Comprehensive analysis of oil sands processed water by direct-infusion Fourier-transform ion cyclotron resonance mass spectrometry with and without offline UHPLC sample prefractionation (2013) Environ Sci Technol, 47, pp. 4471-4479; Ortiz, X., Jobst, K.J., Reiner, E.J., Backus, S.M., Peru, K.M., McMartin, D.W., O'Sullivan, G., Headley, J.V., Characterization of naphthenic acids by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry (2014) Anal Chem, 86, pp. 7666-7673; Pereira, A.S., Bhattacharjee, S., Martin, J.W., Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry (2013) Environ Sci Technol, 47, pp. 5504-5513; Pereira, A.S., Islam, M.S., Gamal El-Din, M., Martin, J.W., Ozonation degrades all detectable organic compound classes in oil sands process-affected water; An application of high-performance liquid chromatography/obitrap mass spectrometry (2013) Rapid Commun Mass Spectrome, 27, pp. 2317-2326; Ross, M.S., Pereira, D.A.S., Fennell, J., Davies, M., Johnson, J., Sliva, L., Martin, J.W., Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry (2012) Environ Sci Technol, 46, pp. 12796-12805; Rowland, S.J., Scarlett, A.G., Jones, D., West, C.E., Frank, R.A., Diamonds in the rough: Identification of individual naphthenic acids in oil sands process water (2011) Environ Sci Technol, 45, pp. 3154-3159; Rowland, S.J., West, C.E., Jones, D., Scarlett, A.G., Frank, R.A., Hewitt, L.M., Steroidal aromatic naphthenic acids in oil sands process-affected water: Structural comparisons with environmental estrogens (2011) Environ Sci Technol, 45, pp. 9806-9815; Rowland, S.J., West, C.E., Scarlett, A.G., Jones, D., Frank, R.A., Identification of individual tetra- and pentacyclic naphthenic acids in oil sands process water by comprehensive two-dimensional gas chromatography/mass spectrometry (2011) Rapid Commun Mass Spectrom, 25, pp. 1198-1204; Ruddy, B.M., Huettel, M., Kostka, J.E., Lobodin, V.V., Bythell, B.J., McKenna, A.M., Aeppli, C., Marshall, A.G., Targeted petroleomics: Analytical investigation of Macondo well oil oxidation products from Pensacola Beach (2014) Energy Fuels, 28, pp. 4043-4050; Shang, D., Kim, M., Haberl, M., Legzdins, A., Development of a rapid liquid chromatography tandem mass spectrometry method for screening of trace naphthenic acids in aqueous environments (2013) J Chrom A, 1278, pp. 98-107; Shepherd, A.G., Van Mispelaar, V., Nowlin, J., Genuit, W., Grutters, M., Analysis of naphthenic acids and derivatization agents using two-dimensional gas chromatography and mass spectrometry: Impact on flow assurance predictions (2010) Energy Fuels, 24, pp. 2300-2311; Shi, Q.A., Zhao, S.Q., Xu, Z.M., Chung, K.H., Zhang, Y.H., Xu, C.M., Distribution of acids and neutral nitrogen compounds in a Chinese crude oil and its fractions: Characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Energy Fuels, 24, pp. 4005-4011; Slavcheva, E., Shone, B., Turnbull, A., Review of naphthenic acid corrosion in oil refining (1999) Br Corros J, 34, pp. 125-131; Thomas, K.V., Langford, K., Petersen, K., Smith, A.J., Tollefsen, K.E., Effect-directed identification of naphthenic acids as important in vitro xeno-estrogens and anti-androgens in north sea offshore produced water discharges (2009) Environ Sci Technol, 43, pp. 8066-8071; Toor, N.S., Han, X., Franz, E., Mackinnon, M.D., Martin, J.W., Liber, K., Selective biodegradation of naphthenic acids and a probable link between mixture profiles and aquatic toxicity (2013) Environ Toxicol Chem, 32, pp. 2207-2216; Vaz, B.G., Abdelnur, P.V., De Rocha, W.F.C., De Gomes, A.O., Pereira, R.C.L., Predictive petroleomics: Measurement of total acid number (TAN) by electrospray Fourrier transform mass spectrometry and chemometric analysis (2013) Energy Fuels, 27, pp. 1873-1880; Wang, B.L., Wan, Y., Gao, Y.X., Yang, M., Hu, J.Y., Determination and characterization of oxy-naphthenic acids in oilfield wastewater (2013) Environ Sci Technol, 47, pp. 9545-9554; Wang, X.M., Kasperski, K.L., Analysis of naphthenic acids in aqueous solution using HPLC-MS/MS (2010) Anal Method, 2, pp. 1715-1722; Wang, J., Zhang, X., Li, G., Detailed characterization of polar compounds of residual oil in contaminated soil revealed by Fourier transform ion cyclotron resonance mass spectrometry (2011) Chemosphere, 85, pp. 609-615; Wan, Y., Wang, B., Khim, J.S., Hong, S., Shim, W.J., Hu, J., Naphthenic acids in coastal sediments after the Hebei spirit oil spill: A potential indicator for oil contamination (2014) Environ Sci Technol, 48, pp. 4153-4162; West, C.E., Pureveen, J., Scarlett, A.G., Lengger, S.K., Wilde, M.J., Korndorffer, F., Tegelaar, E.W., Rowland, S.J., Can two-dimensional gas chromatography/mass spectrometric identification of bicyclic aromatic acids in petroleum fractions help to reveal further details of aromatic hydrocarbon biotransformation pathways? (2014) Rapid Commun Mass Spectrom, 28, pp. 1023-1032; West, C.E., Scarlett, A.G., Tonkin, A., O'Carroll-Fitzpatrick, D., Pureveen, J., Tegelaar, E., Gieleciak, R., Rowland, S.J., Diaromatic sulphur-containing 'naphthenic' acids in process waters (2014) Water Res, 51, pp. 206-215; Willis, M.D., Duncan, K.D., Krogh, E.T., Gill, C.G., Delicate polydimethylsiloxane hollow fibre membrane interfaces for condensed phase membrane introduction mass spectrometry (CP-MIMS) (2014) Rapid Commun Mass Spectrom, 28, pp. 671-681; Woudneh, M.B., Hamilton, C., Benskin, J.P., Wang, G., McEachern, P., Cosgrove, J.R., A novel derivatization-based liquid chromatography tandem mass spectrometry method for quantitative characterization of naphthenic acid isomer profiles in environmental waters (2013) J Chrom A, 1293, pp. 36-43; Young, R.F., Coy, D.L., Fedorak, P.M., Evaluating MTBSTFA derivatization reagents for measuring naphthenic acids by gas chromatography-mass spectrometry (2010) Anal Methods, 2, pp. 765-770; Young, R.F., Michel, L.M., Fedorak, P.M., Distribution of naphthenic acids in tissues of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in Alberta, Canada (2011) Ecotoxicol Environ Saf, 74, pp. 889-896; Zhang, X.W., Wiseman, S., Yu, H.X., Liu, H.L., Giesy, J.P., Hecker, M., Assessing the toxicity of naphthenic acids using a microbial genome wide live cell reporter array system (2011) Environ Sci Technol, 45, pp. 1984-1991},\ncorrespondence_address1={Barrow, M.P.; Department of Chemistry, University of WarwickUnited Kingdom; email: M.P.Barrow@warwick.ac.uk},\npublisher={John Wiley and Sons Inc.},\nissn={02777037},\ncoden={MSRVD},\nlanguage={English},\nabbrev_source_title={Mass Spectrom Rev},\ndocument_type={Review},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all CcHhNnOoSs, species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (<20,000 resolving power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine the correlation with toxicity or corrosion, (ii) verification of characterization studies based on authentic reference standards and reference materials, and (iii) integrated approaches based on multiple-methods and ionization methods for more-reliable oil sands environmental forensics. © 2015 Wiley Periodicals, Inc.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Forensic Studies of Naphthenic Acids Fraction Compounds in Oil Sands Environmental Samples and Crude Oil.\n \n \n \n \n\n\n \n Ajaero, C.; Headley, J.; Peru, K.; McMartin, D.; and Barrow, M.\n\n\n \n\n\n\n Elsevier Inc., 2016.\n cited By 0\n\n\n\n
\n\n\n\n \n \n \"ForensicPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@BOOK{Ajaero2016343,\nauthor={Ajaero, C. and Headley, J.V. and Peru, K.M. and McMartin, D.W. and Barrow, M.P.},\ntitle={Forensic Studies of Naphthenic Acids Fraction Compounds in Oil Sands Environmental Samples and Crude Oil},\njournal={Standard Handbook Oil Spill Environmental Forensics: Fingerprinting and Source Identification: Second Edition},\nyear={2016},\npages={343-397},\ndoi={10.1016/B978-0-12-809659-8.00007-3},\nnote={cited By 0},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969685684&doi=10.1016%2fB978-0-12-809659-8.00007-3&partnerID=40&md5=93528d716404949afe0085c088f4acaa},\naffiliation={University of Regina, Regina, SK, Canada; Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment Canada, Saskatoon, SK, Canada; Department of Chemistry, University of Warwick, Coventry, England, United Kingdom},\nabstract={The forensic studies of naphthenic acids fraction components in oil sands process water (OSPW) and crude oil has continued to receive significant attention due to increased need to explicate the toxicological claims of these components and their distributions in environmental samples and to address the problems faced in the petroleum industry. The characterization of naphthenic acid fraction components (NAFCs) in oil sand environmental samples and petroleum is challenging, and analytical techniques for their elucidation are continuously being explored. There is no single technique for the forensic analysis of these compounds in oil samples. With the emergence of new forensic techniques, a range of mass spectrometric methods with great potential for integration with other analytical tools such as gas chromatography, liquid chromatography, and ion mobility are now available for improved compositional information obtainable from complex samples. A detailed and valid forensic assessment involves comprehensive characterization of the molecular distribution and evaluation of environmental fate of sample components and source apportionment. For instance, in the field of petroleomics, ultrahigh-resolution mass spectrometry (MS) such as Fourier transform ion cyclotron resonance MS (FT-ICR-MS) has been extensively used for compositional analysis of crude oil and data from the analysis has been useful in determining environmental fate, sources, and toxicological potentials. Of specific significance is the application of multiple ionization techniques for elucidation of distribution of individual compound classes. Sometimes an online or offline fractionation of isolated extracts, with or without derivatization or solid phase extraction are employed to make them amenable to coupled chromatography-mass spectrometric analysis. These approaches with complementary multivariate statistical techniques have proved useful as diagnostic tools in forensic analysis for correlating and distinguishing samples in forensic activities, providing unparalleled information on sources and photo- and biodegradations of NAFCs in oil sand environmental samples and crude oil. The unambiguous characterization of species present in oil samples can create a database source from which unknown samples can be compared for proper identification. The development in forensic investigations of NAFCs in oil sand environmental samples and crude oil will continue alongside advances in analytical and statistical tools. © 2016 Elsevier Inc. All rights reserved.},\nauthor_keywords={Crude oil;  Environmental samples;  Forensic assessment;  Fourier transform ion cyclotron resonance mass spectrometry;  Ionization techniques;  Naphthenic acid fraction compounds;  Oil sands process water},\nkeywords={Biodegradation;  Characterization;  Chromatography;  Cyclotron resonance;  Cyclotrons;  Electron cyclotron resonance;  Gas chromatography;  Ionization;  Ionization of gases;  Ionization of liquids;  Ions;  Liquid chromatography;  Mass spectrometers;  Mass spectrometry;  Multivariant analysis;  Oil sands;  Organic acids;  Petroleum analysis;  Petroleum industry;  Phase separation;  Sand;  Spectrometry;  Statistical mechanics, Environmental sample;  Forensic assessment;  Fourier transform ion cyclotron resonance mass spectrometry;  Ionization techniques;  Naphthenic acid;  Oil sands process waters, Crude oil},\nreferences={Aeppli, C., Carmichael, C.A., Nelson, R.K., Lemkau, K.L., Graham, W.M., Redmond, M.C., Valentine, D.L., Reddy, C.M., Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues (2012) Environ. Sci. Technol., 46, pp. 8799-8807; Ahad, J.M.E., Pakdel, H., Savard, M.M., Calderhead, A.I., Gammon, P.R., Rivera, A., Headley, J.V., Peru, K.M., Characterization and quantification of mining-related "naphthenic acids" in groundwater near a major oil sands tailings pond (2013) Environ. Sci. Technol., 47, pp. 5023-5030; Ahmed, A., Cho, Y.J., No, M.-H., Koh, J., Tomczyk, N., Kevin Giles, K., Yoo, J.S., Kim, S., Application of the Mason-Schamp equation and ion mobility mass spectrometry to identify structurally related compounds in crude oil (2011) Anal. Chem., 83, pp. 77-83; Anderson, K., Atkins, M.P., Goodrich, P., Hardacre, C., Hussain, A.S., Pilus, R., Rooney, D.W., Naphthenic acid extraction and speciation from Doba crude oil using carbonate-based ionic liquids (2015) Fuel, 146, pp. 60-68; Avila, B.M.F., Pereira, V.B., Gomes, A.O., Azevedo, D.A., Speciation of organic sulfur compounds using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry: a powerful tool for petroleum refining (2014) Fuel, 126, pp. 188-193; Barrow, M.P., Petroleomics: study of the old and the new (2010) Biofuels, 1, pp. 651-655; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: the continued battle against corrosion (2003) Anal. Chem., 75, pp. 860-866; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., The continued battle against corrosion (2003) Anal. Chem., 75, pp. 860-866; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Fourier transform ion cyclotron resonance mass spectrometry of principal components in oil sands naphthenic acids (2004) J. Chromatogr. A, 1058, pp. 51-59; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Data visualization for the characterization of naphthenic acids within petroleum samples (2009) Energ. Fuel., 23, pp. 2592-2599; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem., 82, pp. 3727-3735; Barrow, M.P., Peru, K.M., Headley, J.V., An added dimension: GC-APCI-FTICR MS and the Athabasca oil sands (2014) Anal. Chem., 86, pp. 8281-8288; Bauer, A.E., Frank, R.A., Headley, J.V., Peru, K.M., Hewitt, L.M., Dixon, D.G., Enhanced Characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy (2015) Environ. Toxicol. Chem., 9999, pp. 1-8; Bowman, D.T., Slater, G.F., Warren, L.A., McCarry, B.E., Identification of individual thiophene-, indane-, tetralin-, cyclohexane-, and adamantane-type carboxylic acids in composite tailings pore water from Alberta oil sands (2014) Rapid Commun. Mass Sp., 28, pp. 2075-2083; Chen, Y., McPhedran, K.N., Perez-Estrada, L., El-Din, M.G., An omic approach for the identification of oil sands process-affected water compounds using multivariate statistical analysis of ultrahigh resolution mass spectrometry datasets (2015) Sci. Total Environ., 511, pp. 230-237; Clemente, J.S., Prasad, N.G.N., MacKinnon, M.D., Fedorak, P.M., A statistical comparison of naphthenic acids characterized by gas chromatography-mass spectrometry (2003) Chemosphere, 50, pp. 1265-1274; Colati, K.A., Dalmaschio, G.P., de Castro, E.V., Gomes, A.O., Vaz, B.G., Romão, W., Monitoring the liquid/liquid extraction of naphthenic acids in Brazilian crude oil using electrospray ionization FT-ICR mass spectrometry (ESI FT-ICR MS) (2013) Fuel, 108, pp. 647-655; Corilo, Y.E., Podgorski, D.C., McKenna, A.M., Lemkau, K.L., Reddy, C.M., Marshall, A.G., Rodgers, R.P., Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra (2013) Anal. Chem., 85, pp. 9064-9069; Dalmaschio, G.P., Malacarne, M.M., de Almeida, V.M., Pereira, T.M., Gomes, A.O., de Castro, E.V., Greco, S.J., Romão, W., Characterization of polar compounds in a true boiling point distillation system using electrospray ionization FT-ICR mass spectrometry (2014) Fuel, 115, pp. 190-202; Dalmia, A., (2013) Analysis of Naphthenic Acids in Filtered Oil Sands Process Water (OSPW) using LC/TOF with No Sample Preparation, , PerkinElmer, Inc. Shelton, Connecticut, USA, Application Note; Damasceno, F.C., Gruber, L.D.A., Geller, A.M., Vaz de Campos, M.C., Gomes, A.O., Guimaraes, R.C.L., Peres, V.F., Caramao, E.B., Characterization of naphthenic acids using mass spectroscopy and chromatographic techniques: study of technical mixtures (2014) Anal. Methods, 6, pp. 807-816; Dias, H.P., Pereira, T.M., Vanini, G., Dixini, P.V., Celante, V.G., Castro, E.V., Vaz, B.G., Romão, W., Monitoring the degradation and the corrosion of naphthenic acids by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and atomic force microscopy (2014) Fuel, 126, pp. 85-95; Dong, Y., Lang, Z., Kong, X., Lu, D., Liu, Z., Kinetic and multidimensional profiling of accelerated degradation of oil sludge by biostimulation (2015) Environ. Sci. Process. Impacts, 17, pp. 763-774; El-Din, M.G., Fu, H., Wang, N., Chelme-Ayala, P., Pérez-Estrada, L., Drzewicz, P., Martin, J.W., Smith, D.W., Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water (2011) Sci. Total Environ., 409, pp. 5119-5125; Fasciotti, M., Lalli, P.M., Heerdt, G., Steffen, R.A., Corilo, Y.E., de Sa, G.F., Daroda, R.J., Klitzke, C.F., Structure-drift time relationships in ion mobility mass spectrometry (2013) Int. J. Ion Mobility Spectrom., 16, pp. 117-132; Fasciotti, M., Lalli, P.M., Klitzke, C.F., Corilo, Y.E., Pudenzi, M.A., Pereira, R.C.L., Bastos, W., Eberlin, M.N., Petroleomics by traveling wave ion mobility-mass spectrometry using CO2 as a drift gas (2013) Energ. Fuel., 27, pp. 7277-7286; Fernandez-Lima, F.A., Becker, C., McKenna, A.M., Rodgers, R.P., Marshall, A.G., Russell, D.H., Petroleum crude oil characterization by IMS-MS and FTICR MS (2009) Anal. Chem., 81, pp. 9941-9947; Flego, C., Galasso, L., Montanari, L., Gennaro, M.E., Evolution of naphthenic acids during the corrosion process (2014) Energy Fuels, 28, pp. 1701-1708; Frank, R.A., Kavanagh, R., Burnison, B.K., Headley, J.V., Peru, K.M., van der Kraak, G., Solomon, K.R., Diethylaminoethyl-cellulose clean-up of a large volume naphthenic acid extract (2006) Chemosphere, 64, pp. 1346-1352; Frank, R.A., Kavanagh, R., Burnison, B.K., Arsenault, G., Headley, J.V., Peru, K.M., van der Kraak, G., Solomon, K.R., Toxicity assessment of collected fractions from an extracted naphthenic acid mixture (2008) Chemosphere, 72, pp. 1309-1314; Frank, R.A., Roy, J.W., Bickerton, G., Rowland, S.J., Headley, J.V., Scarlett, A.G., West, C.E., Hewitt, L.M., Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification (2014) Environ. Sci. Technol., 48, pp. 2660-2670; Freitas, S., Malacarne, M., Romão, W., Dalmaschio, P., Castro, V.R., Celante, G., Freitas, M., Analysis of the heavy oil distillation cuts corrosion by electrospray ionization FT-ICR mass spectrometry, electrochemical impedance spectroscopy, and scanning electron microscopy (2013) Fuel, 104, pp. 656-663; Grewer, D.M., Young, R.F., Whittal, R.M., Fedorak, P.M., Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured? Sci (2010) Total Environ., 408, pp. 5997-6010; Griffiths, M.T., Da Campo, R., O'Connor, P.B., Barrow, M.P., Throwing light on petroleum: simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (2014) Anal. Chem., 86, pp. 527-534; Hagen, M.O., Garcia, E.-G., Oladiran, A., Karpman, M., Mitchell, S., El-Din, M.G., Martin, J.W., Belosevic, M., The acute and sub-chronic exposures of gold fish to naphthenic acids induce different host defence responses (2012) Aquat. Toxicol., 109, pp. 143-149; Han, X., Scott, A.C., Fedorak, P.M., Bataineh, M., Martin, J.W., Influence of molecular structure on the biodegradability of naphthenic acids (2008) Environ. Sci. Technol., 42, pp. 1290-1295; Han, X.M., Mackinnon, M.D., Martin, J.W., Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS (2009) Chemosphere, 76, pp. 63-70; Han, J., Lin, K., Borchers, C.H., (2014) Determination of molecular distribution and concentration of naphthenic acids in oil sands process water by ultra-performance LC-FTMS, , 97th Canadian Chemistry Conference and Exhibition, Vancouver, Canada, June 1-5, 2014, Abstract EN4 872; Hao, C., Headley, J.V., Peru, K.M., Frank, R., Yang, P., Solomon, K.R., Characterization and pattern recognition of oil-sand naphthenic acids using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (2005) J. Chromatogr. A, 1067, pp. 277-284; He, Y., Wiseman, S.B., Wang, N., Perez-Estrada, L.A., El-Din, M.G., Martin, J.W., Giesy, J.P., Transcriptional responses of the brain-gonad-liver axis of fathead minnows exposed to untreated and ozone-treated oil sands process affected water (2012) Environ. Sci. Technol., 46, pp. 9701-9708; He, Y., Patterson, S., Wang, N., Hecker, M., Martin, J.W., El-Din, M.G., Giesy, J.P., Wiseman, S.B., Toxicity of untreated and ozone-treated oil sands process-affected water (OSPW) to early life stages of the fathead minnow (Pimephales promelas) (2012) Water Res., 46, pp. 6359-6368; Headley, J.V., McMartin, D.W., A review of the occurrence and fate of naphthenic acids in aquatic environments (2004) J. Environ Sci. and Health A39, 39, pp. 1989-2010; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., Characterization of naphthenic acids from Athabasca oil sands using electrospray ionization: the significant influence of solvents (2007) Anal. Chem., 79, pp. 6222-6229; Headley, J.V., Peru, K.M., Barrow, M.P., Mass spectrometric characterization of naphthenic acids in environmental samples: a review (2009) Mass Spectrom. Rev., 28, pp. 121-134; Headley, J.V., Peru, K.M., Armstrong, S.A., Han, X., Martin, J.W., Mapolelo, M.M., Smith, D.F., Marshall, A.G., Aquatic plant-derived changes in oil sands naphthenic acid signatures determined by low-, high-and ultrahigh-resolution mass spectrometry (2009) Rapid Commun. Mass Sp., 23, pp. 515-522; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2011) Rapid Commun. Mass Spectrom., 25, pp. 1899-1909; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization (2011) J. Environ. Sci. Health, A46, pp. 844-854; Headley, J.V., Peru, K.M., Janfada, A., Fahlma, B., Gu, C., Hassan, S., Characterization of oil sands acids in plant tissue using Orbitrap ultra-high resolution mass spectrometry with electrospray ionization (2011) Rapid Commun. Mass Spectrom., 25, pp. 459-462; Headley, J.V., Peru, K.M., Fahlman, B., Colodey, A., McMartin, D.W., Selective solvent extraction and characterization of the acid extractable fraction of Athabasca oils sands process waters by Orbitrap mass spectrometry (2013) Int. J. Mass Spectrom., 345-347, pp. 104-108; Headley, J.V., Peru, K.M., Mohamed, M.H., Frank, R.A., Martin, J.W., Hazewinkel, R.R.O., Humphries, D., Wrona, F.J., Chemical fingerprinting of naphthenic acids and oil sands process waters: a review of analytical methods for environmental samples (2013) J. Environ. Sci. Health A, 48, pp. 1145-1163; Headley, J.V., Peru, K.M., Mohamed, M.H., Wilson, L., McMartin, D.W., Mapolelo, M.M., Lobodin, V.V., Marshall, A.G., Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry characterization of tunable carbohydrate-based materials for sorption of oil sands naphthenic acids (2013) Energ. Fuel., 27, pp. 1772-1778; Headley, J.V., Peru, K.M., Mohamed, M.H., Wilson, L., McMartin, D.W., Mapolelo, M.M., Lobodin, V.V., Marshall, A.G., Atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry characterization of tunable carbohydrate-based materials for sorption of oil sands naphthenic acids (2014) Energ. Fuel., 28, pp. 1611-1616; Headley, J.V., Peru, K.M., Barrow, M.P., Advances in mass spectrometric characterization of naphthenic acid fraction compounds in oil sands and environmental samples and crude oil-A review (2015) Mass spectrom. Rev., , doi:10.1002/mas.21472; Hindle, R., Noestheden, M., Peru, K., Headley, J., Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry (2013) J. Chromatogr. A, 1286, pp. 166-174; Huang, R., Sun, N., Chelme-Ayala, P., McPhedran, K.N., Changalov, M., El-Din, M.G., Fractionation of oil sands-process affected water using pH-dependent extractions: a study of dissociation constants for naphthenic acids species (2015) Chemosphere, 127, pp. 291-296; Hughey, C.A., Galasso, S.A., Zumberge, J.E., Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (2007) Fuel, 86, pp. 758-768; Hur, M., Yeo, I., Park, E., Kim, Y.H., Yoo, J., Eunkyoung Kim, E., No, M.-H., Kim, S., Combination of statistical methods and Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive, molecular-level interpretations of petroleum samples (2010) Anal. Chem., 82, pp. 211-218; Islam, A., Kim, D., Yim, U.H., Shim, W.J., Kim, S., Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry (2015) J. Hazard. Mater., 296, pp. 93-100; Jones, D., West, C.E., Scarlett, A.G., Frank, R.A., Rowland, S.J., Isolation and estimation of the "aromatic" naphthenic acid content of an oil sands process-affected water extract (2012) J. Chromatogr A, 1247, pp. 171-175; Juyal, P., Mapolelo, M.M., Yen, A., Rodgers, R.P., Allenson, S.J., Identification of calcium naphthenate deposition in South American oil fields (2015) Energ. Fuel., 29, pp. 2342-2350; Kaiser, N., Quinn, J., Blakney, G., Hendrickson, C., Marshall, A., A novel 9.4T FTICR mass spectrometer with improved sensitivity, mass resolution, and mass range (2011) J. Am. Soc. Mass Sp., 22, pp. 1343-1351; Kavanagh, R.J., Frank, R.A., Oakes, K.D., Servos, M.R., Young, R.F., Fedorak, P.M., Mackinnon, M.D., Van Der, K., Fathead minnow (pimephales promelas) reproduction is impaired in aged oil sands process-affected waters (2011) Aquat. Toxicol., 101, pp. 214-220; Lalli, P.M., Corilo, Y.E., Rowland, S.M., Marshall, A.G., Rodgers, R.P., Isomeric separation and structural characterization of acids in petroleum by ion mobility mass spectrometry (2015) Energ. Fuel., 29, pp. 3626-3633; Laredo, G.C., López, C.R., Álvarez, R.E., Cano, J.L., Naphthenic acids, total acid number and sulfur content profile characterization in Isthmus and Maya crude oils (2004) Fuel, 83, pp. 1689-1695; Lemkau, K.L., McKenna, A.M., Podgorski, D.C., Rodgers, R.P., Reddy, C.M., Molecular evidence of heavy-oil weathering following the M/V Cosco Busan spill: insights from Fourier transform ion cyclotron resonance mass spectrometry (2014) Environ. Sci. Technol., 48, pp. 3760-3767; Lengger, S.K., Scarlett, A.G., West, C.E., Rowland, S.J., Diamondoid diacids ("O4" species) in oil sands process-affected water (2013) Rapid Commun. Mass Sp., 27, pp. 2648-2654; Lewis, A.T., Tekavec, T.N., Jarvis, J.M., Juyal, P., McKenna, A.M., Yen, A.T., Rodgers, R.P., Evaluation of the extraction method and characterization of water-soluble organics from produced water by Fourier transform ion cyclotron resonance mass spectrometry (2013) Energ. Fuel., 27, pp. 1846-1855; Liao, Y., Shi, Q., Hsu, C.S., Pan, Y., Zhang, Y., Distribution of acids and nitrogen-containing compounds in biodegraded oils of the Liaohe Basin by negative ion ESI FT-ICR MS (2012) Org. Geochem., 47, pp. 51-65; MacLennan, M.S., Tie, C., Chen, D.D.Y., Peru, K.M., Headley, J.V., (2014) Capillary electrophoresis-mass spectrometry technology for analysis of naphthenic acids fraction compounds in oil sands process water, , 97th Canadian Chemistry Conference and Exhibition, Vancouver, Canada, June 1-5, 2014, Abstract EN4 871; Mapolelo, M.M., Stanford, L.A., Rodgers, R.P., Yen, A.T., Debord, J.D., Asomaning, S., Marshall, A.G., Hughes, B., Chemical speciation of calcium and sodium naphthenate deposits by electrospray ionization FT-ICR mass spectrometry (2009) Energ. Fuel., 23, pp. 349-435; Mapolelo, M.M., Rodgers, R.P., Blakney, G.T., Yen, A.T., Asomaning, S., Marshall, A.G., Characterization of naphthenic acids in crude oils and naphthenates by electrospray ionization FT-ICR mass spectrometry (2011) Int. J. Mass Spectrom., 300, pp. 149-157; Marshall, A.G., Rodgers, R.P., Petroleomics: chemistry of the underworld (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 18090-18095; Misselwitz, M., Cochran, J., English, C., Burger, B., (2013) Characterization of Crude Oils and Tar Balls Using Biomarkers and Comprehensive Two-Dimensional Gas Chromatography, , Restek Corporation: Bellefonte, PA, USA; Noah, M., Poetz, S., Vieth-Hillebrand, A., Wilkes, H., Detection of residual oil-sand-derived organic material in developing soils of reclamation sites by ultra-high-resolution mass spectrometry (2015) Environ. Sci. Technol., 49, pp. 6466-6473; Noestheden, M.R., Headley, J.V., Peru, K.M., Barrow, M.P., Burton, L., Sakuma, T., Winkler, P., Campbell, L., Analyzing naphthenic acids using differential mobility spectrometry with unique gas-phase separations (2014) Environ. Sci. Technol., 48, pp. 10264-10272; Nyakas, A., Han, J., Peru, K.M., Headley, J.V., Borchers, C.H., Comprehensive analysis of oil sands processed water by direct-infusion Fourier-transform ion cyclotron resonance mass spectrometry with and without offline UHPLC sample prefractionation (2013) Environ. Sci. Technol., 47, pp. 4471-4479; Ortiz, X., Taguchi, V.Y., Jobst, K.J., Reiner, E.J., Backus, S.M., McMartin, D.W., O'Sullivan, G., Headley, J.V., Characterization of naphthenic acids by gas chromatography Fourier transform ion cyclotron resonance mass spectrometry (2014) Anal. Chem., 86, pp. 7666-7673; Pereira, A.S., Martin, J.W., Exploring the complexity of oil sands process-affected water by high efficiency supercritical fluid chromatography/Orbitrap mass spectrometry (2015) Rapid Commun. Mass Sp., 29, pp. 735-744; Pereira, A.S., Bhattacharjee, S., Martin, J.W., Characterization of oil sands process-affected waters by liquid chromatography Orbitrap mass spectrometry (2013) Environ. Sci. Technol., 47, pp. 5504-5513; Pereira, A.S., Islam, M.S., El-Din, M.G., Martin, J.W., Ozonation degrades all detectable organic compound classes in oil sands process-affected water: an application of high-performance liquid chromatography/Orbitrap mass spectrometry (2013) Rapid Commun. Mass Sp., 27, pp. 2317-2326; Ray, P.Z., Chen, H., Podgorski, D.C., McKenna, A.M., Tarr, M.A., Sunlight creates oxygenated species in water-soluble fractions of Deepwater Horizon oil (2014) J. Hazard. Mater., 280, pp. 636-643; Ross, M.S., Pereira, D.A.S., Fennell, J., Davies, M., Johnson, J., Sliva, L., Martin, J.W., Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry (2012) Environ. Sci. Technol., 46, pp. 12796-12805; Rowland, S.J., West, C.E., Scarlett, A.G., Jones, D., Frank, R.A., Identification of individual tetra-and pentacyclic naphthenic acids in oil sands process water by comprehensive two-dimensional gas chromatography/mass spectrometry (2011) Rapid Commun. Mass Sp., 25, pp. 1198-1204; Rowland, S.J., Scarlett, A.G., Jones, D., West, C.E., Frank, R.A., Diamonds in the rough: identification of individual naphthenic acids in oil sands process water (2011) Environ. Sci. Technol., 45, pp. 3154-3159; Rowland, S.J., West, C.E., Scarlett, A.G., Jones, D., Identification of individual acids in a commercial sample of naphthenic acids from petroleum by two-dimensional comprehensive gas chromatography/mass spectrometry (2011) Rapid Commun. Mass Sp., 25, pp. 1741-1751; Rowland, S.J., West, C.E., Jones, D., Scarlett, A.G., Frank, R.A., Hewitt, L.M., Steroidal aromatic naphthenic acids in oil sands process-affected water: structural comparisons with environmental estrogens (2011) Environ. Sci. Technol., 45, pp. 9806-9815; Rowland, S.J., West, C.E., Scarlett, A.G., Ho, C., Jones, D., Differentiation of two industrial oil sands process-affected waters by two-dimensional gas chromatography/mass spectrometry of diamondoid acid profiles (2012) Rapid Commun. Mass Sp., 26, pp. 572-576; Rowland, S.J., Pereira, A.S., Martin, J.W., Scarlett, A.G., West, C.E., Lengger, S.K., Wilde, M.J., Hewitt, L.M., Mass spectral characterisation of a polar, esterified fraction of an organic extract of an oil sands process water (2014) Rapid Commun. Mass Sp., 28, pp. 2352-2362; Rowland, S.M., Robbins, W.K., Marshall, A.G., Rodgers, R.P., (2014) Characterization of Highly Oxygenated and Environmentally Weathered Crude Oils by Liquid Chromatography Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR-MS), , dx.doi.org/10.7901/2169-3358-2014-1-300205.1, International Oil Spill Conference, Savannah GA, May 5th-8th 2014. Poster; Rowland, S.M., Robbins, W.K., Corilo, Y.E., Marshall, A.G., Rodgers, R.P., Solid-phase extraction fractionation to extend the characterization of naphthenic acids in crude oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2014) Energ. Fuel., 28, pp. 5043-5048; Ruddy, B.M., Huettel, M., Kostka, J.E., Lobodin, V.V., Bythell, B.J., McKenna, A.M., Aeppli, C., Marshall, A.G., Targeted petroleomics: analytical investigation of Macondo well oil oxidation products from Pensacola Beach (2014) Energ. Fuel., 28, pp. 4043-4050; Scott, A.C., MacKinnon, M.D., Fedorak, P.M., Naphthenic acids in Athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids (2005) Environ. Sci. Technol., 39, pp. 8388-8394; Scott, A.C., Whittal, R.M., Fedorak, P.M., Coal is a potential source of naphthenic acids in groundwater (2009) Sci. Total Environ., 407, pp. 2451-2459; Shang, D., Kim, M., Haberl, M., Legzdins, A., Development of a rapid liquid chromatography tandem mass spectrometry method for screening of trace naphthenic acids in aqueous environments (2013) J. Chromatogr. A, 1278, pp. 98-107; Shankar, R., Shim, W.J., An, J.G., Yim, U.H., A practical review on photoxidation of crude oil: laboratory lamp setup and factors affecting it (2015) Water Res., 68, pp. 303-315; Shepherd, A.G., Van Mispelaar, V., Nowlin, J., Genuit, W., Grutters, M., Analysis of naphthenic acids and derivatization agents using two-dimensional gas chromatography and mass spectrometry: impact on flow assurance predictions (2010) Energ. Fuel., 24, pp. 2300-2311; Shi, Q., Zhao, S., Xu, Z., Chung, K.H., Zhang, Y., Xu, C., Distribution of acids and neutral nitrogen compounds in a chinese crude oil and its fractions: characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Energ. Fuel., 24, pp. 4005-4011; Shi, Q., Hou, D., Chung, K.H., Xu, C., Zhao, S., Zhang, Y., Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Energ. Fuel., 24, pp. 2545-2553; Silva, S.L., Silva, A.M.S., Ribeiro, J.C., Martins, F.G., Da Silva, F.A., Silva, C.M., Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: a review (2011) Anal. Chim. Acta, 707, pp. 18-37; Sim, A., Cho, Y., Kim, D., Witt, M., Birdwell, J.E., Kim, B.J., Kim, S., Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry (2015) Fuel, 140, pp. 717-723; Slavcheva, E., Shone, B., Turnbull, A., Review of naphthenic acid corrosion in oil refining (1999) Br. Corros. J., 34, pp. 125-131; Sun, N., Chelme-Ayala, P., Klamerth, N., McPhedran, K.N., Islam, M.S., Perez-Estrada, L., Drzewicz, P., El-Din, M.G., Advanced analytical mass spectrometric techniques and bioassays to characterize untreated and ozonated oil sands process-affected water (2014) Environ. Sci. Technol., 48, pp. 11090-11099; Swigert, J.P., Lee, C., Wong, D.C.L., White, R., Scarlett, A.G., West, C.E., Rowland, S.J., Aquatic hazard assessment of a commercial sample of naphthenic acids (2015) Chemosphere, 124, pp. 1-9; Terra, L.A., Filgueiras, P.R., Tose, L.V., Romao, W., De Souza, D.D., De Castro, E.V.R., De Oliveira, M.S.L., Poppi, R.J., Petroleomics by electrospray ionization FT-ICR mass spectrometry coupled to partial least squares with variable selection methods: prediction of the total acid number of crude oils (2014) Analyst, 139, pp. 4908-4916; Toor, N.S., Han, X., Franz, E., Mackinnon, M.D., Martin, J.W., Liber, K., Selective biodegradation of naphthenic acids and a probable link between mixture profiles and aquatic toxicity (2013) Environ. Toxicol. Chem., 32, pp. 2207-2216; Turnbull, A., Slavcheva, E., Shone, B., Factors controlling naphthenic acid corrosion (1998) Corrosion, 54, pp. 922-930; Vaz, B.G., Silva, R.C., Klitzke, C.F., Simas, R.C., Nascimento, H.D.L., Pereira, R.C.L., Garcia, D.F., Azevedo, D.A., Assessing biodegradation in the Llanos Orientales crude oils by electrospray ionization ultrahigh resolution and accuracy Fourier transform mass spectrometry and chemometric analysis (2013) Energ. Fuel., 27, pp. 1277-1284; Wang, X.M., Kasperski, K.L., Analysis of naphthenic acids in aqueous solution using HPLC-MS/MS (2010) Anal. Method., 2, pp. 1715-1722; Wang, J., Zhang, X., Li, G., Detailed characterization of polar compounds of residual oil in contaminated soil revealed by Fourier transform ion cyclotron resonance mass spectrometry (2011) Chemosphere, 85, pp. 609-615; Wang, B.L., Wan, Y., Gao, Y.X., Yang, M., Hu, J.Y., Determination and characterization of oxy-naphthenic acids in oilfield wastewater (2013) Environ. Sci. Technol., 47, pp. 9545-9554; Wang, B., Wan, Y., Gao, Y., Zheng, G., Yang, M., Wu, S., Hu, J., Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant (2015) Environ. Sci. Technol., 49, pp. 5796-5804; West, C.E., Scarlett, A.G., Pureveen, J., Tegelaar, E.W., Rowland, S.J., Abundant naphthenic acids in oil sands process-affected water: studies by synthesis, derivatisation and two-dimensional gas chromatography/high-resolution mass spectrometry (2013) Rapid Commun. Mass Sp., 27, pp. 357-365; West, C.E., Pureveen, J., Scarlett, A.G., Lengger, S.K., Wilde, M.J., Korndorffer, F., Tegelaar, E.W., Rowland, S.J., Can two-dimensional gas chromatography/mass spectrometric identification of bicyclic aromatic acids in petroleum fractions help to reveal further details of aromatic hydrocarbon biotransformation pathways? Rapid Commun (2014) Mass Sp., 28, pp. 1023-1032; West, C.E., Scarlett, A.G., Tonkin, A., O'Carroll-Fitzpatrick, D., Pureveen, J., Tegelaar, E., Gieleciak, R., Rowland, S.J., Diaromatic sulphur-containing "naphthenic" acids in process waters (2014) Water Res., 51, pp. 206-215; Whitby, C., Microbial naphthenic acid degradation (2010) Adv. Appl. Microbiol., 70, pp. 93-125; Wilde, M.J., West, C.E., Scarlett, A.G., Jones, D., Frank, R.A., Hewitt, L.M., Rowland, S.J., Bicyclic naphthenic acids in oil sands process water: identification by comprehensive multidimensional gas chromatography-mass spectrometry (2015) J. Chromatogr. A, 1378, pp. 74-87; Willis, M.D., Duncan, K.D., Krogh, E.T., Gill, C.G., Delicate polydimethylsiloxane hollow fibre membrane interfaces for condensed phase membrane introduction mass spectrometry (CP-MIMS) (2014) Rapid Commun. Mass Sp., 28, pp. 671-681; Woudneh, M.B., Hamilton, C., Benskin, J.P., Wang, G., McEachern, P., Cosgrove, J.R., A novel derivatization-based liquid chromatography tandem mass spectrometry method for quantitative characterization of naphthenic acid isomer profiles in environmental waters (2013) J. Chromatogr. A, 1293, pp. 36-43; Yépez, O., Influence of different sulfur compounds on corrosion due to naphthenic acid (2005) Fuel, 84, pp. 97-104; Yi, Y., Birks, S.J., Cho, S., Gibson, J.J., Characterization of organic composition in snow and surface waters in the Athabasca Oil Sands Region, using ultrahigh resolution Fourier transform mass spectrometry (2015) Sci. Total Environ., 518-519, pp. 148-158; Young, R.F., Coy, D.L., Fedorak, P.M., Evaluating MTBSTFA derivatization reagents for measuring naphthenic acids by gas chromatography-mass spectrometry (2010) Anal. Methods, 2, pp. 765-770; Young, R.F., Michel, L.M., Fedorak, P.M., Distribution of naphthenic acids in tissues of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in Alberta, Canada (2011) Ecotoxicol. Environ. Saf., 74, pp. 889-896; Yue, S., Ramsay, B.A., Brown, R.S., Wang, J., Ramsay, J.A., Identification of estrogenic compounds in oil sands process waters by effect directed analysis (2015) Environ. Sci. Technol., 49, pp. 570-577; Zhang, Y., Shi, Q., Li, A., Chung, K.H., Zhao, S., Xu, C., Partitioning of crude oil acidic compounds into subfractions by extrography and identification of isoprenoidyl phenols and tocopherols (2011) Energ Fuel, 25, pp. 5083-5089},\ncorrespondence_address1={Ajaero, C.; University of ReginaCanada},\npublisher={Elsevier Inc.},\nisbn={9780128096598},\nlanguage={English},\nabbrev_source_title={Stand. Handb. Oil Spill Environ. Forensics: Fingerprinting and Source Identif.: Second Ed.},\ndocument_type={Book Chapter},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The forensic studies of naphthenic acids fraction components in oil sands process water (OSPW) and crude oil has continued to receive significant attention due to increased need to explicate the toxicological claims of these components and their distributions in environmental samples and to address the problems faced in the petroleum industry. The characterization of naphthenic acid fraction components (NAFCs) in oil sand environmental samples and petroleum is challenging, and analytical techniques for their elucidation are continuously being explored. There is no single technique for the forensic analysis of these compounds in oil samples. With the emergence of new forensic techniques, a range of mass spectrometric methods with great potential for integration with other analytical tools such as gas chromatography, liquid chromatography, and ion mobility are now available for improved compositional information obtainable from complex samples. A detailed and valid forensic assessment involves comprehensive characterization of the molecular distribution and evaluation of environmental fate of sample components and source apportionment. For instance, in the field of petroleomics, ultrahigh-resolution mass spectrometry (MS) such as Fourier transform ion cyclotron resonance MS (FT-ICR-MS) has been extensively used for compositional analysis of crude oil and data from the analysis has been useful in determining environmental fate, sources, and toxicological potentials. Of specific significance is the application of multiple ionization techniques for elucidation of distribution of individual compound classes. Sometimes an online or offline fractionation of isolated extracts, with or without derivatization or solid phase extraction are employed to make them amenable to coupled chromatography-mass spectrometric analysis. These approaches with complementary multivariate statistical techniques have proved useful as diagnostic tools in forensic analysis for correlating and distinguishing samples in forensic activities, providing unparalleled information on sources and photo- and biodegradations of NAFCs in oil sand environmental samples and crude oil. The unambiguous characterization of species present in oil samples can create a database source from which unknown samples can be compared for proper identification. The development in forensic investigations of NAFCs in oil sand environmental samples and crude oil will continue alongside advances in analytical and statistical tools. © 2016 Elsevier Inc. All rights reserved.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Uncoiling collagen: A multidimensional mass spectrometry study.\n \n \n \n \n\n\n \n Simon, H.; Van Agthoven, M.; Lam, P.; Floris, F.; Chiron, L.; Delsuc, M.; Rolando, C.; Barrow, M.; and O'Connor, P.\n\n\n \n\n\n\n Analyst, 141(1): 157-165. 2016.\n cited By 11\n\n\n\n
\n\n\n\n \n \n \"UncoilingPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Simon2016157,\nauthor={Simon, H.J. and Van Agthoven, M.A. and Lam, P.Y. and Floris, F. and Chiron, L. and Delsuc, M.-A. and Rolando, C. and Barrow, M.P. and O'Connor, P.B.},\ntitle={Uncoiling collagen: A multidimensional mass spectrometry study},\njournal={Analyst},\nyear={2016},\nvolume={141},\nnumber={1},\npages={157-165},\ndoi={10.1039/c5an01757b},\nnote={cited By 11},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949951908&doi=10.1039%2fc5an01757b&partnerID=40&md5=8d04994cc9493d14e1bbe2a1bae9b4a8},\naffiliation={Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom; CASC4DE, Le Lodge, 20 Avenue du Neuhof, Strasbourg, 67100, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, Illkirch-Graffenstaden, 67404, France; Université de Lille, CNRS, USR 3290, MSAP, Miniaturisation Pour la Synthèse l'Analyse et la Protéomique, FR 3688, FRABIO, Biochimie Structurale and Fonctionnelle des Assemblages Biomoléculaires, FR 2638, Institut Eugène-Michel Chevreul, Lille, F-59000, France},\nabstract={Mass spectrometry can be used to determine structural information about ions by activating precursors and analysing the resulting series of fragments. Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) is a technique that correlates the mass-to-charge (m/z) ratio of fragment and precursor ions in a single spectrum. 2D FT-ICR MS records the fragmentation of all ions in a sample without the need for isolation. To analyse specific precursors, horizontal cross-sections of the spectrum (fragment ion scans) are taken, providing an alternative to conventional tandem mass spectrometry (MS/MS) experiments. In this work, 2D FT-ICR MS has been used to study the tryptic digest of type I collagen, a large protein. Fragment ion scans have been extracted from the 2D FT-ICR MS spectrum for precursor m/z ratios: 951.81, 850.41, 634.34, and 659.34, and 2D FT-ICR MS spectra are compared with a set of 1D MS/MS spectra using different fragmentation methods. The results show that two-dimensional mass spectrometry excells at MS/MS of complex mixtures, simplifying spectra by eliminating contaminant peaks, and aiding the identification of species in the sample. Currently, with desktop computers, 2D FT-ICR MS is limited by data processing power, a limitation which should be alleviated using cluster parallel computing. In order to explore 2D FT-ICR MS for collagen, with reasonable computing time, the resolution in the fragment ion dimension is limited to 256k data points (compared to 4M data points in 1D MS/MS spectra), but the vertical precursor ion dimension has 4096 lines, so the total data set is 1G data points (4 Gbytes). The fragment ion coverage obtained with a blind, unoptimized 2D FT-ICR MS experiment was lower than conventional MS/MS, but MS/MS information is obtained for all ions in the sample regardless of selection and isolation. Finally, although all 2D FT-ICR MS peak assignments were made with the aid of 1D FT-ICR MS data, these results demonstrate the promise of 2D FT-ICR MS as a technique for studying complex protein digest mixtures. © The Royal Society of Chemistry.},\nkeywords={collagen type 1, amino acid sequence;  animal;  bovine;  chemistry;  cyclotron;  devices;  Fourier analysis;  mass spectrometry;  metabolism;  procedures;  protein degradation;  proteomics, Amino Acid Sequence;  Animals;  Cattle;  Collagen Type I;  Cyclotrons;  Fourier Analysis;  Mass Spectrometry;  Proteolysis;  Proteomics},\nchemicals_cas={Collagen Type I},\nreferences={Brinckmann, J., (2005) Collagens at a Glance, , Springer, Berlin, Heidelberg; Woodhead-Galloway, J., (1980) Collagen: The Anatomy of a Protein, , Edward Arnold, Southampton; Yamauchi, M., Sricholpech, M., (2012) Essays Biochem., 52, pp. 113-133; Shoulders, M.D., Raines, R.T., (2009) Annu. Rev. Biochem., 78, pp. 929-958; Myllyharju, J., Kivirikko, K.I., (2001) Ann. Med., 33, pp. 7-21; Buckley, M., Collins, M., Thomas-Oates, J., Wilson, J.C., (2009) Rapid Commun. Mass Spectrom., 23, pp. 3843-3854; Perez Hurtado, P., O'Connor, P.B., (2012) Anal. Chem., 84, pp. 3017-3025; Pfandler, P., Bodenhausen, G., Rapin, J., Houriet, R., Gaumann, T., (1987) Chem. Phys. Lett., 138, pp. 195-200; Pfandler, P., Gaumann, T., (1988) J. Am. Chem. Soc., 110, pp. 5625-5628; Guan, S., Jones, P.R., (1989) J. Chem. Phys., 91, pp. 5291-5295; Ross, C.W., Guan, S., Grosshans, P.B., Ricca, T.L., Marshall, A.G., (1993) J. Am. Chem. Soc., 115, pp. 7854-7861; Ross, C.W., Simonsick, W.J., Aaserud, D.J., (2002) Anal. Chem., 74, pp. 4625-4633; Van Der Rest, G., Marshall, A.G., (2001) Int. J. Mass Spectrom., 210-211, pp. 101-111; Van Agthoven, M.A., Delsuc, M.-A., Bodenhausen, G., Rolando, C., (2013) Anal. Bioanal. Chem., 405, pp. 51-61; Van Agthoven, M.A., Coutouly, M.-A., Rolando, C., Delsuc, M.-A., (2011) Rapid Commun. Mass Spectrom., 25, pp. 1609-1616; Chiron, L., Van Agthoven, M.A., Kieffer, B., Rolando, C., Delsuc, M.-A., (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 1385-1390; Gauthier, J.W., Trautman, T.R., Jacobson, D.B., (1991) Anal. Chim. Acta, 246, pp. 211-225; Little, D.P., Speir, J.P., Senko, M.W., O'Connor, P.B., McLafferty, F.W., (1994) Anal. Chem., 66, pp. 2809-2815; Zubarev, R., Kelleher, N.L., McLafferty, F.W., (1998) J. Am. Chem. Soc., 120, pp. 3265-3266; Aebersold, R., Mann, M., (2003) Nature, 422, pp. 198-207; Michalski, A., Cox, J., Mann, M., (2011) J. Proteome Res., 10, pp. 1785-1793; Marshall, A.G., Wang, T.-C.L., Ricca, T.L., (1984) Chem. Phys. Lett., 105, pp. 233-236; Van Agthoven, M., Chiron, L., Coutouly, M.-A., Sehgal, A.A., Pelupessy, P., Bodenhausen, G., Delsuc, M.-A., Rolando, C., (2014) Int. J. Mass Spectrom., 370, pp. 114-124; Van Agthoven, M.A., Delsuc, M.-A., Rolando, C., (2011) Int. J. Mass Spectrom., 306, pp. 196-203; Bensimon, M., Zhao, G., Gaumann, T., (1989) Chem. Phys. Lett., 157, pp. 97-100; Van Agthoven, M.A., Chiron, L., Coutouly, M.-A., Delsuc, M.-A., Rolando, C., (2012) Anal. Chem., 84, pp. 5589-5595; Van Agthoven, M.A., Barrow, M.P., Chiron, L., Coutouly, M.-A., Kilgour, D., Wootton, C.A., Wei, J., O'Connor, P.B., (2015) J. Am. Soc. Mass Spectrom., pp. 1-10; SPIKE, http://www.bitbucket.org/delsuc/spike, accessed July 2015; Tramesel, D., Catherinot, V., Delsuc, M.-A., (2007) J. Magn. Reson., 188, pp. 56-67; Traficante, D.D., Nemeth, G.A., (1987) J. Magn. Reson., 71, pp. 237-245; Rich, A., Crick, F.H.C., (1961) J. Mol. Biol., 3, pp. 483-506; Bella, J., Eaton, M., Brodsky, B., Berman, H.M., (1994) Science, 266, pp. 75-81; Lamandé, S.R., Bateman, J.F., (1999) Semin. Cell Dev. Biol., 10, pp. 455-464; Perdivara, I., Perera, L., Sricholpech, M., Terajima, M., Pleshko, N., Yamauchi, M., Tomer, K.B., (2013) J. Am. Soc. Mass Spectrom., 24, pp. 1072-1081; Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K.B., Yamauchi, M., (2012) J. Biol. Chem., 287, pp. 22998-23009; Terajima, M., Perdivara, I., Sricholpech, M., Deguchi, Y., Pleshko, N., Tomer, K.B., Yamauchi, M., (2014) J. Biol. Chem., 289, pp. 22636-22647; Eyre, D.R., Paz, M.A., Gallop, P.M., (1984) Annu. Rev. Biochem., 53, pp. 717-748; Eyre, D.R., Weis, M.A., Wu, J.J., (2008) Methods, 45, pp. 65-74; Henkel, W., Dreisewerd, K., (2007) J. Proteome Res., 6, pp. 4269-4289; Ramshaw, J.A., Shah, N.K., Brodsky, B., (1998) J. Struct. Biol., 122, pp. 86-91; Paizs, B., Suhai, S., (2005) Mass Spectrom. Rev., 24, pp. 508-548; Fellgett, P.B., (1949) J. Opt. Soc. Am., 39, pp. 970-976},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Gibbet Hill Road, United Kingdom; email: p.oconnor@warwick.ac.uk},\npublisher={Royal Society of Chemistry},\nissn={00032654},\ncoden={ANALA},\npubmed_id={26568361},\nlanguage={English},\nabbrev_source_title={Analyst},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Mass spectrometry can be used to determine structural information about ions by activating precursors and analysing the resulting series of fragments. Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) is a technique that correlates the mass-to-charge (m/z) ratio of fragment and precursor ions in a single spectrum. 2D FT-ICR MS records the fragmentation of all ions in a sample without the need for isolation. To analyse specific precursors, horizontal cross-sections of the spectrum (fragment ion scans) are taken, providing an alternative to conventional tandem mass spectrometry (MS/MS) experiments. In this work, 2D FT-ICR MS has been used to study the tryptic digest of type I collagen, a large protein. Fragment ion scans have been extracted from the 2D FT-ICR MS spectrum for precursor m/z ratios: 951.81, 850.41, 634.34, and 659.34, and 2D FT-ICR MS spectra are compared with a set of 1D MS/MS spectra using different fragmentation methods. The results show that two-dimensional mass spectrometry excells at MS/MS of complex mixtures, simplifying spectra by eliminating contaminant peaks, and aiding the identification of species in the sample. Currently, with desktop computers, 2D FT-ICR MS is limited by data processing power, a limitation which should be alleviated using cluster parallel computing. In order to explore 2D FT-ICR MS for collagen, with reasonable computing time, the resolution in the fragment ion dimension is limited to 256k data points (compared to 4M data points in 1D MS/MS spectra), but the vertical precursor ion dimension has 4096 lines, so the total data set is 1G data points (4 Gbytes). The fragment ion coverage obtained with a blind, unoptimized 2D FT-ICR MS experiment was lower than conventional MS/MS, but MS/MS information is obtained for all ions in the sample regardless of selection and isolation. Finally, although all 2D FT-ICR MS peak assignments were made with the aid of 1D FT-ICR MS data, these results demonstrate the promise of 2D FT-ICR MS as a technique for studying complex protein digest mixtures. © The Royal Society of Chemistry.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2015\n \n \n (5)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.\n \n \n \n \n\n\n \n Van Agthoven, M.; Barrow, M.; Chiron, L.; Coutouly, M.; Kilgour, D.; Wootton, C.; Wei, J.; Soulby, A.; Delsuc, M.; Rolando, C.; and O'Connor, P.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 26(12): 2105-2114. 2015.\n cited By 16\n\n\n\n
\n\n\n\n \n \n \"DifferentiatingPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{VanAgthoven20152105,\nauthor={Van Agthoven, M.A. and Barrow, M.P. and Chiron, L. and Coutouly, M.-A. and Kilgour, D. and Wootton, C.A. and Wei, J. and Soulby, A. and Delsuc, M.-A. and Rolando, C. and O'Connor, P.B.},\ntitle={Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2015},\nvolume={26},\nnumber={12},\npages={2105-2114},\ndoi={10.1007/s13361-015-1226-7},\nnote={cited By 16},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947564719&doi=10.1007%2fs13361-015-1226-7&partnerID=40&md5=f49c26b9dc0d44047eb8b2430ea819d2},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; NMRTEC, Bld. Sébastien Brandt, Bioparc - Bat. B, Illkirch-Graffenstaden, 67400, France; School of Pharmacy, University of Maryland, Baltimore, MD  21201, United States; Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596; CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, Illkirch-Graffenstaden, 67404, France; Miniaturisation Pour la Synthèse, L'Analyse and la Protéomique (MSAP), USR CNRS 3290, Protéomique, Modifications Post-traductionnelles et Glycobiologie, IFR 147, Institut Eugène-Michel Chevreul, FR CNRS 2638, Université de Lille 1 Sciences et Technologies, Villeneuve d'Ascq Cedex, 59655, France},\nabstract={Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. [Figure not available: see fulltext.] © 2015 American Society for Mass Spectrometry.},\nauthor_keywords={APPI;  Atmospheric pressure photoionization;  Cholesterol;  Fourier transform ion cyclotron resonance mass spectrometry;  FT-ICR MS;  Infrared multiphoton dissociation;  IRMPD;  Two-dimensional},\nkeywords={Atmospheric pressure;  Cholesterol;  Cyclotron resonance;  Cyclotrons;  Electron cyclotron resonance;  Fourier transforms;  Ionization;  Ions;  Mass spectrometers;  Mass spectrometry;  Photoionization;  Photonic crystals;  Resonance;  Spectrometry;  Two dimensional, APPI;  Atmospheric pressure photo ionization;  Fourier transform ion cyclotron resonance mass spectrometry;  FT-ICR MS;  Infrared multiphoton dissociation;  IRMPD, Drug products, cholesterol;  ion;  cholesterol, Article;  atmospheric pressure photoionization;  dehydrogenation;  dissociation;  fragmentation reaction;  infrared multiphoton dissociation;  ion cyclotron resonance mass spectrometry;  ionization;  lipid analysis;  mass spectrometry;  scintillation;  two dimensional fourier transform ion cyclotron resonance mass spectrometry;  atmospheric pressure;  chemistry;  cyclotron;  equipment design;  Fourier analysis;  photochemistry;  procedures, Atmospheric Pressure;  Cholesterol;  Cyclotrons;  Equipment Design;  Fourier Analysis;  Ions;  Mass Spectrometry;  Photochemical Processes},\nchemicals_cas={cholesterol, 57-88-5; Cholesterol; Ions},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/J000302/1},\nreferences={Marshall, A.G., Hendrickson, C.L., Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry: A primer (1998) Mass Spectrom. Rev., 17, pp. 1-35. , 1:CAS:528:DyaK1cXmsFantbk%3D; Marshall, A.G., Verdun, F.R., (1990) Fourier Transforms in NMR, Optical, and Mass Spectrometry. A User's Handbook, , Elsevier Amsterdam; Marshall, A.G., Blakney, G.T., Beu, S.C., Hendrickson, C.L., McKenna, A.M., Purcell, J.M., Rodgers, R.P., Xian, F., Petroleomics: A test bed for ultra-high-resolution fourier transform ion cyclotron resonance mass spectrometry (2010) Eur. J. Mass Spectrom., 16, pp. 367-371. , 1:CAS:528:DC%2BC3cXovVWqtr8%3D; Pfaendler, P., Bodenhausen, G., Rapin, J., Houriet, R., Gäumann, T., Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (1987) Chem. Phys. Lett., 138, pp. 195-200. , 1:CAS:528:DyaL2sXlsVChsbY%3D; Marshall, A.G., Wang, T.C.L., Ricca, T.L., Ion cyclotron resonance excitation/deexcitation: A basis for stochastic Fourier transform ion cyclotron mass spectrometry (1984) Chem. Phys. Lett., 105, pp. 233-236. , 1:CAS:528:DyaL2cXhs1CrtLY%3D; Guan, S., Jones, P.R., A theory for two-dimensional Fourier-transform ion cyclotron resonance mass spectrometry (1989) J. Chem. Phys., 91, pp. 5291-5295. , 1:CAS:528:DyaK3cXislGrsA%3D%3D; Van Agthoven, M.A., Delsuc, M.-A., Bodenhausen, G., Rolando, C., Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2013) Anal. Bioanal. Chem., 405, pp. 51-61; Pfaendler, P., Bodenhausen, G., Rapin, J., Walser, M.E., Gäumann, T., Broad-band two-dimensional Fourier transform ion cyclotron resonance (1988) J. Am. Chem. Soc., 110, pp. 5625-5628. , 1:CAS:528:DyaL1cXkvVamuro%3D; Bensimon, M., Zhao, G., Gäumann, T., A method to generate phase continuity in two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (1989) Chem. Phys. Lett., 157, pp. 97-100; Ross, C.W., III, Guan, S., Grosshans, P.B., Ricca, T.L., Marshall, A.G., Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry/mass spectrometry with stored-waveform ion radius modulation (1993) J. Am. Chem. Soc., 115, pp. 7854-7861. , 1:CAS:528:DyaK3sXmtVarur8%3D; Ross, C., Simonsick, W.J., Jr., Aaserud, D.J., Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures (2002) Anal. Chem., 74, pp. 4625-4633. , 1:CAS:528:DC%2BD38XmtVymurk%3D; Van Der Rest, G., Marshall, A.G., Noise analysis for 2D tandem Fourier transform ion cyclotron resonance mass spectrometry (2001) Int. J. Mass Spectrom., 210-211, pp. 101-111; Van Agthoven, M.A., Delsuc, M.-A., Rolando, C., Two-dimensional FT-ICR/MS with IRMPD as fragmentation mode (2011) Int. J. Mass Spectrom., 306, pp. 196-203; Van Agthoven, M.A., Chiron, L., Coutouly, M.-A., Delsuc, M.-A., Rolando, C., Two-dimensional ECD FT-ICR mass spectrometry of peptides and glycopeptides (2012) Anal. Chem., 84, pp. 5589-5595; Van Agthoven, M.A., Coutouly, M.-A., Rolando, C., Delsuc, M.-A., Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry: Reduction of scintillation noise using Cadzow data processing (2011) Rapid Commun. Mass Spectrom., 25, pp. 1609-1616; Chiron, L., Van Agthoven, M.A., Kieffer, B., Rolando, C., Delsuc, M.-A., Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 1385-1390. , 1:CAS:528:DC%2BC2cXhs1SgsLw%3D; Van Agthoven, M.A., Chiron, L., Coutouly, M.-A., Sehgal, A.A., Pelupessy, P., Delsuc, M.-A., Rolando, C., Optimization of the discrete pulse sequence for two-dimensional FT-ICR mass spectrometry using infrared multiphoton dissociation (2014) Int. J. Mass Spectrom., 370, pp. 114-124; Raffaelli, A., Saba, A., Atmospheric pressure photoionization mass spectrometry (2003) Mass Spectrom. Rev., 22, pp. 318-331. , 1:CAS:528:DC%2BD3sXovValtrw%3D; Robb, D.B., Covey, T.R., Bruins, A.P., Atmospheric pressure photoionization: An ionization method for liquid chromatography-mass spectrometry (2000) Anal. Chem., 72, pp. 3653-3659. , 1:CAS:528:DC%2BD3cXksFOrurg%3D; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem., 82, pp. 3727-3735. , 1:CAS:528:DC%2BC3cXktVyisLk%3D; Griffiths, M.T., Da Campo, R., O'Connor, P.B., Barrow, M.P., Throwing light on petroleum: Simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry (2014) Anal. Chem., 86, pp. 527-534. , 1:CAS:528:DC%2BC3sXhvFejtLbE; Kauppila, T.J., Kuuranne, T., Meurer, E.C., Eberlin, M.N., Kotiaho, T., Kostiainen, R., Atmospheric pressure photoionization mass spectrometry. Ionization mechanism and the effect of solvent on the ionization of naphthalenes (2002) Anal. Chem., 74, pp. 5470-5479. , 1:CAS:528:DC%2BD38XntlOrtbo%3D; Wyllie, S.G., Amos, B.A., Tokes, L., Electron impact induced fragmentation of cholesterol and related C-5 unsaturated steroids (1977) J. Org. Chem., 42, pp. 725-732. , 1:CAS:528:DyaE2sXptVWhsQ%3D%3D; Gabrielse, G., Haarsma, L., Rolston, S.L., Open-endcap Penning traps for high precision experiments (1989) Int. J. Mass Spectrom. Ion Processes, 88, pp. 319-332. , 1:CAS:528:DyaL1MXkvVGntrc%3D; Kilgour, D.P.A., Wills, R., Qi, Y., O'Connor, P.B., Autophaser: An algorithm for automated generation of absorption mode spectra for FT-ICR MS (2013) Anal. Chem., 85, pp. 3903-3911. , 1:CAS:528:DC%2BC3sXhvVyns70%3D; Qi, Y., Barrow, M.P., Van Orden, S.L., Thompson, C.J., Li, H., Perez-Hurtado, P., O'Connor, P.B., Variation of the Fourier transform mass spectra phase function with experimental parameters (2011) Anal. Chem., 83, pp. 8477-8483. , 1:CAS:528:DC%2BC3MXhtlKksb%2FO; Qi, Y., Barrow, M.P., Li, H., Meier, J.E., Van Orden, S.L., Thompson, C.J., O'Connor, P.B., Absorption-mode: The next generation of fourier transform mass spectra (2012) Anal. Chem., 84, pp. 2923-2929. , 1:CAS:528:DC%2BC38XisFShs70%3D; Qi, Y., Li, H., Wills, R.H., Perez-Hurtado, P., Yu, X., Kilgour, D.P.A., Barrow, M.P., O'Connor, P.B., Absorption-mode Fourier transform mass spectrometry: The effects of apodization and phasing on modified protein spectra (2013) J. Am. Soc. Mass Spectrom., 24, pp. 828-834. , 1:CAS:528:DC%2BC3sXnsVWnurg%3D; Qi, Y., Thompson, C.J., Van Orden, S.L., O'Connor, P.B., Phase correction of Fourier transform ion cyclotron resonance mass spectra using MatLab (2011) J. Am. Soc. Mass Spectrom., 22, pp. 138-147. , 1:CAS:528:DC%2BC3MXnt1Khur8%3D; Qi, Y., Witt, M., Jertz, R., Baykut, G., Barrow, M.P., Nikolaev, E.N., O'Connor, P.B., Absorption-mode spectra on the dynamically harmonized Fourier transform ion cyclotron resonance cell (2012) Rapid Commun. Mass Spectrom., 26, pp. 2021-2026. , 1:CAS:528:DC%2BC38XhtFalu7bP; Qi, Y., O'Connor, P.B., Data processing in Fourier transform ion cyclotron resonance mass spectrometry (2014) Mass Spectrom. Rev., 33, pp. 333-352. , 1:CAS:528:DC%2BC2cXht1Kmsb%2FJ; Cho, Y., Qi, Y., O'Connor, P.B., Barrow, M.P., Kim, S., Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry (2014) J. Am. Soc. Mass Spectrom., 25, pp. 154-157. , 1:CAS:528:DC%2BC3sXhsFOkurbO; Ledford, E.B., Jr., Rempel, D.L., Gross, M.L., Space charge effects in Fourier transform mass spectrometry. II. Mass calibration (1984) Anal. Chem., 56, pp. 2744-2748. , 1:CAS:528:DyaL2cXmt1Wktrw%3D; Pons, J.-L., Malliavin, T.E., Delsuc, M.A., Gifa, V., 4: A complete package for NMR data set processing (1996) J. Biomol. NMR, 8, pp. 445-452. , 1:CAS:528:DyaK2sXlvVSguw%3D%3D; Francl, T.J., Sherman, M.G., Hunter, R.L., Locke, M.J., Bowers, W.D., McIver, R.T., Jr., Experimental determination of the effects of space charge on ion cyclotron resonance frequencies (1983) Int. J. Mass Spectrom. Ion Processes, 54, pp. 189-199. , 1:CAS:528:DyaL3sXmt1WktLc%3D; Shi, S.D.H., Drader, J.J., Freitas, M.A., Hendrickson, C.L., Marshall, A.G., Comparison and interconversion of the two most common frequency-to-mass calibration functions for fourier transform ion cyclotron resonance mass spectrometry (2000) Int. J. Mass Spectrom., 195-196, pp. 591-598. , 1:CAS:528:DC%2BD3cXotF2jsw%3D%3D; Chapman, J.D., Goodlett, D.R., Masselon, C.D., Multiplexed and data-independent tandem mass spectrometry for global proteome profiling (2014) Mass Spectrom. Rev., 33, pp. 452-470. , 1:CAS:528:DC%2BC2cXhs1yit73E; Louris, J.N., Brodbelt-Lustig, J.S., Cooks, R.G., Glish, G.L., Van Berkel, G.J., McLuckey, S.A., Ion isolation and sequential stages of mass spectrometry in a quadrupole ion trap mass spectrometer (1990) Int. J. Mass Spectrom. Ion Processes, 96, pp. 117-137. , 1:CAS:528:DyaK3cXisVamtr8%3D; Chen, L., Wang, T.C.L., Ricca, T.L., Marshall, A.G., Phase-modulated stored waveform inverse Fourier transform excitation for trapped ion mass spectrometry (1987) Anal. Chem., 59, pp. 449-454. , 1:CAS:528:DyaL2sXktVymtA%3D%3D; O'Connor, P.B., McLafferty, F.W., High-resolution ion isolation with the ion cyclotron resonance capacitively coupled open cell (1995) J. Am. Soc. Mass Spectrom., 6, pp. 533-535; De Koning, L.J., Nibbering, N.M.M., Van Orden, S.L., Laukien, F.H., Mass selection of ions in a Fourier transform ion cyclotron resonance trap using correlated harmonic excitation fields (CHEF) (1997) Int. J. Mass Spectrom. Ion Processes, 165-166, pp. 209-219; McDonald, L.A., Barbieri, L.R., Carter, G.T., Kruppa, G., Feng, X., Lotvin, J.A., Siegel, M.M., FTMS structure elucidation of natural products: Application to muraymycin antibiotics using ESI multi-CHEF SORI-CID FTMSn, the top-down/bottom-up approach, and HPLC ESI capillary-skimmer CID FTMS (2003) Anal. Chem., 75, pp. 2730-2739. , 1:CAS:528:DC%2BD3sXjs1Snsrk%3D; Wills, R.H., O'Connor, P.B., Structural characterization of actinomycin d using multiple ion isolation and electron induced dissociation (2014) J. Am. Soc. Mass Spectrom., 25, pp. 186-195. , 1:CAS:528:DC%2BC3sXhvFajsbjO; Wang, T.C.L., Ricca, T.L., Marshall, A.G., Extension of dynamic range in Fourier transform ion cyclotron resonance mass spectrometry via stored waveform inverse Fourier transform excitation (1986) Anal. Chem., 58, pp. 2935-2938. , 1:CAS:528:DyaL28XlvVSqtL0%3D; Guan, S., Marshall, A.G., Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectrometry: Theory and applications (1996) Int. J. Mass Spectrom. Ion Processes, 157-158, pp. 5-37. , 1:CAS:528:DyaK2sXnt1GgtQ%3D%3D; Julian, R.K., Jr., Cooks, R.G., Broad-band excitation in the quadrupole ion trap mass spectrometer using shaped pulses created with the inverse Fourier transform (1993) Anal. Chem., 65, pp. 1827-1833. , 1:CAS:528:DyaK3sXktFOgtL0%3D; Budzikiewicz, H., Ockels, W., Mass spectrometric fragmentation reactions. VIII. Characteristic fragments of 5-unsaturated 3-hydroxysteroids (1976) Tetrahedron, 32, pp. 143-146. , 1:CAS:528:DyaE28XhtlGqsLc%3D; Rossmann, B., Thurner, K., Luf, W., MS-MS fragmentation patterns of cholesterol oxidation products (2007) Monatsh. Chem., 138, pp. 437-444. , 1:CAS:528:DC%2BD2sXkvF2mtL4%3D; Lembcke, J., Ceglarek, U., Fiedler, G.M., Baumann, S., Leichtle, A., Thiery, J., Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS (2005) J. Lipid Res., 46, pp. 21-26. , 1:CAS:528:DC%2BD2MXltlKrsA%3D%3D; Ronsein, G.E., Prado, F.M., Mansano, F.V., Oliveira, M.C.B., Medeiros, M.H.G., Miyamoto, S., Di Mascio, P., Detection and characterization of cholesterol-oxidized products using HPLC coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry (2010) Anal. Chem., 82, pp. 7293-7301. , 1:CAS:528:DC%2BC3cXpslWhsLk%3D; http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/c8667pis.pdf, Accessed 12 Jul 2015; Stadtman, T.C., Preparation and assay of cholesterol and ergosterol (1957) Methods Enzymol, 3, pp. 392-394; Marotta, E., Seraglia, R., Fabris, F., Traldi, P., Atmospheric pressure photoionization mechanisms 1. The case of acetonitrile (2003) Int. J. Mass Spectrom., 228, pp. 841-849. , 1:CAS:528:DC%2BD3sXlvVWmt70%3D; Delsuc, M.A., Lallemand, J.Y., Improvement of dynamic range in NMR by oversampling (1986) J. Magn. Reson., 69, pp. 504-507. , 1:CAS:528:DyaL28XmtlOitbc%3D; Delsuc, M.-A., Tramesel, D., Application of maximum-entropy processing to NMR multidimensional data sets: Partial sampling case (2006) C. R. Chim., 9, pp. 364-373. , 1:CAS:528:DC%2BD28XhvFOisLk%3D; Wei, J., Li, H., Barrow, M.P., O'Connor, P.B., Structural characterization of chlorophyll - A by high resolution tandem mass spectrometry (2013) J. Am. Soc. Mass Spectrom., 24, pp. 753-760. , 1:CAS:528:DC%2BC3sXmvFOrtr8%3D; Mosely, J.A., Smith, M.J.P., Prakash, A.S., Sims, M., Bristow, A.W.T., Electron-induced dissociation of singly charged organic cations as a tool for structural characterization of pharmaceutical type molecules (2011) Anal. Chem., 83, pp. 4068-4075. , 1:CAS:528:DC%2BC3MXlsVOjsr8%3D},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of WarwickUnited Kingdom; email: p.oconnor@warwick.ac.uk},\npublisher={Springer New York LLC},\nissn={10440305},\ncoden={JAMSE},\npubmed_id={26184984},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. [Figure not available: see fulltext.] © 2015 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.\n \n \n \n \n\n\n \n Barrow, M.; Peru, K.; Fahlman, B.; Hewitt, L.; Frank, R.; and Headley, J.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 26(9): 1508-1521. 2015.\n cited By 22\n\n\n\n
\n\n\n\n \n \n \"BeyondPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Barrow20151508,\nauthor={Barrow, M.P. and Peru, K.M. and Fahlman, B. and Hewitt, L.M. and Frank, R.A. and Headley, J.V.},\ntitle={Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2015},\nvolume={26},\nnumber={9},\npages={1508-1521},\ndoi={10.1007/s13361-015-1188-9},\nnote={cited By 22},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938764911&doi=10.1007%2fs13361-015-1188-9&partnerID=40&md5=56192bcd15f605a5bb22506b1f7f0b50},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Water Science and Technology Division, Environment Canada, Saskatoon, SK  S7N3H5, Canada; Environment and Carbon Management Division, Alberta Innovates-Technology Futures, Vegreville, AB  T9C 1T4, Canada; Water Science and Technology Division, Environment Canada, Burlington, ON  L7R 4A6, Canada},\nabstract={There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands. [Figure not available: see fulltext.] © 2015 American Society for Mass Spectrometry.},\nauthor_keywords={Atmospheric pressure photoionization;  Environmental;  Fourier transform ion cyclotron resonance;  Naphthenic acids;  Oil sands;  Water},\nkeywords={Atmospheric ionization;  Atmospheric pressure;  Cyclotron resonance;  Cyclotrons;  Drug products;  Electron cyclotron resonance;  Fourier series;  Fourier transforms;  Groundwater;  Ionization;  Ionization of gases;  Ionization of liquids;  Ionization potential;  Ions;  Mass spectrometry;  Negative ions;  Oil fields;  Oil sands;  Organic acids;  Photoionization;  Positive ions;  Resonance;  Sand;  Spectrometry;  Water, Atmospheric pressure photo ionization;  Environmental;  Fourier transform ion cyclotron resonance;  Fourier transform ion cyclotron resonance mass spectrometry;  Ion electrospray ionization;  Naphthenic acid;  Oil sands process waters;  Sulfur containing compound, Electrospray ionization, asphalt;  ground water;  naphthenic acid;  organic compound;  river water;  unclassified drug;  water, Article;  athabasca oil sand;  atmospheric pressure;  Canada;  drug mixture;  electrospray;  environmental factor;  Fourier transformation;  ion cyclotron resonance mass spectrometry;  molecular weight;  optical resolution;  principal component analysis;  screening test;  surface mining;  tar sand},\nchemicals_cas={asphalt, 8052-42-4; water, 7732-18-5},\nreferences={Barrow, M.P., Petroleomics: Study of the old and the new (2010) Biofuels, 1, pp. 651-655. , 1:CAS:528:DC%2BC3cXhtFOqsrvJ; Headley, J.V., Peru, K.M., Mohamed, M.H., Frank, R.A., Martin, J.W., Hazewinkel, R.R., Humphries, D., Wrona, F.J., Chemical fingerprinting of naphthenic acids and oil sands process waters - A review of analytical methods for environmental samples (2013) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 48, pp. 1145-1163. , 1:CAS:528:DC%2BC3sXntFagtLw%3D; Schindler, D.W., Unravelling the complexity of pollution by the oil sands industry (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 3209-3210. , 1:CAS:528:DC%2BC2cXjsVCmtr8%3D; Schindler, D., Tar sands need solid science (2010) Nature, 468, pp. 499-501. , 1:CAS:528:DC%2BC3cXhsVOrsb%2FK; Grewer, D.M., Young, R.F., Whittal, R.M., Fedorak, P.M., Naphthenic acids and other acid-extractables in water samples from Alberta: What is being measured? (2010) Sci. Total Environ., 408, pp. 5997-6010. , 1:CAS:528:DC%2BC3cXhtlaqtr3L; Holowenko, F.M., MacKinnon, M.D., Fedorak, P.M., Naphthenic acids and surrogate naphthenic acids in methanogenic microcosms (2001) Water Res., 35, pp. 2595-2606. , 1:CAS:528:DC%2BD3MXktVGmtLc%3D; Headley, J.V., Peru, K.M., McMartin, D.W., Winkler, M., Determination of dissolved naphthenic acids in natural waters by using negative-ion electrospray mass spectrometry (2002) J. AOAC Int., 85, pp. 182-187. , 1:CAS:528:DC%2BD38XhsVKiu78%3D; Rogers, V.V., Liber, K., MacKinnon, M.D., Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water (2002) Chemosphere, 48, pp. 519-527. , 1:CAS:528:DC%2BD38XktFOmtbs%3D; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Fourier transform ion cyclotron resonance mass spectrometry of principal components in oilsands naphthenic acids (2004) J. Chromatogr. A, 1058, pp. 51-59. , 1:CAS:528:DC%2BD2cXpslGiu7Y%3D; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation (2006) Anal. Chem., 78, pp. 8354-8361. , 1:CAS:528:DC%2BD28Xht1Whs7jM; Lo, C.C., Brownlee, B.G., Bunce, N.J., Mass spectrometric and toxicological assays of Athabasca oil sands naphthenic acids (2006) Water Res., 40, pp. 655-664. , 1:CAS:528:DC%2BD28XhsFCrsLo%3D; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., Characterization of naphthenic acids from athabasca oil sands using electrospray ionization: The significant influence of solvents (2007) Anal. Chem., 79, pp. 6222-6229. , 1:CAS:528:DC%2BD2sXntFegsbs%3D; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Data visualization for the characterization of naphthenic acids within petroleum samples (2009) Energy Fuel, 23, pp. 2592-2599. , 1:CAS:528:DC%2BD1MXjslGqtbg%3D; Headley, J.V., Peru, K.M., Barrow, M.P., Mass spectrometric characterization of naphthenic acids in environmental samples: A review (2009) Mass Spectrom. Rev., 28, pp. 121-134. , 1:CAS:528:DC%2BD1MXhsFGlur8%3D; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem., 82, pp. 3727-3735. , 1:CAS:528:DC%2BC3cXktVyisLk%3D; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization (2011) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 46, pp. 844-854. , 1:CAS:528:DC%2BC3MXnslKntr4%3D; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2011) Rapid Commun. Mass Spectrom., 25, pp. 1899-1909. , 1:CAS:528:DC%2BC3MXntVGmtrY%3D; Rowland, S.J., West, C.E., Jones, D., Scarlett, A.G., Frank, R.A., Hewitt, L.M., Steroidal aromatic 'naphthenic acids' in oil sands process-affected water: Structural comparisons with environmental estrogens (2011) Environ. Sci. Technol., 45, pp. 9806-9815. , 1:CAS:528:DC%2BC3MXhtlCiurbP; Quagraine, E.K., Peterson, H.G., Headley, J.V., In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region - Demonstrated field studies and plausible options: A review (2005) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 40, pp. 685-722. , 1:CAS:528:DC%2BD2MXitVSrsrs%3D; Headley, J.V., Du, J.L., Peru, K.M., McMartin, D.W., Electrospray ionization mass spectrometry of the photodegradation of naphthenic acids mixtures irradiated with titanium dioxide (2009) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 44, pp. 591-597. , 1:CAS:528:DC%2BD1MXjvVynsbk%3D; Martin, J.W., Barri, T., Han, X., Fedorak, P.M., El-Din, M.G., Perez, L., Scott, A.C., Jiang, J.T., Ozonation of oil sands process-affected water accelerates microbial bioremediation (2010) Environ. Sci. Technol., 44, pp. 8350-8356. , 1:CAS:528:DC%2BC3cXht1Gqt77J; Marshall, A.G., Rodgers, R.P., Petroleomics: The next grand challenge for chemical analysis (2004) Acc. Chem. Res., 37, pp. 53-59. , 1:CAS:528:DC%2BD3sXpsFaqs7Y%3D; Marshall, A.G., Rodgers, R.P., Petroleomics: Chemistry of the underworld (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 18090-18095. , 1:CAS:528:DC%2BD1cXhsVOmsLfF; Amster, I.J., Fourier transform mass spectrometry (1996) J. Mass Spectrom., 31, pp. 1325-1337. , 1:CAS:528:DyaK2sXis12htQ%3D%3D; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry: A primer (1998) Mass Spectrom. Rev., 17, pp. 1-35. , 1:CAS:528:DyaK1cXmsFantbk%3D; Barrow, M.P., Burkitt, W.I., Derrick, P.J., Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology (2005) Analyst, 130, pp. 18-28. , 1:CAS:528:DC%2BD2cXhtFans7%2FF; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry (2001) Energy Fuel, 15, pp. 1505-1511. , 1:CAS:528:DC%2BD3MXmtF2ltrg%3D; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion (2003) Anal. Chem., 75, pp. 860-866. , 1:CAS:528:DC%2BD3sXltlOjsg%3D%3D; Qian, K., Rodgers, R.P., Hendrickson, C.L., Emmett, M.R., Marshall, A.G., Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil (2001) Energy Fuel, 15, pp. 492-498. , 1:CAS:528:DC%2BD3MXht12lsw%3D%3D; Schaub, T.M., Hendrickson, C.L., Qian, K., Quinn, J.P., Marshall, A.G., High-resolution field desorption/ionization Fourier transform ion cyclotron resonance mass analysis of nonpolar molecules (2003) Anal. Chem., 75, pp. 2172-2176. , 1:CAS:528:DC%2BD3sXisVOrur4%3D; Rudzinski, W.E., Aminabhavi, T.M., Sassman, S., Watkins, L.M., Isolation and characterization of the saturate and aromatic fractions of a Maya crude oil (2000) Energy Fuel, 14, pp. 839-844. , 1:CAS:528:DC%2BD3cXktVagsr0%3D; Purcell, J.M., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis (2006) Anal. Chem., 78, pp. 5906-5912. , 1:CAS:528:DC%2BD28XmsVyqtrk%3D; Griffiths, M.T., Da Campo, R., O'Connor, P.B., Barrow, M.P., Throwing light on petroleum: Simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (2014) Anal. Chem., 86, pp. 527-534. , 1:CAS:528:DC%2BC3sXhvFejtLbE; Schrader, W., Panda, S., Brockmann, K.J., Benter, T., Characterization of nonpolar aromatic hydrocarbons in crude oil using atmospheric pressure laser ionization and Fourier transform ion cyclotron resonance mass spectrometry (APLI FT-ICR MS) (2008) Analyst, 133, pp. 867-869. , 1:CAS:528:DC%2BD1cXns1artrw%3D; Headley, J.V., Peru, K.M., Armstrong, S.A., Han, X.M., Martin, J.W., Mapolelo, M.M., Smith, D.F., Marshall, A.G., Aquatic plant-derived changes in oil sands naphthenic acid signatures determined by low-, high-, and ultra-high resolution mass spectrometry (2009) Rapid Commun. Mass Spectrom., 23, pp. 515-522. , 1:CAS:528:DC%2BD1MXitVakt7g%3D; Ross, M.S., Pereira, A.D.S., Fennell, J., Davies, M., Johnson, J., Sliva, L., Martin, J.W., Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry (2012) Environ. Sci. Technol., 46, pp. 12796-12805; Frank, R.A., Roy, J.W., Bickerton, G., Rowland, S.J., Headley, J.V., Scarlett, A.G., West, C.E., Hewitt, L.M., Profiling oil sands mixtures from industrial developments and natural ground waters for source identification (2014) Environ. Sci. Technol., 48, pp. 2660-2670. , 1:CAS:528:DC%2BC2cXpsleksw%3D%3D; King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C., Olah, T., Mechanistic investigation of ionization suppression in electrospray ionization (2000) J. Am. Soc. Mass Spectrom., 11, pp. 942-950. , 1:CAS:528:DC%2BD3cXotlCit70%3D; Theron, H.B., Van Der Merwe, M.J., Swart, K.J., Van Der Westhuizen, J.H., Employing atmospheric pressure photoionization in liquid chromatography/tandem mass spectrometry to minimize ion suppression and matrix effects for the quantification of venlafaxine and O-desmethylvenlafaxine (2007) Rapid Commun. Mass Spectrom., 21, pp. 1680-1686. , 1:CAS:528:DC%2BD2sXmt1Olt70%3D; Pearson, K., On lines and planes of closest fit to systems of points in space (1901) Philos. Mag., 2, pp. 559-572; Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K., Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra (2001) Anal. Chem., 73, pp. 4676-4681. , 1:CAS:528:DC%2BD3MXmtlWisbo%3D; Guan, S., Marshall, A.G., Scheppele, S.E., Resolution and chemical formula identification of aromatic hydrocarbons and aromatic compounds containing sulfur, nitrogen, or oxygen in petroleum distillates and refinery streams (1996) Anal. Chem., 68, pp. 46-71. , 1:CAS:528:DyaK2MXpslSrtLg%3D; Witt, M., Fuchser, J., Koch, B.P., Fragmentation studies of fulvic acids using collision induced dissociation Fourier transform ion cyclotron resonance mass spectrometry (2009) Anal. Chem., 81, pp. 2688-2694. , 1:CAS:528:DC%2BD1MXis12hsro%3D; Smith, D.F., Schaub, T.M., Rahimi, P., Teclemariam, A., Rodgers, R.P., Marshall, A.G., Self-association of organic acids in petroleum and Canadian bitumen characterized by low- and high-resolution mass spectrometry (2007) Energy Fuel, 21, pp. 1309-1316. , 1:CAS:528:DC%2BD28XhtlSgsr7P; Da Campo, R., Barrow, M.P., Shepherd, A.G., Salisbury, M., Derrick, P.J., Characterization of naphthenic acid singly charged noncovalent dimers and their dependence on the accumulation time within a hexapole in Fourier transform ion cyclotron resonance mass spectrometry (2009) Energy Fuel, 23, pp. 5544-5549; Purcell, J.M., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., Speciation of nitrogen containing aromatics by atmospheric pressure photoionization or electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2007) J. Am. Soc. Mass Spectrom., 18, pp. 1265-1273. , 1:CAS:528:DC%2BD2sXntF2ls7k%3D; (2014) ST98-2014 Alberta's Energy Reserves 2013 and Supply/Demand Outlook 2014-2023, , https://www.aer.ca/data-and-publications/statistical-reports/st98, Alberta Energy Regulator, Calgary, Alberta, Canada Accessed 25 March 2015; Kelly, E.N., Short, J.W., Schindler, D.W., Hodson, P.V., Ma, M., Kwan, A.K., Fortin, B.L., Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 22346-22351. , 1:CAS:528:DC%2BC3cXmtlalsA%3D%3D; Headley, J.V., Akre, C., Conly, F.M., Peru, K.M., Dickson, L.C., Preliminary characterization and source assessment of PAHs in tributary sediments of the Athabasca River, Canada (2001) Environ. Forensic., 2, pp. 335-345. , 1:CAS:528:DC%2BD38XivVOqsLY%3D; Lesage, S., Brown, S., Millar, K., Novakowski, K., Humic acids enhanced removal of aromatic hydrocarbons from contaminated aquifers: Developing a sustainable technology (2001) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 36, pp. 1515-1533. , 1:STN:280:DC%2BD3MrltVGksA%3D%3D; Van Stempvoort, D.R., Lesage, S., Novakowski, K.S., Millar, K., Brown, S., Lawrence, J.R., Humic acid enhanced remediation of an emplaced diesel source in groundwater: 1. Laboratory-based pilot scale test (2002) J. Contam. Hydrol., 54, pp. 249-276; Bowman, D.T., Slater, G.F., Warren, L.A., McCarry, B.E., Identification of individual thiophene-, indane-, tetralin-, cyclohexane-, and adamantane-type carboxylic acids in composite tailings pore water from Alberta oil sands (2014) Rapid Commun. Mass Spectrom., 28, pp. 2075-2083. , 1:CAS:528:DC%2BC2cXhsVWqsr%2FL; Ahad, J.M., Pakdel, H., Savard, M.M., Calderhead, A.I., Gammon, P.R., Rivera, A., Peru, K.M., Headley, J.V., Characterization and quantification of mining-related "naphthenic acids" in ground water near a major oil sands tailings pond (2013) Environ. Sci. Technol., 47, pp. 5023-5030. , 1:CAS:528:DC%2BC3sXmt1yksL0%3D; Barrow, M.P., Peru, K.M., Headley, J.V., An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands (2014) Anal. Chem., 86, pp. 8281-8288. , 1:CAS:528:DC%2BC2cXhtFOqtbzN},\ncorrespondence_address1={Barrow, M.P.; Department of Chemistry, University of WarwickUnited Kingdom},\npublisher={Springer New York LLC},\nissn={10440305},\ncoden={JAMSE},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands. [Figure not available: see fulltext.] © 2015 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl.\n \n \n \n \n\n\n \n Cortese-Krott, M.; Kuhnle, G.; Dyson, A.; Fernandez, B.; Grman, M.; DuMond, J.; Barrow, M.; McLeod, G.; Nakagawa, H.; Ondrias, K.; Nagy, P.; King, S.; Saavedra, J.; Keefer, L.; Singer, M.; Kelm, M.; Butler, A.; and Feelisch, M.\n\n\n \n\n\n\n Proceedings of the National Academy of Sciences of the United States of America, 112(34): E4651-E4660. 2015.\n cited By 125\n\n\n\n
\n\n\n\n \n \n \"KeyPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Cortese-Krott2015E4651,\nauthor={Cortese-Krott, M.M. and Kuhnle, G.G.C. and Dyson, A. and Fernandez, B.O. and Grman, M. and DuMond, J.F. and Barrow, M.P. and McLeod, G. and Nakagawa, H. and Ondrias, K. and Nagy, P. and King, S.B. and Saavedra, J.E. and Keefer, L.K. and Singer, M. and Kelm, M. and Butler, A.R. and Feelisch, M.},\ntitle={Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl},\njournal={Proceedings of the National Academy of Sciences of the United States of America},\nyear={2015},\nvolume={112},\nnumber={34},\npages={E4651-E4660},\ndoi={10.1073/pnas.1509277112},\nnote={cited By 125},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940429629&doi=10.1073%2fpnas.1509277112&partnerID=40&md5=06b111845e76df8f1c17da546d5ed374},\naffiliation={Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Heinrich Heine University of Düsseldorf, Dusseldorf, 40225, Germany; Department of Nutrition, University of Reading, Whiteknights, Reading, RG6 6AP, United Kingdom; Bloomsbury Institute of Intensive Care Medicine, University College LondonLondon  WC1E 6BT, United Kingdom; Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom; Center for Molecular Medicine, Slovak Academy of SciencesBratislava  83101, Slovakia; Department of Chemistry, Wake Forest University, Winston-Salem, NC  27109, United States; Department of Chemistry, Warwick University, Coventry, CV4 7AL, United Kingdom; Bruker UK Ltd., Coventry, CV4 9GH, United Kingdom; Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya-shi, Aichi, 467-8603, Japan; Department of Molecular Immunology and Toxicology, National Institute of OncologyBudapest  1122, Hungary; Leidos Biomedical Research, Inc., National Cancer Institute-Frederick, Frederick, MD  21702, United States; National Cancer Institute-Frederick, Frederick, MD  21702, United States; Medical School, University of St. Andrews, St. Andrews, Fife, KY16 9AJ, United Kingdom},\nabstract={Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO-), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO- is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO- synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.},\nauthor_keywords={Gasotransmitter;  Nitric oxide;  Nitroxyl;  Redox;  Sulfide},\nkeywords={anion;  gasotransmitter;  hydrogen sulfide;  nitric oxide;  nitrogen;  nitrosopersulfide;  sulfide;  sulfite;  sulfonic acid derivative;  sulfur;  thiol;  unclassified drug;  hydrogen sulfide;  nitric oxide;  nitrogen;  nitrogen oxide;  nitroxyl;  sulfide;  sulfur, animal experiment;  artery compliance;  Article;  biological activity;  biological phenomena and functions concerning the entire organism;  blood pressure;  chemical reaction;  conceptual framework;  controlled study;  decomposition;  heart muscle contractility;  in vitro study;  nonhuman;  pH;  precursor;  priority journal;  rat;  scavenging system;  solute;  synthesis;  animal;  bioavailability;  male;  metabolism;  Wistar rat, Animals;  Biological Availability;  Hydrogen Sulfide;  Male;  Nitric Oxide;  Nitrogen;  Nitrogen Oxides;  Rats, Wistar;  Sulfides;  Sulfur},\nchemicals_cas={hydrogen sulfide, 15035-72-0, 7783-06-4; nitric oxide, 10102-43-9; nitrogen, 7727-37-9; sulfide, 18496-25-8; sulfite, 14265-45-3; sulfur, 13981-57-2, 7704-34-9; nitrogen oxide, 11104-93-1; Hydrogen Sulfide; Nitric Oxide; Nitrogen; Nitrogen Oxides; nitroxyl; Sulfides; Sulfur},\nfunding_details={Medical Research CouncilMedical Research Council, MRC, G1001536},\nfunding_details={Magyar Tudományos AkadémiaMagyar Tudományos Akadémia, MTA},\nfunding_details={University of SouthamptonUniversity of Southampton},\nreferences={Urey, H.C., On the early chemical history of the Earth and the origin of life (1952) Proc Natl Acad Sci USA, 38 (4), pp. 351-363; Feelisch, M., Martin, J.F., The early role of nitric oxide in evolution (1995) Trends Ecol Evol, 10 (12), pp. 496-499; Olson, K.R., Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling (2012) J Comp Physiol B, 182 (7), pp. 881-897; Parker, E.T., Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment (2011) Proc Natl Acad Sci USA, 108 (14), pp. 5526-5531; Patel, B.H., Percivalle, C., Ritson, D.J., Duffy, C.D., Sutherland, J.D., Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism (2015) Nat Chem, 7 (4), pp. 301-307; Goubern, M., Andriamihaja, M., Nübel, T., Blachier, F., Bouillaud, F., Sulfide, the first inorganic substrate for human cells (2007) FASEB J, 21 (8), pp. 1699-1706; Danovaro, R., The first metazoa living in permanently anoxic conditions (2010) BMC Biol, 8, p. 30; Searcy, D.G., Lee, S.H., Sulfur reduction by human erythrocytes (1998) J Exp Zool, 282 (3), pp. 310-322; Seel, F., Wagner, M., Reaction of sulfides with nitrogen monoxide in aqueous solution (1988) Z Anorg Allg Chem, 558 (3), pp. 189-192; Seel, F., Wagner, M., The reaction of polysulfides with nitrogen monoxide in non-acqueous solvents nitrosodisulfides (1985) Z Naturforsch C, 40 (6), pp. 762-764; Kurtenacker, A., Löschner, H., Über die Einwirkung von Stickoxyd auf Thiosulfat und Sulfid (1938) Z Anorg Allg Chem, 238 (4), pp. 335-349; Bagster, L.S., The reaction between nitrous acid and hydrogen sulphide (1928) J Chem Soc, pp. 2631-2643; Cortese-Krott, M.M., Fernandez, B.O., Kelm, M., Butler, A.R., Feelisch, M., On the chemical biology of the nitrite/sulfide interaction (2015) Nitric Oxide, 46, pp. 14-24; Bruce King, S., Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides (2013) Free Radic Biol Med, 55, pp. 1-7; Li, Q., Lancaster, J.R., Chemical foundations of hydrogen sulfide biology (2013) Nitric Oxide, 35, pp. 21-34; Kimura, H., The physiological role of hydrogen sulfide and beyond (2014) Nitric Oxide, 41, pp. 4-10; Shatalin, K., Shatalina, E., Mironov, A., Nudler, E., H2S: A universal defense against antibiotics in bacteria (2011) Science, 334 (6058), pp. 986-990; Ali, M.Y., Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? (2006) Br J Pharmacol, 149 (6), pp. 625-634; Whiteman, M., Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide (2006) Biochem Biophys Res Commun, 343 (1), pp. 303-310; Yong, Q.C., Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide (2011) Antioxid Redox Signal, 14 (11), pp. 2081-2091; Filipovic, M.R., Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols (2012) J Am Chem Soc, 134 (29), pp. 12016-12027; Williams, D.L.H., (2004) Nitrosation Reactions and the Chemistry of Nitric Oxide, , Elsevier, Amsterdam; Goehring, M., Messner, J., Zur Kenntnis der schwefligen Säure. III. Das Sulfinimid und seine Isomeren (1952) Z Anorg Allg Chem, 268 (1-2), pp. 47-56; Müller, R.P., Nonella, M., Huber, J.R., Spectroscopic investigation of HSNO in a low temperature matrix. UV, VIS, and IR-induced isomerisations (1984) Chem Phys, 87, pp. 351-361; Nonella, M., Huber, J.R., Ha, T.K., Photolytic preparation and isomerization of thionyl imide, thiocyanic acid, thionitrous acid, and nitrogen hydroxide sulfide in an argon matrix: An experimental and theoretical study (1987) J Phys Chem, 91 (20), pp. 5203-5209; Cortese-Krott, M.M., Nitrosopersulfide (SSNO(-)) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide (2014) Redox Biol, 2, pp. 234-244; Munro, A.P., Williams, D.L.H., Reactivity of sulfur nucleophiles towards S-nitrosothiols (2000) J Chem Soc Perkin 2, 1 (9), pp. 1794-1797; Berenyiova, A., The reaction products of sulfide and S-nitrosoglutathione are potent vasorelaxants (2015) Nitric Oxide, 46, pp. 123-130; Kimura, Y., Polysulfides are possible H2S-derived signaling molecules in rat brain (2013) FASEB J, 27 (6), pp. 2451-2457; Fukuto, J.M., Small molecule signaling agents: The integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species (2012) Chem Res Toxicol, 25 (4), pp. 769-793; Ida, T., Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling (2014) Proc Natl Acad Sci USA, 111 (21), pp. 7606-7611; Nagasaka, Y., Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injury (2008) Anesthesiology, 109 (4), pp. 675-682; Vitvitsky, V., Kabil, O., Banerjee, R., High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations (2012) Antioxid Redox Signal, 17 (1), pp. 22-31; Blackstone, E., Morrison, M., Roth, M.B., H2S induces a suspended animation-like state in mice (2005) Science, 308 (5721), p. 518; Seel, F., PNP-Perthionitrit und PNP-Monothionitrit (1985) Z Naturforsch B, 40 (12), pp. 1607-1617; Hrabie, J.A., Keefer, L.K., Chemistry of the nitric oxide-releasing diazeniumdiolate ("nitrosohydroxylamine") functional group and its oxygen-substituted derivatives (2002) Chem Rev, 102 (4), pp. 1135-1154; Reisz, J.A., Zink, C.N., King, S.B., Rapid and selective nitroxyl (HNO) trapping by phosphines: Kinetics and new aqueous ligations for HNO detection and quantitation (2011) J Am Chem Soc, 133 (30), pp. 11675-11685; Kawai, K., A reductant-resistant and metal-free fluorescent probe for nitroxyl applicable to living cells (2013) J Am Chem Soc, 135 (34), pp. 12690-12696; De Witt, B.J., Marrone, J.R., Kaye, A.D., Keefer, L.K., Kadowitz, P.J., Comparison of responses to novel nitric oxide donors in the feline pulmonary vascular bed (2001) Eur J Pharmacol, 430 (2-3), pp. 311-315; Murphy, M.E., Sies, H., Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase (1991) Proc Natl Acad Sci USA, 88 (23), pp. 10860-10864; Dunnicliff, H., Mohammad, S., Kishen, J., The interaction between nitric oxide and hydrogen sulphide in the presence of water (1931) J Phys Chem, 35 (6), pp. 1721-1734; Degener, E., Seel, F., Zur Kenntnis der Salze der Nitrosohydroxylaminsulfonsäure. I. Chemischer Konstitutionsbeweis der Nitrosohydroxylaminsulfonate (1956) Z Anorg Allg Chem, 285 (3-6), pp. 129-133; Goehring, M., Otto, R., Zur Kenntnis der Salze der stickoxyd-schwefligen Säure (1955) Z Anorg Allg Chem, 280 (1-3), pp. 143-146; Clusius, K., Schumacher, H., Reaktionen mit 15N. XXVI. Konstitution und Zerfall von Kaliumnitroso-hydroxylaminsulfonat (1957) Helv Chim Acta, 40 (5), pp. 1137-1144; Keefer, L.K., Nims, R.W., Davies, K.M., Wink, D.A., "NONOates" (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: Convenient nitric oxide dosage forms (1996) Methods Enzymol, 268, pp. 281-293; Steudel, R., Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes (1996) Ind Eng Chem Res, 35 (4), pp. 1417-1423; Zamora, R., Grzesiok, A., Weber, H., Feelisch, M., Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and anti-platelet activity of Piloty's acid: A comparison with Angeli's salt (1995) Biochem J, 312 (2), pp. 333-339; Ono, K., Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: Implications of their possible biological activity and utility (2014) Free Radic Biol Med, 77, pp. 82-94; Toohey, J.I., Cooper, A.J., Thiosulfoxide (sulfane) sulfur: New chemistry and new regulatory roles in biology (2014) Molecules, 19 (8), pp. 12789-12813; Nagy, P., Mechanistic chemical perspective of hydrogen sulfide signaling (2015) Methods Enzymol, 554, pp. 3-29; Cox, E., Jeffrey, G., Stadler, H., Structure of dinitrososulphite ion (1948) Nature, 162, p. 770; Reglinski, J., Armstrong, D.R., Sealey, K., Spicer, M.D., N-nitrosohydroxylamine-Nsulfonate: A redetermination of its X-ray crystal structure and an analysis of its formation from NO and SO32-using ab initio molecular orbital calculations (1999) Inorg Chem, 38 (4), pp. 733-737; Szabó, C., Hydrogen sulphide and its therapeutic potential (2007) Nat Rev Drug Discov, 6 (11), pp. 917-935; King, A.L., Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent (2014) Proc Natl Acad Sci USA, 111 (8), pp. 3182-3187; Bucci, M., Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity (2010) Arterioscler Thromb Vasc Biol, 30 (10), pp. 1998-2004; Wang, R., Signaling pathways for the vascular effects of hydrogen sulfide (2011) Curr Opin Nephrol Hypertens, 20 (2), pp. 107-112; Burgoyne, J.R., Cysteine redox sensor in PKGIa enables oxidant-induced activation (2007) Science, 317 (5843), pp. 1393-1397; Bucci, M., cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation (2012) PLoS One, 7 (12); Olson, K.R., Hydrogen sulfide as an oxygen sensor (2013) Clin Chem Lab Med, 51 (3), pp. 623-632; Nyholm, R.S., Rannitt, L., Drago, R.S., N-nitrosohydroxylamine-N-sulfonates (1957) Inorg Synth, 5, pp. 117-122; Stamler, J., Feelisch, M., (1996) Preparation and Detection of S-nitrosothiols. Methods in Nitric Oxide Research, pp. 521-539. , eds Feelisch M, Stamler J (Wiley, Chichester, United Kingdom); Feelisch, M., The biochemical pathways of nitric oxide formation from nitrovasodilators (1991) J Cardiovasc Pharmacol, 17, pp. S25-S33; Feelisch, M., Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: Implications for the fate of NO in vivo (2002) FASEB J, 16 (13), pp. 1775-1785; Dyson, A., An integrated approach to assessing nitroso-redox balance in systemic inflammation (2011) Free Radic Biol Med, 51 (6), pp. 1137-1145},\ncorrespondence_address1={Feelisch, M.; Faculty of Medicine, University of Southampton, Southampton General HospitalUnited Kingdom; email: M.Feelisch@soton.ac.uk},\npublisher={National Academy of Sciences},\nissn={00278424},\ncoden={PNASA},\npubmed_id={26224837},\nlanguage={English},\nabbrev_source_title={Proc. Natl. Acad. Sci. U. S. A.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO-), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO- is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO- synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Does deamidation cause protein unfolding? A top-down tandem mass spectrometry study.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Protein Science, 24(5): 850-860. 2015.\n cited By 6\n\n\n\n
\n\n\n\n \n \n \"DoesPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Deamidation is a nonenzymatic post-translational modification of asparagine to aspartic acid or glutamine to glutamic acid, converting an uncharged amino acid to a negatively charged residue. It is plausible that deamidation of asparagine and glutamine residues would result in disruption of a proteins' hydrogen bonding network and thus lead to protein unfolding. To test this hypothesis Calmodulin and B2M were deamidated and analyzed using tandem mass spectrometry on a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). The gas phase hydrogen bonding networks of deamidated and nondeamidated protein isoforms were probed by varying the infra-red multi-photon dissociation laser power in a linear fashion and plotting the resulting electron capture dissociation fragment intensities as a melting curve at each amino acid residue. Analysis of the unfolding maps highlighted increased fragmentation at lower laser powers localized around heavily deamidated regions of the proteins. In addition fragment intensities were decreased across the rest of the proteins which we propose is because of the formation of salt-bridges strengthening the intramolecular interactions of the central regions. These results were supported by a computational flexibility analysis of the mutant and unmodified proteins, which would suggest that deamidation can affect the global structure of a protein via modification of the hydrogen bonding network near the deamidation site and that top down FTICR-MS is an appropriate technique for studying protein folding. © 2014 The Protein Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Binding of an organo-osmium(ii) anticancer complex to guanine and cytosine on DNA revealed by electron-based dissociations in high resolution Top-Down FT-ICR mass spectrometry.\n \n \n \n \n\n\n \n Wootton, C.; Sanchez-Cano, C.; Liu, H.; Barrow, M.; Sadler, P.; and O'Connor, P.\n\n\n \n\n\n\n Dalton Transactions, 44(8): 3624-3632. 2015.\n cited By 13\n\n\n\n
\n\n\n\n \n \n \"BindingPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Wootton20153624,\nauthor={Wootton, C.A. and Sanchez-Cano, C. and Liu, H.-K. and Barrow, M.P. and Sadler, P.J. and O'Connor, P.B.},\ntitle={Binding of an organo-osmium(ii) anticancer complex to guanine and cytosine on DNA revealed by electron-based dissociations in high resolution Top-Down FT-ICR mass spectrometry},\njournal={Dalton Transactions},\nyear={2015},\nvolume={44},\nnumber={8},\npages={3624-3632},\ndoi={10.1039/c4dt03819c},\nnote={cited By 13},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922797704&doi=10.1039%2fc4dt03819c&partnerID=40&md5=d3fe9358e6bef2938c22f9722671ba1f},\naffiliation={Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China},\nabstract={The OsII arene anticancer complex [(η6-bip)Os(en)Cl]+ (Os1-Cl; where bip = biphenyl, and en = ethylenediamine) binds strongly to DNA. Here we investigate reactions between Os1-Cl and the self-complementary 12-mer oligonucleotide 5′-TAGTAATTACTA-3′ (DNA12) using ultra high resolution Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). Identification of the specific sites of DNA osmiation with {(η6-bip)Os(en)}2+ was made possible by the use of Electron Detachment Dissociation (EDD) which produced a wide range of assignable osmiated MS/MS fragments. In contrast, the more commonly used CAD and IRMPD techniques produced fragments which lose the bound osmium. These studies reveal that not only is guanine G3 a strong binding site for {(η6-bip)Os(en)}2+ but, unexpectedly, so too is cytosine C10. Interestingly, the G3/C10 di-osmiated adduct of DNA12 also formed readily but did not undergo such facile fragmentation by EDD, perhaps due to folding induced by van der Waal's interactions of the bound osmium arene species. These new insights into osmium arene DNA adducts should prove valuable for the design of new organometallic drugs and contribute to understanding the lack of cross resistance of this organometallic anticancer complex with cisplatin. This journal is © The Royal Society of Chemistry 2015.},\nkeywords={Chlorine compounds;  Computer aided design;  Dissociation;  DNA;  Mass spectrometry;  Oligonucleotides;  Organometallics;  Platinum compounds;  Positive ions;  Spectrometry, Cross resistance;  Electron detachment dissociations;  Ethylene diamine;  Fourier transform ion cyclotron resonance mass spectrometry;  FT-ICR mass spectrometry;  High resolution;  Specific sites;  Ultrahigh resolution, Osmium, antineoplastic agent;  coordination compound;  cytosine;  DNA;  guanine;  osmium, chemistry;  electron;  metabolism;  nucleotide sequence;  synthesis;  tandem mass spectrometry, Antineoplastic Agents;  Base Sequence;  Coordination Complexes;  Cytosine;  DNA;  Electrons;  Guanine;  Osmium;  Tandem Mass Spectrometry},\nchemicals_cas={cytosine, 71-30-7; DNA, 9007-49-2; guanine, 69257-39-2, 73-40-5; osmium, 7440-04-2; Antineoplastic Agents; Coordination Complexes; Cytosine; DNA; Guanine; Osmium},\nreferences={Dyson, P.J., Sava, G., (2006) Dalton Trans., pp. 1929-1933; Betanzos-Lara, S., Salassa, L., Habtemariam, A., Novakova, O., Pizarro, A.M., Clarkson, G.J., Liskova, B., Sadler, P.J., (2012) Organometallics, 31, pp. 3466-3479; Hearn, J.M., Romero-Canelon, I., Qamar, B., Liu, Z., Hands-Portman, I., Sadler, P.J., (2013) ACS Chem. Biol., 8, p. 2345; Strianese, M., Basile, A., Mazzone, A., Morello, S., Turco, M.C., Pellecchia, C., (2013) J. Cell. Physiol., 228, pp. 2202-2209; Funston, A.M., Cullinane, C., Ghiggino, K.P., McFadyen, W.D., Stylli, S.S., Tregloan, P.A., (2005) Aust. J. Chem., 58, p. 206; Peacock, A.F.A., Habtemariam, A., Fernández, R., Walland, V., Fabbiani, F.P.A., Parsons, S., Aird, R.E., Sadler, P.J., (2006) J. Am. Chem. Soc., 128, pp. 1739-1748; Mackay, F.S., Woods, J.A., Moseley, H., Ferguson, J., Dawson, A., Parsons, S., Sadler, P.J., (2006) Chemistry, 12, pp. 3155-3161; Alderden, R.A., Hall, M.D., Hambley, T.W., (2006) J. Chem. Educ., 83, pp. 728-734; Wong, E., Giandomenico, C.M., (1999) Chem. Rev., 99, pp. 2451-2466; Reedijk, J., (2009) Eur. J. Inorg. Chem., 10, pp. 1303-1312; Pizarro, A.M., Sadler, P.J., (2009) Biochimie, 91, pp. 1198-1211; Centerwall, C., Tacka, K., (2006) Mol. Pharmacol., pp. 348-355; Li, H., Lin, T., Van Orden, S.L., Zhao, Y., Barrow, M.P., Pizarro, A.M., Qi, Y., O'Connor, P.B., (2011) Anal. Chem., 84, pp. 9507-9515; Farrer, N.J., Gierth, P., Sadler, P.J., (2011) Chemistry, 17, pp. 12059-12066; Calderone, V., Casini, A., Mangani, S., Messori, L., Orioli, P.L., (2006) Angew. Chem., Int. Ed., 45, pp. 1267-1269; Cho, Y., Ahmed, A., Islam, A., Kim, S., (2014) Mass Spectrom. Rev., pp. 1-16; McLafferty, F.W., (2001) Int. J. Mass Spectrom., 212, pp. 81-87; Jennings, K.R., (1968) Int. J. Mass Spectrom. Ion Phys., 1, pp. 227-235; Zubarev, R., (1998) J. Am. Chem. Soc., 7863, pp. 3265-3266; Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F., (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 9528-9533; Little, D.P., Speir, J.P., Senko, M.W., O'Connor, P.B., McLafferty, F.W., (1994) Anal. Chem., 66, pp. 2809-2815; Wolff, J.J., Laremore, T.N., Aslam, H., Linhardt, R.J., Amster, I.J., (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1449-1458; Bowers, W.D., Delbert, S., Hunter, R.L., McIver, R.T., (1984) J. Am. Chem. Soc., pp. 7288-7289; Budnik, B., Haselmann, K., Zubarev, R., (2001) Chem. Phys. Lett., 342, pp. 299-302; Amster, I., (1996) J. Mass Spectrom., 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev., 17, pp. 1-35; Li, H., Wolff, J.J., Van Orden, S.L., Loo, J.A., (2014) Anal. Chem., 86, pp. 317-320; McLafferty, F.W., Breuker, K., Jin, M., Han, X., Infusini, G., Jiang, H., Kong, X., Begley, T.P., (2007) FEBS J., 274, pp. 6256-6268; Tolmachev, A.V., Robinson, E.W., Wu, S., Paša-Tolić, L., Smith, R.D., (2009) Int. J. Mass Spectrom., 281, pp. 32-38; Quenzer, T.L., Emmett, M.R., Hendrickson, C.L., Kelly, P.H., Marshall, A.G., (2001) Anal. Chem., 73, pp. 1721-1725; Caravatti, P., Allemann, M., (1991) Org. Mass Spectrom., 26, pp. 514-518; Zhang, L.-K., Rempel, D., Pramanik, B.N., Gross, M.L., (2005) Mass Spectrom. Rev., 24, pp. 286-309; Konermann, L., Ahadi, E., Rodriguez, A.D., Vahidi, S., (2012) Anal. Chem, 85, pp. 2-9; Wu, J., McLuckey, S.A., (2004) Int. J. Mass Spectrom., 237, pp. 197-241; Phillips, D.R., McCloskey, J.A., (1993) Int. J. Mass Spectrom. Ion Processes, 128, pp. 61-82; Tromp, J., Schürch, S., (2006) Raipd Commun. Mass Spectrom., pp. 2348-2354; Nyakas, A., Blum, L.C., Stucki, S.R., Reymond, J.-L., Schürch, S., (2013) J. Am. Soc. Mass Spectrom., 24, pp. 249-256; Reedijk, J., (1999) Chem. Rev., 99, pp. 2499-2510; Qi, Y., Liu, Z., Li, H., Sadler, P.J., O'Connor, P.B., (2013) Rapid Commun. Mass Spectrom., 27, pp. 2028-2032; Xu, Z., Shaw, J.B., Brodbelt, J.S., (2013) J. Am. Soc. Mass Spectrom., 24, pp. 265-273; Leymarie, N., Costello, C.E., O'Connor, P.B., (2003) J. Am. Chem. Soc., 125, pp. 8949-8958; Zhang, J., Guy, M.J., Norman, H.S., Chen, Y.-C., Xu, Q., Dong, X., Guner, H., Ge, Y., (2011) J. Proteome Res., 10, pp. 4054-4065; Li, H., Zhao, Y., Phillips, H.I.A., Qi, Y., Lin, T.-Y., Sadler, P.J., O'Connor, P.B., (2011) Anal. Chem., 83, pp. 5369-5376; Taucher, M., Breuker, K., (2010) J. Am. Soc. Mass Spectrom., 21, pp. 918-929; Wolff, J.J., Amster, I.J., Chi, L., Linhardt, R.J., (2007) J. Am. Soc. Mass Spectrom., 18, pp. 234-244; Liu, H.-K., Sadler, P.J., Unpublished work},\ncorrespondence_address1={Sadler, P.J.; Department of Chemistry, University of Warwick, Gibbet Hill Road, United Kingdom},\npublisher={Royal Society of Chemistry},\nissn={14779226},\ncoden={DTARA},\npubmed_id={25650025},\nlanguage={English},\nabbrev_source_title={Dalton Trans.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The OsII arene anticancer complex [(η6-bip)Os(en)Cl]+ (Os1-Cl; where bip = biphenyl, and en = ethylenediamine) binds strongly to DNA. Here we investigate reactions between Os1-Cl and the self-complementary 12-mer oligonucleotide 5′-TAGTAATTACTA-3′ (DNA12) using ultra high resolution Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). Identification of the specific sites of DNA osmiation with (η6-bip)Os(en)2+ was made possible by the use of Electron Detachment Dissociation (EDD) which produced a wide range of assignable osmiated MS/MS fragments. In contrast, the more commonly used CAD and IRMPD techniques produced fragments which lose the bound osmium. These studies reveal that not only is guanine G3 a strong binding site for (η6-bip)Os(en)2+ but, unexpectedly, so too is cytosine C10. Interestingly, the G3/C10 di-osmiated adduct of DNA12 also formed readily but did not undergo such facile fragmentation by EDD, perhaps due to folding induced by van der Waal's interactions of the bound osmium arene species. These new insights into osmium arene DNA adducts should prove valuable for the design of new organometallic drugs and contribute to understanding the lack of cross resistance of this organometallic anticancer complex with cisplatin. This journal is © The Royal Society of Chemistry 2015.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2014\n \n \n (8)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Rapid characterization of naphthenic acids using differential mobility spectrometry and mass spectrometry.\n \n \n \n \n\n\n \n Noestheden, M.; Headley, J.; Peru, K.; Barrow, M.; Burton, L.; Sakuma, T.; Winkler, P.; and Campbell, J.\n\n\n \n\n\n\n Environmental Science and Technology, 48(17): 10264-10272. 2014.\n cited By 25\n\n\n\n
\n\n\n\n \n \n \"RapidPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Noestheden201410264,\nauthor={Noestheden, M.R. and Headley, J.V. and Peru, K.M. and Barrow, M.P. and Burton, L.L. and Sakuma, T. and Winkler, P. and Campbell, J.L.},\ntitle={Rapid characterization of naphthenic acids using differential mobility spectrometry and mass spectrometry},\njournal={Environmental Science and Technology},\nyear={2014},\nvolume={48},\nnumber={17},\npages={10264-10272},\ndoi={10.1021/es501821h},\nnote={cited By 25},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906860939&doi=10.1021%2fes501821h&partnerID=40&md5=a691507362d9df57476951818b057926},\naffiliation={AB SCIEX, Concord, ON L4K 4V8, Canada; Water Science and Technology Direct., Environment Canada, Saskatoon, SK S7N 3H5, Canada; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={To analyze the naphthenic acid content of environmental waters quickly and efficiently, we have developed a method that employs differential mobility spectrometry (DMS) coupled to mass spectrometry (MS). This technique combines the benefits of infusion-based MS experiments (parallel, on-demand access to individual components) with DMSs ability to provide liquid chromatography-like separations of isobaric and isomeric compounds in a fraction of the time. In this study, we have applied a DMS-MS workflow to the rapid gas-phase separation of naphthenic acids (NAs) within a technical standard and a real-world oil sands process-affected water (OSPW) extract. Among the findings provided by this workflow are the rapid characterization of isomeric NAs (i.e., same molecular formulas) in a complex OSPW sample, the ability to use DMS to isolate individual NA components (including isomeric NAs) for in-depth structural analyses, and a method by which NA analytes, background ions, and dimer species can be characterized by their distinct behaviors in DMS. Overall, the profiles of the NA content of the technical and OSPW samples were consistent with published values for similar samples, such that the benefits of DMS technology do not detract from the workflows accuracy or quality. © 2014 American Chemical Society.},\nkeywords={Dimers;  Liquid chromatography;  Mass spectrometry;  Oil sands;  Phase separation, Differential mobility spectrometries;  Differential Mobility Spectrometry;  Environmental water;  Gas-phase separations;  Individual components;  Isomeric compounds;  Oil Sands Process-affected Waters;  Technical standards, Organic acids, Carboxylic Acids;  Complex Mixtures;  Dimerization;  Ions;  Isomerism;  Mass Spectrometry;  Oils;  Reference Standards;  Silicon Dioxide;  Spectrum Analysis;  Waste Water;  Water Pollutants, Chemical},\nreferences={Headley, J.V., Peru, K.M., Mohamed, M.H., Frank, R.A., Martin, J.W., Hazewinkel, R.R.O., Humphries, D., Wrona, F.J., Chemical fingerprinting of naphthenic acids and oil sands process waters-A review of analytical methods for environmental samples (2013) J. Environ. Sci. Heal., Part A, 48, pp. 1145-1163; Headley, J.V., Peru, K.M., Barrow, M.P., Mass spectrometric characterization of naphthenic acids in environmental samples-a review (2009) Mass Spectrom. Rev., 28, pp. 121-134; Grewer, D.M., Young, R.F., Whittal, R.M., Fedorak, P.M., Naphthenic acids and other acid-extractables in water samples from Alberta: What is being measured? (2010) Sci. Total Environ., 408, pp. 5997-6010; Jones, D., West, C.E., Scarlett, A.G., Frank, R.A., Rowland, S.J., Isolation and estimation of the "aromatic" naphthenic acid content of an oil sands process-affected water extract (2012) J. Chromatogr. A, 1247, pp. 171-175; Han, X., Mackinnon, M.D., Martin, J.W., Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS (2009) Chemosphere, 76, pp. 63-70; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem., 82, pp. 3727-3735; Colavecchia, M.V., Backus, S.M., Hodson, P.V., Parrott, J.L., Toxicity of oil sands to early life stages of fathead minnows (Pimephales promelas) (2004) Environ. Toxicol. Chem., 23, pp. 1709-1718; Headley, J.V., Peru, K.M., Armstrong, S.A., Han, X., Martin, J.W., Mapolelo, M.M., Smith, D.F., Marshall, A.G., Aquatic plant-derived changes in oil sands naphthenic acid signatures determined by low-, high- and ultrahigh-resolution mass spectrometry (2009) Rapid Commun. Mass Spectrom., 23, pp. 515-522; Kelly, E.N., Schindler, D.W., Hodson, P.V., Short, J.W., Radmanovich, R., Nielsen, C.C., Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 16178-16183; Frank, R.A., Roy, J.W., Bickerton, G., Rowland, S.J., Headley, J.V., Scarlett, A.G., West, C.E., Hewitt, L.M., Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification (2014) Environ. Sci. Technol., 48, pp. 2660-2670; Frank, R.A., Sanderson, H., Kavanagh, R., Burnison, B.K., Headley, J.V., Solomon, K.R., Use of a (quantitative) structure-activity relationship [(Q)SAR] model to predict the toxicity of naphthenic acids (2010) J. Toxicol. Environ. Health A, 73, pp. 319-329; Headley, J.V., Peru, K.M., Fahlman, B., Colodey, A., McMartin, D.W., Selective solvent extraction and characterization of the acid extractable fraction of Athabasca oils sands process waters by Orbitrap mass spectrometry (2013) Int. J. Mass Spectrom., 345-347, pp. 104-108; Hindle, R., Noestheden, M., Peru, K., Headley, J., Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry (2013) J. Chromatogr. A, 1286, pp. 166-174; Ross, M.S., Dos Santos Pereira, A., Fennell, J., Davies, M., Johnson, J., Sliva, L., Martin, J.W., Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry (2012) Environ. Sci. Technol., 46, pp. 12796-12805; Shang, D., Kim, M., Haberl, M., Legzdins, A., Development of a rapid liquid chromatography tandem mass spectrometry method for screening of trace naphthenic acids in aqueous environments (2013) J. Chromatogr. A, 1278, pp. 98-107; Wang, X., Kasperski, K.L., Analysis of naphthenic acids in aqueous solution using HPLC-MS/MS (2010) Anal. Methods, 2, pp. 1715-1722; Woudneh, M.B., Coreen Hamilton, M., Benskin, J.P., Wang, G., McEachern, P., Cosgrove, J.R., A novel derivatization-based liquid chromatography tandem mass spectrometry method for quantitative characterization of naphthenic acid isomer profiles in environmental waters (2013) J. Chromatogr. A, 1293, pp. 36-43; Holowenko, F.M., Mackinnon, M.D., Fedorak, P.M., Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry (2002) Water Res., 36, pp. 2843-2855; Ahad, J.M.E., Pakdel, H., Savard, M.M., Calderhead, A.I., Gammon, P.R., Rivera, A., Peru, K.M., Headley, J.V., Characterization and Quantification of Mining-Related "naphthenic Acids" in Groundwater near a Major Oil Sands Tailings Pond (2013) Environ. Sci. Technol., 47, pp. 5023-5030; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2011) Rapid Commun. Mass Spectrom., 25, pp. 1899-1909; Headley, J.V., Peru, K.M., Janfada, A., Fahlman, B., Gu, C., Hassan, S., Characterization of oil sands acids in plant tissue using Orbitrap ultra-high resolution mass spectrometry with electrospray ionization (2011) Rapid Commun. Mass Spectrom., 25, pp. 459-462; Martin, J.W., Han, X., Peru, K.M., Headley, J.V., Comparison of high- and low-resolution electrospray ionization mass spectrometry for the analysis of naphthenic acid mixtures in oil sands process water (2008) Rapid Commun. Mass Spectrom., 22, pp. 1919-1924; Nyakas, A., Han, J., Peru, K.M., Headley, J.V., Borchers, C.H., Comprehensive analysis of oil sands processed water by direct-infusion Fourier-transform ion cyclotron resonance mass spectrometry with and without offline UHPLC sample prefractionation (2013) Environ. Sci. Technol., 47, pp. 4471-4479; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation (2006) Anal. Chem., 78, pp. 8354-8361; Pingitore, F., Tang, Y., Kruppa, G.H., Keasling, J.D., Analysis of amino acid isotopomers using FT-ICR MS (2007) Anal. Chem., 79, pp. 2483-2490; Witt, M., Fuchser, J., Koch, B.P., Fragmentation studies of fulvic acids using collision induced dissociation fourier transform ion cyclotron resonance mass spectrometry (2009) Anal. Chem., 81, pp. 2688-2694; Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G., Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry (2010) Int. J. Mass Spectrom., 298, pp. 45-54; Jasak, J., Le Blanc, Y., Speer, K., Billian, P., Schoening, R.M., Analysis of triazole-based metabolites in plant materials using differential mobility spectrometry to improve LC/MS/MS selectivity (2012) J. AOAC Int., 95, pp. 1768-1776; Barnett, D., Ells, B., Separation of leucine and isoleucine by electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry (1999) J. Am. Soc. Mass Spectrom., 10, pp. 1279-1284; Blagojevic, V., Chramow, A., Schneider, B.B., Covey, T.R., Bohme, D.K., Differential Mobility Spectrometry of Isomeric Protonated Dipeptides (2011) Anal. Chem., 83, pp. 3470-3476; Parson, W.B., Schneider, B.B., Kertesz, V., Corr, J.J., Covey, T.R., Van Berkel, G.J., Rapid analysis of isomeric exogenous metabolites by differential mobility spectrometry-mass spectrometry (2011) Rapid Commun. Mass Spectrom., 25, pp. 3382-3386; Jin, W., Jarvis, M., Star-Weinstock, M., Altemus, M., A sensitive and selective LC-differential mobility-mass spectrometric analysis of allopregnanolone and pregnanolone in human plasma (2013) Anal. Bioanal. Chem., 405, pp. 9497-9508; Campbell, J.L., Le Blanc, J.C.Y., Schneider, B.B., Probing electrospray ionization dynamics using differential mobility spectrometry: The curious case of 4-aminobenzoic acid (2012) Anal. Chem., 84, pp. 7857-7864; Fasciotti, M., Lalli, P.M., Heerdt, G., Steffen, R.A., Corilo, Y.E., De Sá, G.F., Daroda, R.J., Klizke, C.F., Structure-drift time relationships in ion mobility mass spectrometry (2013) Int. J. Ion Mobility Spectrom., 16, pp. 117-132; Jackson, S.N., Ugarov, M., Post, J.D., Egan, T., Langlais, D., Schultz, J.A., Woods, A.S., A study of phospholipids by ion mobility TOFMS (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1655-1662; Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G., Chemical effects in the separation process of a differential mobility/mass spectrometer system (2010) Anal. Chem., 82, pp. 1867-1880; Tsai, C.-W., Yost, R.A., Garrett, T.J., High-field asymmetric waveform ion mobility spectrometry with solvent vapor addition: A potential greener bioanalytical technique (2012) Bioanalysis, 4, pp. 1363-1375; Rogers, V.V., Liber, K., Mackinnon, M.D., Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water (2002) Chemosphere, 48, pp. 519-527; Collings, B.A., Romaschin, M.A., MS/MS of ions in a low pressure linear ion trap using a pulsed gas (2009) J. Am. Soc. Mass Spectrom., 20, pp. 1714-1717; Guna, M., Biesenthal, T.A., Performance enhancements of mass selective axial ejection from a linear ion trap (2009) J. Am. Soc. Mass Spectrom., 20, pp. 1132-1140; Andrews, G.L., Simons, B.L., Young, J.B., Hawkridge, A.M., Muddiman, D.C., Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600) (2011) Anal. Chem., 83, pp. 5442-5446; Krylov, E.V., Nazarov, E.G., Miller, R.A., Differential mobility spectrometer: Model of operation (2007) Int. J. Mass Spectrom., 266, pp. 76-85; Eiceman, G.A., Karpas, Z., (2005) Ion Mobility Spectrometry, , 2 nd ed. CRC Press: Boca Raton, FL; Shvartsburg, A.A., Clemmer, D.E., Smith, R.D., Isotopic effect on ion mobility and separation of isotopomers by high-field ion mobility spectrometry (2010) Anal. Chem., 82, pp. 8047-8051; Kendrick, E., A Mass Scale Based on CH2 = 14.0000 for High Resolution Mass Spectrometry of Organic Compounds (1963) Anal. Chem., 35, pp. 2146-2154; Gabryelski, W., Froese, K.L., Characterization of naphthenic acids by electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry (2003) Anal. Chem., 75, pp. 4612-4623; Pereira, A.S., Bhattacharjee, S., Martin, J.W., Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry (2013) Environ. Sci. Technol., 47, pp. 5504-5513; Jensen, N., Tomer, K., Gross, M., Gas-phase ion decomposition occurring remote to a charge site (1985) J. Am. Chem. Soc., 107, pp. 1863-1868; Jensen, N.J., Haas, G.W., Gross, M.L., Ion-Neutral Complex Intermediate for Loss of Water from Fatty Acid Carboxylates (1992) Org. Mass Spectrom., 27, pp. 423-427; Keller, B.O., Sui, J., Young, A.B., Whittal, R.M., Interferences and contaminants encountered in modern mass spectrometry (2008) Anal. Chim. Acta, 627, pp. 71-81; Lyon, P.A., Stebbings, W.L., Crow, F.W., Tomer, K.B., Lippstreu, D.L., Gross, M.L., Analysis of anionic surfactants by mass spectrometry/mass spectrometry with fast atom bombardment (1984) Anal. Chem., 56, pp. 8-13; Smulders, E., Von Rybinski, W., Nordskog, A., Laundry Detergents, 1. Introduction (2011) Ullmans Encyclopedia of Industrial Chemistry, Electronic Release, pp. 355-391. , Wiley-VCH: Weinheim, Germany; Kosswig, K., Surfactants (2012) Ullmans Encyclopedia of Industrial Chemistry, Electronic Release, pp. 431-505. , Wiley-VCH: Weinheim, Germany; Da Campo, R., Barrow, M.P., Shepherd, A.G., Salisbury, M., Derrick, P.J., Characterization of Naphthenic Acid Singly Charged Noncovalent Dimers and Their Dependence on the Accumulation Time within a Hexapole in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (2009) Energy Fuels, 23, pp. 5544-5549; West, C.E., Jones, D., Scarlett, A.G., Rowland, S.J., Compositional heterogeneity may limit the usefulness of some commercial naphthenic acids for toxicity assays (2011) Sci. Total Environ., 409, pp. 4125-4131; Frank, R.A., Fischer, K., Kavanagh, R., Burnison, B.K., Arsenault, G., Headley, J.V., Peru, K.M., Solomon, K.R., Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids (2009) Environ. Sci. Technol., 43, pp. 266-271; Varesio, E., Le Blanc, J.C.Y., Hopfgartner, G., Real-time 2D separation by LC × differential ion mobility hyphenated to mass spectrometry (2012) Anal. Bioanal. Chem., 402, pp. 2555-2564},\ncorrespondence_address1={Campbell, J.L.; AB SCIEX, Concord, ON L4K 4V8, Canada; email: Larry.Campbell@absciex.com},\npublisher={American Chemical Society},\nissn={0013936X},\ncoden={ESTHA},\npubmed_id={25032949},\nlanguage={English},\nabbrev_source_title={Environ. Sci. Technol.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n To analyze the naphthenic acid content of environmental waters quickly and efficiently, we have developed a method that employs differential mobility spectrometry (DMS) coupled to mass spectrometry (MS). This technique combines the benefits of infusion-based MS experiments (parallel, on-demand access to individual components) with DMSs ability to provide liquid chromatography-like separations of isobaric and isomeric compounds in a fraction of the time. In this study, we have applied a DMS-MS workflow to the rapid gas-phase separation of naphthenic acids (NAs) within a technical standard and a real-world oil sands process-affected water (OSPW) extract. Among the findings provided by this workflow are the rapid characterization of isomeric NAs (i.e., same molecular formulas) in a complex OSPW sample, the ability to use DMS to isolate individual NA components (including isomeric NAs) for in-depth structural analyses, and a method by which NA analytes, background ions, and dimer species can be characterized by their distinct behaviors in DMS. Overall, the profiles of the NA content of the technical and OSPW samples were consistent with published values for similar samples, such that the benefits of DMS technology do not detract from the workflows accuracy or quality. © 2014 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the athabasca oil sands.\n \n \n \n \n\n\n \n Barrow, M.; Peru, K.; and Headley, J.\n\n\n \n\n\n\n Analytical Chemistry, 86(16): 8281-8288. 2014.\n cited By 34\n\n\n\n
\n\n\n\n \n \n \"AnPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Barrow20148281,\nauthor={Barrow, M.P. and Peru, K.M. and Headley, J.V.},\ntitle={An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the athabasca oil sands},\njournal={Analytical Chemistry},\nyear={2014},\nvolume={86},\nnumber={16},\npages={8281-8288},\ndoi={10.1021/ac501710y},\nnote={cited By 34},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906251663&doi=10.1021%2fac501710y&partnerID=40&md5=6c61452eb853de504dc9a4948a1b62a1},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Water Science and Technology Division, Environment Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada},\nabstract={The Athabasca oil sands industry, an alternative source of petroleum, uses large quantities of water during processing of the oil sands. In keeping with Canadian environmental policy, the processed water cannot be released to natural waters and is thus retained on-site in large tailings ponds. There is an increasing need for further development of analytical methods for environmental monitoring. The following details the first example of the application of gas chromatography atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FTICR MS) for the study of environmental samples from the Athabasca region of Canada. APCI offers the advantages of reduced fragmentation compared to other ionization methods and is also more amenable to compounds that are inaccessible by electrospray ionization. The combination of GC with ultrahigh resolution mass spectrometry can improve the characterization of complex mixtures where components cannot be resolved by GC alone. This, in turn, affords the ability to monitor extracted ion chromatograms for components of the same nominal mass and isomers in the complex mixtures. The proof of concept work described here is based upon the characterization of one oil sands process water sample and two groundwater samples in the area of oil sands activity. Using the new method, the O x and OxS compound classes predominated, with O xS classes being particularly relevant to the oil sands industry. The potential to resolve retention times for individual components within the complex mixture, highlighting contributions from isomers, and to characterize retention time profiles for homologous series is shown, in addition to the ability to follow profiles of double bond equivalents and carbon number for a compound class as a function of retention time. The method is shown to be well-suited for environmental forensics. © 2014 American Chemical Society.},\nkeywords={Atmospheric pressure;  Chemical bonds;  Chromatographic analysis;  Electrospray ionization;  Gas chromatography;  Groundwater;  Ionization;  Isomers;  Mass spectrometry;  Mixtures;  Petroleum industry, Atmospheric pressure chemical ionization;  Environmental forensics;  Environmental Monitoring;  Extracted ion chromatogram;  Fourier transform ion cyclotron resonance mass spectrometry;  Individual components;  Oil sands process waters;  Ultrahigh resolution mass spectrometries, Oil sands},\nreferences={Barrow, M.P., (2010) Biofuels, 1, pp. 651-655; Murray, J., King, D., (2012) Nature, 481, pp. 433-435; Gu, G., Xu, Z., Nandakumar, K., Masliyah, J.H., (2002) Fuel, 81, pp. 1859-1869; Schramm, L.L., Stasiuk, E.N., Mackinnon, M., (2000) Surfactants in Athabasca Oil Sands Slurry Conditioning, Flotation Recovery, and Tailings Processes, , Cambridge University Press: Cambridge; Han, X., Mackinnon, M.D., Martin, J.W., (2009) Chemosphere, 76, pp. 63-70; Rogers, V.V., Wickstrom, M., Liber, K., Mackinnon, M.D., (2002) Toxicol. Sci., 66, pp. 347-355; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., (2003) Anal. Chem., 75, pp. 860-866; Headley, J.V., McMartin, D.W., (2004) J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 39, pp. 1989-2010; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., (2004) J. Chromatogr. A, 1058, pp. 51-59; Clemente, J.S., Fedorak, P.M., (2005) Chemosphere, 60, pp. 585-600; Nero, V., Farwell, A., Lee, L.E.J., Van Meer, T., Mackinnon, M.D., Dixon, D.G., (2006) Ecotoxicol. Environ. Safe., 65, pp. 252-264; Smith, D.F., Schaub, T.M., Rahimi, P., Teclemariam, A., Rodgers, R.P., Marshall, A.G., (2007) Energy Fuels, 21, pp. 1309-1316; Headley, J.V., Peru, K.M., Barrow, M.P., (2009) Mass Spectrom. Rev., 28, pp. 121-134; Headley, J.V., Peru, K.M., Armstrong, S.A., Han, X.M., Martin, J.W., Mapolelo, M.M., Smith, D.F., Marshall, A.G., (2009) Rapid Commun. Mass Spectrom., 23, pp. 515-522; Da Campo, R., Barrow, M.P., Shepherd, A.G., Salisbury, M., Derrick, P.J., (2009) Energy Fuels, 23, pp. 5544-5549; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., (2010) Anal. Chem., 82, pp. 3727-3735; Headley, J.V., Peru, K.M., Mishra, S., Meda, V., Dalai, A.K., McMartin, D.W., Mapolelo, M.M., Marshall, A.G., (2010) Rapid Commun. Mass Spectrom., 24, pp. 3121-3126; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., (2011) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 46, pp. 844-854; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., (2011) Rapid Commun. Mass Spectrom., 25, pp. 1899-1909; Headley, J.V., Akre, C., Conly, F.M., Peru, K.M., Dickson, L.C., (2001) Environ. Forensics, 2, pp. 335-345; Colavecchia, M.V., Backus, S.M., Hodson, P.V., Parrott, J.L., (2004) Environ. Toxicol. Chem., 23, pp. 1709-1718; Kelly, E.N., Short, J.W., Schindler, D.W., Hodson, P.V., Ma, M., Kwan, A.K., Fortin, B.L., (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 22346-22351; Schindler, D., (2010) Nature, 468, pp. 499-501; Headley, J.V., Peru, K.M., Mohamed, M.H., Frank, R.A., Martin, J.W., Hazewinkel, R.R., Humphries, D., Wrona, F.J., (2013) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 48, pp. 1145-1163; Clemente, J.S., Prasad, N.G.N., Mackinnon, M.D., Fedorak, P.M., (2003) Chemosphere, 50, pp. 1265-1274; Merlin, M., Guigard, S.E., Fedorak, P.M., (2007) J. Chromatogr. A, 1140, pp. 225-229; Scott, A.C., Young, R.F., Fedorak, P.M., (2008) Chemosphere, 73, pp. 1258-1264; Hao, C., Headley, J.V., Peru, K.M., Frank, R., Yang, P., Solomon, K.R., (2005) J. Chromatogr. A, 1067, pp. 277-284; Rowland, S.J., Scarlett, A.G., Jones, D., West, C.E., Frank, R.A., (2011) Environ. Sci. Technol., 45, pp. 3154-3159; Rowland, S.J., West, C.E., Scarlett, A.G., Jones, D., Frank, R.A., (2011) Rapid Commun. Mass Spectrom., 25, pp. 1198-1204; West, C.E., Scarlett, A.G., Tonkin, A., Ocarroll-Fitzpatrick, D., Pureveen, J., Tegelaar, E., Gieleciak, R., Rowland, S.J., (2013) Water Res., 51, pp. 206-215; Clemente, J.S., Yen, T.W., Fedorak, P.M., (2003) J. Environ. Eng. Sci., 2, pp. 177-186; Yen, T.W., Marsh, W.P., Mackinnon, M.D., Fedorak, P.M., (2004) J. Chromatogr. A, 1033, pp. 83-90; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., (2006) Anal. Chem., 78, pp. 8354-8361; Pereira, A.S., Bhattacharjee, S., Martin, J.W., (2013) Environ. Sci. Technol., 47, pp. 5504-5513; Amster, I.J., (1996) J. Mass Spectrom., 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev., 17, pp. 1-35; Barrow, M.P., Burkitt, W.I., Derrick, P.J., (2005) Analyst, 130, pp. 18-28; Headley, J.V., Peru, K.M., Janfada, A., Fahlman, B., Gu, C., Hassan, S., (2011) Rapid Commun. Mass Spectrom., 25, pp. 459-462; Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K., (2001) Anal. Chem., 73, pp. 4676-4681; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., (2001) Energy Fuels, 15, pp. 1505-1511; Purcell, J.M., Juyal, P., Kim, D.G., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., (2007) Energy Fuels, 21, pp. 2869-2874; Smith, D.F., Rahimi, P., Teclemariam, A., Rodgers, R.P., Marshall, A.G., (2008) Energy Fuels, 22, pp. 3118-3125; Marshall, A.G., Rodgers, R.P., (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 18090-18095; Cho, Y., Qi, Y., Oconnor, P.B., Barrow, M.P., Kim, S., (2014) J. Am. Soc. Mass Spectrom., 25, pp. 154-157; Griffiths, M.T., Da Campo, R., Oconnor, P.B., Barrow, M.P., (2014) Anal. Chem., 86, pp. 527-534; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., (2007) Anal. Chem., 79, pp. 6222-6229; Grewer, D.M., Young, R.F., Whittal, R.M., Fedorak, P.M., (2010) Sci. Total Environ., 408, pp. 5997-6010; Szulejko, J.E., Solouki, T., (2002) Anal. Chem., 74, pp. 3434-3442; Heffner, C., Silwal, I., Peckenham, J.M., Solouki, T., (2007) Environ. Sci. Technol., 41, pp. 5419-5425; Luo, Z., Heffner, C., Solouki, T., (2009) J. Chromatogr. Sci., 47, pp. 75-82; Savard, M.M., Ahad, J.M.E., Gammon, P., Calderhead, A.I., Rivera, A., Martel, R., Klebek, M., Peru, K., (2012) A Local Test Study Distinguishes Natural from Anthropogenic Groundwater Contaminants Near An Athabasca Oil Sands Mining Operation, , Geological Survey of Canada, Open File 7195, Natural Resources Canada; Ahad, J.M., Pakdel, H., Savard, M.M., Simard, M.C., Smirnoff, A., (2012) Anal. Chem., 84, pp. 10419-10425; Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G., (2010) Anal. Chem., 82, pp. 8807-8812; Qi, Y., Thompson, C.J., Van Orden, S.L., Oconnor, P.B., (2011) J. Am. Soc. Mass Spectrom., 22, pp. 138-147; Qi, Y., Barrow, M.P., Li, H., Meier, J.E., Van Orden, S.L., Thompson, C.J., Oconnor, P.B., (2012) Anal. Chem., 84, pp. 2923-2929; Comisarow, M.B., Melka, J.D., (1979) Anal. Chem., 51, pp. 2198-2203; Aarstol, M., Comisarow, M.B., (1987) Int. J. Mass Spectrom. Ion Proc., 76, pp. 287-297; Qi, Y., Li, H., Wills, R.H., Perez-Hurtado, P., Yu, X., Kilgour, D.P., Barrow, M.P., Oconnor, P.B., (2013) J. Am. Soc. Mass Spectrom., 24, pp. 828-834; Pluskal, T., Castillo, S., Villar-Briones, A., Oresic, M., (2010) BMC Bioinformatics, 11, p. 395; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., (2009) Energy Fuels, 23, pp. 2592-2599},\ncorrespondence_address1={Barrow, M.P.; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: M.P.Barrow@warwick.ac.uk},\npublisher={American Chemical Society},\nissn={00032700},\ncoden={ANCHA},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The Athabasca oil sands industry, an alternative source of petroleum, uses large quantities of water during processing of the oil sands. In keeping with Canadian environmental policy, the processed water cannot be released to natural waters and is thus retained on-site in large tailings ponds. There is an increasing need for further development of analytical methods for environmental monitoring. The following details the first example of the application of gas chromatography atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FTICR MS) for the study of environmental samples from the Athabasca region of Canada. APCI offers the advantages of reduced fragmentation compared to other ionization methods and is also more amenable to compounds that are inaccessible by electrospray ionization. The combination of GC with ultrahigh resolution mass spectrometry can improve the characterization of complex mixtures where components cannot be resolved by GC alone. This, in turn, affords the ability to monitor extracted ion chromatograms for components of the same nominal mass and isomers in the complex mixtures. The proof of concept work described here is based upon the characterization of one oil sands process water sample and two groundwater samples in the area of oil sands activity. Using the new method, the O x and OxS compound classes predominated, with O xS classes being particularly relevant to the oil sands industry. The potential to resolve retention times for individual components within the complex mixture, highlighting contributions from isomers, and to characterize retention time profiles for homologous series is shown, in addition to the ability to follow profiles of double bond equivalents and carbon number for a compound class as a function of retention time. The method is shown to be well-suited for environmental forensics. © 2014 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Throwing light on petroleum: Simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry.\n \n \n \n \n\n\n \n Griffiths, M.; Da Campo, R.; O'Connor, P.; and Barrow, M.\n\n\n \n\n\n\n Analytical Chemistry, 86(1): 527-534. 2014.\n cited By 35\n\n\n\n
\n\n\n\n \n \n \"ThrowingPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Griffiths2014527,\nauthor={Griffiths, M.T. and Da Campo, R. and O'Connor, P.B. and Barrow, M.P.},\ntitle={Throwing light on petroleum: Simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry},\njournal={Analytical Chemistry},\nyear={2014},\nvolume={86},\nnumber={1},\npages={527-534},\ndoi={10.1021/ac4025335},\nnote={cited By 35},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891772209&doi=10.1021%2fac4025335&partnerID=40&md5=f8df3ca3f4200bffb91eef787c05fb6e},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={The change in profile of crude oil following a release into the environment is a topic of significant interest, and there is a need to develop analytical methodologies for understanding natural processes which affect related complex mixture profiles. One such process is the exposure to sunlight. In the following investigation, three oil samples were studied: one served as a control, a second was subjected to irradiation by an ultraviolet lamp, and a third sample was irradiated by a SoLux light source which closely models the solar emission profile. The usage of the SoLux light source represents a new method which enables a controlled experiment to mimic the effects of sunlight upon the sample. Atmospheric pressure photoionization was selected as the primary ionization method due to the ability to ionize a broad range of compounds, including low polarity components which could not be observed using electrospray ionization. During a test of sample preparation methods, the addition of a protic cosolvent to the sample solutions was shown to broaden the range of heteroatom-containing components observed. Following characterization, it was found that the polyaromatic hydrocarbons did not change in profile, while compounds containing a heteroatom exhibited a tendency to oxidize following photoirradiation. Sulfur-containing compounds with a low number of double bond equivalents were among the most reactive components of the complex mixture. The photooxidation of compounds in petroleum, following exposure to sunlight, is expected to have significance with regards to solubility and potential toxicity. © 2013 American Chemical Society.},\nkeywords={Analytical methodology;  Atmospheric pressure photo ionization;  Controlled experiment;  Fourier transform ion cyclotron resonance mass spectrometry;  Most-reactive components;  Polyaromatic hydrocarbons;  Sample preparation methods;  Sulfur-containing compounds, Electrospray ionization;  Light sources;  Mixtures;  Photooxidation, Crude oil},\nreferences={Barrow, M.P., (2010) Biofuels, 1, pp. 651-655; (2012) Annual Energy Review 2011, , Energy Information Administration, Department of Energy: Washington, DC; Hajji, A.A., Muller, H., Koseoglu, O.R., (2008) Oil Gas Sci. Technol., 63, pp. 115-128; Bae, E.J., Na, J.G., Chung, S.H., Kim, H.S., Kim, S., (2010) Energy Fuels, 24, pp. 2563-2569; Rodgers, R.P., McKenna, A.M., (2011) Anal. Chem., 83, pp. 4665-4687; Guan, S., Marshall, A.G., Scheppele, S.E., (1996) Anal. Chem., 68, pp. 46-71; Rodgers, R.P., White, F.M., Hendrickson, C.L., Marshall, A.G., Andersen, K.V., (1998) Anal. Chem., 70, pp. 4743-4750; Müller, H., Andersson, J.T., Schrader, W., (2005) Anal. Chem., 77, pp. 2536-2543; Headley, J.V., Peru, K.M., Barrow, M.P., (2009) Mass Spectrom. Rev., 28, pp. 121-134; Turnbull, A., Slavcheva, E., Shone, B., (1998) Corrosion, 54, pp. 922-930; Slavcheva, E., Shone, B., Turnbull, A., (1999) Br. Corros. J., 34, pp. 125-131; Rockhold, W., (1955) AMA Arch. Ind. Health, 12, pp. 477-482; Rogers, V.V., Wickstrom, M., Liber, K., Mackinnon, M.D., (2002) Toxicol. Sci., 66, pp. 347-355; Headley, J.V., McMartin, D.W., (2004) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 39, pp. 1989-2010; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., (2004) J. Chromatogr., A, 1058, pp. 51-59; Jones, D., Scarlett, A.G., West, C.E., Rowland, S.J., (2011) Environ. Sci. Technol., 45, pp. 9776-9782; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., (2006) Anal. Chem., 78, pp. 8354-8361; Smith, D.F., Schaub, T.M., Rahimi, P., Teclemariam, A., Rodgers, R.P., Marshall, A.G., (2007) Energy Fuels, 21, pp. 1309-1316; Headley, J.V., Peru, K.M., Armstrong, S.A., Han, X.M., Martin, J.W., Mapolelo, M.M., Smith, D.F., Marshall, A.G., (2009) Rapid Commun. Mass Spectrom., 23, pp. 515-522; Da Campo, R., Barrow, M.P., Shepherd, A.G., Salisbury, M., Derrick, P.J., (2009) Energy Fuels, 23, pp. 5544-5549; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., (2010) Anal. Chem., 82, pp. 3727-3735; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., (2011) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 46, pp. 844-854; Rowland, S.J., Scarlett, A.G., Jones, D., West, C.E., Frank, R.A., (2011) Environ. Sci. Technol., 45, pp. 3154-3159; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., (2011) Rapid Commun. Mass Spectrom., 25, pp. 1899-1909; Jernelov, A., (2010) AMBIO, 39, pp. 353-366; Kostka, J.E., Prakash, O., Overholt, W.A., Green, S.J., Freyer, G., Canion, A., Delgardio, J., Huettel, M., (2011) Appl. Environ. Microbiol., 77, pp. 7962-7974; Reddy, C.M., Arey, J.S., Seewald, J.S., Sylva, S.P., Lemkau, K.L., Nelson, R.K., Carmichael, C.A., Camilli, R., (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 20229-20234; Aeppli, C., Carmichael, C.A., Nelson, R.K., Lemkau, K.L., Graham, W.M., Redmond, M.C., Valentine, D.L., Reddy, C.M., (2012) Environ. Sci. Technol., 46, pp. 8799-8807; Carmichael, C.A., Arey, J.S., Graham, W.M., Linn, L.J., Lemkau, K.L., Nelson, R.K., Reddy, C.M., (2012) Environ. Res. Lett., 7, p. 015301; Schmidt Etkin, D., (2009) Analysis of U.S. Oil Spillage, , API Publication 356; American Petroleum Institute: Washington, DC; Payne, J.R., Phillips, C.R., (1985) Environ. Sci. Technol., 19, pp. 569-579; Nicodem, D.E., Fernandes, M.C.Z., Guedes, C.L.B., Correa, R.J., (1997) Biogeochemistry, 39, pp. 121-138; Wang, Z., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., Sigouin, L., Foght, J., Westlake, D.W.S., (1998) J. Chromatogr. A, 809, pp. 89-107; Dutta, T.K., Harayama, S., (2000) Environ. Sci. Technol., 34, pp. 1500-1505; Rodgers, R., Blumer, E.N., Freitas, M.A., Marshall, A.G., (2000) Environ. Sci. Technol., 34, pp. 1671-1678; Bacon, M.M., Electricwala, M., Romero-Zeron, L.B., (2011) Petrol. Sci. Technol., 29, pp. 349-357; Mansuy, L., Philp, R.P., Allen, J., (1997) Environ. Sci. Technol., 31, pp. 3417-3425; Wang, Z., Fingas, M., Page, D.S., (1999) J. Chromatogr. A, 843, pp. 369-411; Christensen, J.H., Tomasi, G., (2007) J. Chromatogr. A, 1169, pp. 1-22; Avino, P., Notardonato, I., Cinelli, G., Russo, M.V., (2009) Curr. Anal. Chem., 5, pp. 339-346; Maki, H., Sasaki, T., Harayama, S., (2001) Chemosphere, 44, pp. 1145-1151; Lee, R.F., (2003) Spill. Sci. Technol. Bull., 8, pp. 157-162; Arfsten, D.P., Schaeffer, D.J., Mulveny, D.C., (1996) Ecotoxicol. Environ. Safe., 33, pp. 1-24; D'Auria, M., Emanuele, L., Racioppi, R., Velluzzi, V., (2009) J. Hazard. Mater., 164, pp. 32-38; Pesarini, P.F., De Souza, R.G.S., Correa, R.J., Nicodem, D.E., De Lucas, N.C., (2010) J. Photochem. Photobiol. A, 214, pp. 48-53; Bobinger, S., Andersson, J.T., (2009) Environ. Sci. Technol., 43, pp. 8119-8125; Fathalla, E.M., Andersson, J.T., (2011) Environ. Toxicol. Chem., 30, pp. 2004-2012; Head, I.M., Jones, D.M., Röling, W.F., (2006) Nat. Rev. Microbiol., 4, pp. 173-182; Amster, I.J., (1996) J. Mass Spectrom., 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev., 17, pp. 1-35; Barrow, M.P., Burkitt, W.I., Derrick, P.J., (2005) Analyst, 130, pp. 18-28; Qian, K., Rodgers, R.P., Hendrickson, C.L., Emmett, M.R., Marshall, A.G., (2001) Energy Fuels, 15, pp. 492-498; Hughey, C.A., Rodgers, R.P., Marshall, A.G., (2002) Anal. Chem., 74, pp. 4145-4149; Hsu, C.S., Dechert, G.J., Robbins, W.K., Fukuda, E.K., (2000) Energy Fuels, 14, pp. 217-223; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., (2001) Energy Fuels, 15, pp. 1505-1511; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., (2003) Anal. Chem., 75, pp. 860-866; Robb, D.B., Covey, T.R., Bruins, A.P., (2000) Anal. Chem., 72, pp. 3653-3659; Raffaelli, A., Saba, A., (2003) Mass Spectrom. Rev., 22, pp. 318-331; Hanold, K.A., Fischer, S.M., Cormia, P.H., Miller, C.E., Syage, J.A., (2004) Anal. Chem., 76, pp. 2842-2851; Purcell, J.M., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., (2006) Anal. Chem., 78, pp. 5906-5912; Purcell, J.M., Juyal, P., Kim, D.G., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., (2007) Energy Fuels, 21, pp. 2869-2874; Purcell, J.M., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., (2007) J. Am. Soc. Mass Spectrom., 18, pp. 1265-1273; Marshall, A.G., Rodgers, R.P., (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 18090-18095; Charrié-Duhaut, A., Lemoine, S., Adam, P., Connan, J., Albrecht, P., (2000) Org. Geochem., 31, pp. 977-1003; Sobolewski, L., Domcke, W., Dedonder-Lardeux, C., Jouvet, C., (2002) Phys. Chem. Chem. Phys., 4, pp. 1093-1100; Ashfold, M.N., King, G.A., Murdock, D., Nix, M.G., Oliver, T.A., Sage, A.G., (2010) Phys. Chem. Chem. Phys., 12, pp. 1218-1238; Yu, H., Evans, N.L., Stavros, V.G., Ullrich, S., (2012) Phys. Chem. Chem. Phys., 14, pp. 6266-6272; Williams, C.A., Roberts, G.M., Yu, H., Evans, N.L., Ullrich, S., Stavros, V.G., (2011) J. Phys. Chem. A, 116, pp. 2600-2609; Hegazi, A.H., Fathalla, E.M., Panda, S.K., Schrader, W., Andersson, J.T., (2012) Chemosphere, 89, pp. 205-212; Panda, S.K., Andersson, J.T., Schrader, W., (2009) Angew. Chem., Int. Ed., 48, pp. 1788-1791; Liu, P., Xu, C., Shi, Q., Pan, N., Zhang, Y., Zhao, S., Chung, K.H., (2010) Anal. Chem., 82, pp. 6601-6606; Duesterloh, S., Short, J.W., Barron, M.G., (2002) Environ. Sci. Technol., 36, pp. 3953-3959; Mearns, A.J., Reish, D.J., Oshida, P.S., Ginn, T., Rempel-Hester, M.A., (2011) Water Environ. Res., 83, pp. 1789-1852},\ncorrespondence_address1={Barrow, M.P.; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: M.P.Barrow@warwick.ac.uk},\nissn={00032700},\ncoden={ANCHA},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The change in profile of crude oil following a release into the environment is a topic of significant interest, and there is a need to develop analytical methodologies for understanding natural processes which affect related complex mixture profiles. One such process is the exposure to sunlight. In the following investigation, three oil samples were studied: one served as a control, a second was subjected to irradiation by an ultraviolet lamp, and a third sample was irradiated by a SoLux light source which closely models the solar emission profile. The usage of the SoLux light source represents a new method which enables a controlled experiment to mimic the effects of sunlight upon the sample. Atmospheric pressure photoionization was selected as the primary ionization method due to the ability to ionize a broad range of compounds, including low polarity components which could not be observed using electrospray ionization. During a test of sample preparation methods, the addition of a protic cosolvent to the sample solutions was shown to broaden the range of heteroatom-containing components observed. Following characterization, it was found that the polyaromatic hydrocarbons did not change in profile, while compounds containing a heteroatom exhibited a tendency to oxidize following photoirradiation. Sulfur-containing compounds with a low number of double bond equivalents were among the most reactive components of the complex mixture. The photooxidation of compounds in petroleum, following exposure to sunlight, is expected to have significance with regards to solubility and potential toxicity. © 2013 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry.\n \n \n \n \n\n\n \n Cho, Y.; Qi, Y.; O'Connor, P.; Barrow, M.; and Kim, S.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 25(1): 154-157. 2014.\n cited By 12\n\n\n\n
\n\n\n\n \n \n \"ApplicationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Cho2014154,\nauthor={Cho, Y. and Qi, Y. and O'Connor, P.B. and Barrow, M.P. and Kim, S.},\ntitle={Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2014},\nvolume={25},\nnumber={1},\npages={154-157},\ndoi={10.1007/s13361-013-0747-1},\nnote={cited By 12},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84892631075&doi=10.1007%2fs13361-013-0747-1&partnerID=40&md5=b478aaafcf3867d0fd71a2bc8abfefe7},\naffiliation={Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; Green-Nano Materials Research Center, Daegu 702-701, South Korea},\nabstract={In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and 13C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S 2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses. © 2013 American Society for Mass Spectrometry.},\nauthor_keywords={FT-ICR;  High resolution mass spectrometry;  Mass resolving power;  Petroleum;  Phase correction},\nkeywords={Carbon number distribution;  Fourier transform ion cyclotron resonance mass spectrometry;  FT-ICR;  High resolution mass spectrometry;  Mass resolving power;  Molecular formulae;  Phase corrections;  Phase-correction, Carbon;  Mass spectrometry;  Reliability analysis, Crude oil, carbon;  hydrocarbon;  petroleum, article;  chemical analysis;  ion cyclotron resonance mass spectrometry;  physical phase;  reliability},\nchemicals_cas={carbon, 7440-44-0; petroleum, 8002-05-9},\nreferences={Vining, B.A., Bossio, R.E., Marshall, A.G., Phase correction for collision model analysis and enhanced resolving power of fourier transform ion cyclotron resonance mass spectra (1998) Anal. Chem., 71, pp. 460-467. , 10.1021/ac9808019; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry: A primer (1998) Mass Spectrometry Reviews, 17 (1), pp. 1-35; Qi, Y., Barrow, M.P., Li, H., Meier, J.E., Van Orden, S.L., Thompson, C.J., O'Connor, P.B., Absorption-mode: The next generation of Fourier transform mass spectra (2012) Anal. Chem., 84, pp. 2923-2929. , 1:CAS:528:DC%2BC38XisFShs70%3D 10.1021/ac3000122; Bae, E., Na, J.-G., Chung, S.H., Kim, H.S., Kim, S., Identification of about 30,000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil (2010) Energy Fuels, 24, pp. 2563-2569. , 1:CAS:528:DC%2BC3cXjslGnt7k%3D 10.1021/ef100060b; McKenna, A.M., Purcell, J.M., Rodgers, R.P., Marshall, A.G., Heavy petroleum composition. 1. Exhaustive compositional analysis of athabasca bitumen HVGO distillates by Fourier Transform ion cyclotron resonance mass spectrometry: A definitive test of the Boduszynski model (2010) Energy Fuels, 24, pp. 2929-2938. , 1:CAS:528:DC%2BC3cXlsV2kt7k%3D 10.1021/ef100149n; Cho, Y., Kim, Y.H., Kim, S., Planar limit-assisted structural interpretation of saturates/aromatics/ resins/asphaltenes fractionated crude oil compounds observed by Fourier transform ion cyclotron resonance mass spectrometry (2011) Anal. Chem., 83, pp. 6068-6073. , 1:CAS:528:DC%2BC3MXotlGnsLw%3D 10.1021/ac2011685; Headley, J., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2011) Rapid Commun. Mass Spectrom, 25, pp. 1899-1909. , 1:CAS:528:DC%2BC3MXntVGmtrY%3D 10.1002/rcm.5062; Kim, E., No, M.-H., Koh, J., Kim, S., Compositional characterization of petroleum heavy oils generated from vacuum distillation and catalytic cracking by positive-mode APPI FT-ICR mass spectrometry (2011) Mass Spectrom. Lett., 2, pp. 41-44. , 1:CAS:528:DC%2BC3MXhs1CqsbfI 10.5478/MSL.2011.2.2.041; Cho, Y., Witt, M., Kim, Y.H., Kim, S., Characterization of crude oils at the molecular level by use of laser desorption ionization fourier-transform ion cyclotron resonance mass spectrometry (2012) Anal. Chem., 84, pp. 8587-8594. , 1:CAS:528:DC%2BC38XhtlWmur7J 10.1021/ac301615m; Gaspar, A., Zellermann, E., Lababidi, S., Reece, J., Schrader, W., Impact of different ionization methods on the molecular assignments of asphaltenes by FT-ICR mass spectrometry (2012) Anal. Chem., 84, pp. 5257-5267. , 1:CAS:528:DC%2BC38Xnt1WqsLo%3D 10.1021/ac300133p; Gaspar, A., Zellermann, E., Lababidi, S., Reece, J., Schrader, W., Characterization of saturates, aromatics, resins, and asphaltenes heavy crude oil fractions by atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry (2012) Energy Fuels, 26, pp. 3481-3487. , 1:CAS:528:DC%2BC38XmslWns70%3D 10.1021/ef3001407; Zhou, X., Shi, Q., Zhang, Y., Zhao, S., Zhang, R., Chung, K.H., Xu, C., Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (2012) Anal. Chem., 84, pp. 3192-3199. , 1:CAS:528:DC%2BC38XitlWntbg%3D 10.1021/ac203035k; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem., 82, pp. 3727-3735. , 1:CAS:528:DC%2BC3cXktVyisLk%3D 10.1021/ac100103y; Beu, S.C., Blakney, G.T., Quinn, J.P., Hendrickson, C.L., Marshall, A.G., Broadband phase correction of FT-ICR mass spectra via simultaneous excitation and detection (2004) Analytical Chemistry, 76 (19), pp. 5756-5761. , DOI 10.1021/ac049733i; Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G., Automated broadband phase correction of Fourier transform ion cyclotron resonance mass spectra (2010) Anal. Chem., 82, pp. 8807-8812. , 1:CAS:528:DC%2BC3cXht12jtbrF 10.1021/ac101091w; Kaiser, N.K., Savory, J.J., McKenna, A.M., Quinn, J.P., Hendrickson, C.L., Marshall, A.G., Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis (2011) Anal. Chem., 83, pp. 6907-6910. , 1:CAS:528:DC%2BC3MXhtVWhu7zI 10.1021/ac201546d; Qi, Y., Barrow, M.P., Van Orden, S.L., Thompson, C.J., Li, H., Perez-Hurtado, P., O'Connor, P.B., Variation of the Fourier transform mass spectra phase function with experimental parameters (2011) Anal. Chem., 83, pp. 8477-8483. , 1:CAS:528:DC%2BC3MXhtlKksb%2FO 10.1021/ac2017585; Qi, Y., Thompson, C., Orden, S., O'Connor, P., Phase correction of Fourier transform ion cyclotron resonance mass spectra using MatLab (2011) J. Am. Soc. Mass Spectrom., 22, pp. 138-147. , 1:CAS:528:DC%2BC3MXnt1Khur8%3D 10.1007/s13361-010-0006-7; Qi, Y., Li, H., Wills, R.H., Perez-Hurtado, P., Yu, X., Kilgour, D.P.A., Barrow, M.P., O'Connor, P.B., Absorption-mode Fourier transform mass spectrometry: The effects of apodization and phasing on modified protein spectra (2013) J. Am. Soc. Mass Spectrom., 24, pp. 828-834; Qi, Y., Witt, M., Jertz, R., Baykut, G., Barrow, M.P., Nikolaev, E.N., O'Connor, P.B., Absorption-mode spectra on the dynamically harmonized Fourier transform ion cyclotron resonance cell (2012) Rapid Commun. Mass Spectrom, 26, pp. 2021-2026. , 1:CAS:528:DC%2BC38XhtFalu7bP 10.1002/rcm.6311; Vetter, W., McLafferty, F.W., Turecek, F., (1994) Interpretation of Mass Spectra, 23, p. 379. , 4th edition (1993). University Science Books: Mill Valley, CA; Hur, M., Oh, H.B., Kim, S., Optimized automatic noise level calculations for broadband FT-ICR mass spectra of petroleum give more reliable and faster peak picking results (2009) Bull. Korean Chem. Soc., 30, pp. 2665-2668. , 1:CAS:528:DC%2BD1MXhsFyltL7L 10.5012/bkcs.2009.30.11.2665},\ncorrespondence_address1={Kim, S.; Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea; email: sunghwank@knu.ac.kr},\nissn={10440305},\ncoden={JAMSE},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and 13C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S 2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses. © 2013 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Unexpected crosslinking and diglycation as advanced glycation end-products from glyoxal.\n \n \n \n \n\n\n \n Lopez-Clavijo, A.; Duque-Daza, C.; Soulby, A.; Canelon, I.; Barrow, M.; and O'Connor, P.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 25(12): 2125-2133. 2014.\n cited By 3\n\n\n\n
\n\n\n\n \n \n \"UnexpectedPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Lopez-Clavijo20142125,\nauthor={Lopez-Clavijo, A.F. and Duque-Daza, C.A. and Soulby, A. and Canelon, I.R. and Barrow, M. and O'Connor, P.B.},\ntitle={Unexpected crosslinking and diglycation as advanced glycation end-products from glyoxal},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2014},\nvolume={25},\nnumber={12},\npages={2125-2133},\ndoi={10.1007/s13361-014-0996-7},\nnote={cited By 3},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919913637&doi=10.1007%2fs13361-014-0996-7&partnerID=40&md5=267128bfd7251b5f0d0b204937231358},\naffiliation={Warwick Centre for Analytical Science, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom; Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Bogota, 111321, Colombia; Chemistry Department, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={Glyoxal-derived advanced glycation end-products (AGEs) are formed in physiological systems affecting protein/peptide function and structure. These AGEs are generated during aging and chronic diseases such as diabetes and are considered arginine glycating agents. Thus, the study of glyoxal-derived AGEs in lysine residues and amino acid competition is addressed here using acetylated and non-acetylated undecapeptides, with one arginine and one lysine residue available for glycation. Tandem mass spectrometry results from a Fourier transform ion cyclotron resonance mass spectrometer showed glycated species at both the arginine and lysine residues. One species with the mass addition of 116.01096 Da is formed at the arginine residue. A possible structure is proposed to explain this finding (Nδ-[2-(dihydroxymethyl)-2H,3aH,4H,6aH-[1, 3]dioxolo[5,6-d]imidazolin-5-yl]-L-ornithine-derived AGE). The second species corresponded to intramolecular crosslink involving the lysine residue and its presence is checked with ion-mobility mass spectrometry. © 2014 American Society for Mass Spectrometry.},\nauthor_keywords={Advanced glycation endproducts (AGEs);  AGEs crosslinking;  CAD;  CID;  Collisionally activated dissociation;  ECD;  Electron capture dissociation;  Glycation;  Glyoxal;  Maillard reaction;  Mass spectrometry;  PTMs},\nkeywords={Arginine;  Computer aided design;  Crosslinking;  Dissociation;  Mass spectrometry, Advanced glycation end products;  CID;  Collisionally activated dissociation;  ECD;  Electron capture dissociation;  Glycation;  Glyoxal;  Maillard reaction;  PTMs, Glycosylation, advanced glycation end product;  arginine;  glucose;  glyoxal;  lysine;  advanced glycation end product;  cross linking reagent;  glyoxal;  peptide, acetylation;  amino acid sequence;  Article;  chemical structure;  conformational transition;  cross linking;  electron nuclear double resonance;  glycation;  ion cyclotron resonance mass spectrometry;  ion mobility spectrometry;  protein purification;  protein structure;  reaction analysis;  reaction time;  tandem mass spectrometry;  chemistry;  glycosylation;  mass spectrometry;  metabolism, Amino Acid Sequence;  Cross-Linking Reagents;  Glycosylation;  Glycosylation End Products, Advanced;  Glyoxal;  Lysine;  Mass Spectrometry;  Peptides},\nchemicals_cas={arginine, 1119-34-2, 15595-35-4, 7004-12-8, 74-79-3; glucose, 50-99-7, 84778-64-3; glyoxal, 107-22-2; lysine, 56-87-1, 6899-06-5, 70-54-2; Cross-Linking Reagents; Glycosylation End Products, Advanced; Glyoxal; Lysine; Peptides},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/ F034210/1},\nfunding_details={National Institutes of HealthNational Institutes of Health, NIH, GM078293},\nreferences={Thornalley, P.J., Monosaccharide autoxidation in health and disease (1985) Environ Health Perspect, 64, pp. 297-307. , 1:CAS:528:DyaL28Xht1Onsbk%3D 10.1289/ehp.8564297; Abordo, E.A., Minhas, H.S., Thornalley, P.J., Accumulation of alpha-oxoaldehydes during oxidative stress: A role in cytotoxicity (1999) Biochem. Pharmacol., 58, pp. 641-648. , 1:CAS:528:DyaK1MXks1WrsLg%3D 10.1016/S0006-2952(99)00132-X; Anderson, M.M., Hazen, S.L., Hsu, F.F., Heinecke, J.W., Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation (1997) J. Clin. Invest., 99, pp. 424-432. , 1:CAS:528:DyaK2sXhtVKksbg%3D 10.1172/JCI119176; Awada, M., Dedon, P.C., Formation of the 1, N2-glyoxal adduct of deoxyguanosine by phosphoglycolaldehyde, a product of 3-deoxyribose oxidation in DNA (2001) Chem. Res. Toxicol., 14, pp. 1247-1253. , 1:CAS:528:DC%2BD3MXls1Oqsr0%3D 10.1021/tx0155092; Lloid-Stahlhofen, A., Spiteller, G., Alpha-hydroxyaldehydes, products of lipid peroxidation (1994) Biochem. Biophys. Acta., 1211, pp. 156-160; Namiki, M., Chemistry of Maillard reactions: Recent studies on the browning reaction mechanism and the development of antioxidants and mutagens (1988) Adv. Food. Res., 32, pp. 115-184. , 1:CAS:528:DyaL1MXitFSqu7c%3D 10.1016/S0065-2628(08)60287-6; Kikuchi, S., Shinpo, K., Moriwaka, F., Makita, Z., Miyata, T., Tashiro, K., Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: Synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases (1999) J. Neurosci. Res., 57, pp. 280-289. , 1:CAS:528:DyaK1MXksFSlsL8%3D 10.1002/(SICI)1097-4547(19990715)57:2<280: AID-JNR14>3.0.CO;2-U; Mera, K., Takeo, K., Izumi, M., Maruyama, T., Nagai, R., Otagiri, M., Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin (2010) J. Pharm. Sci., 99, pp. 1614-1625. , 1:CAS:528:DC%2BC3cXmvVGhuw%3D%3D 10.1002/jps.21927; Thornalley, P.J., Glycation free adduct accumulation in renal disease: The new AGE (2005) Pediatr. Nephrol., 20, pp. 1515-1522; Taneda, S., Monnier, V.M., ELISA of pentosidine, an advanced glycation end product, in biological specimens (1994) Clin. Chem., 40, pp. 1766-1773. , 1:CAS:528:DyaK2cXlslCnu74%3D; Borges, C.R., Oran, P.E., Buddi, S., Jarvis, J.W., Schaab, M.R., Rehder, D.S., Rogers, Nelson, R.W., Building multidimensional biomarker views of type 2 diabetes on the basis of protein microheterogeneity (2011) Clin. Chem., 57, pp. 719-728. , 1:CAS:528:DC%2BC3MXotlOrsrk%3D 10.1373/clinchem.2010.156976; Thornalley, P.J., Battah, S., Ahmed, N., Karachalias, N., Agalou, S., Babaei-Jadidi, R., Dawnay, A., Quantitative screening of advanced glycation end products in cellular and extracellular proteins by tandem mass spectrometry (2003) Biochem. J., 375, pp. 581-592. , 1:CAS:528:DC%2BD3sXotlehsrc%3D 10.1042/BJ20030763; Nagai, R., Deemer, E.K., Brock, J.W., Thorpe, S.R., Baynes, J.W., Effect of glucose concentration on formation of AGEs in erythrocytes in vitro (2005) Ann. NY. Acad. Sci., 1043, pp. 146-150. , 1:CAS:528:DC%2BD2MXpvVKqsL0%3D 10.1196/annals.1333.018; Nass, N., Bartling, B., Navarrete Santos, A., Scheubel, R.J., Börgermann, J., Silber, R.E., Simm, A., Advanced glycation end products, diabetes and ageing (2007) Z. Gerontol. Geriatr., 40, pp. 349-356. , 1:STN:280:DC%2BD1c%2FisFKksQ%3D%3D 10.1007/s00391-007-0484-9; Beisswenger, P.J., Howell, S.K., Nelson, R.G., Mauer, M., Szwergold, B.S., α-Oxoaldehyde metabolism and diabetic complications (2003) Biochem. Soc. Trans., 31, pp. 1358-1363. , 1:CAS:528:DC%2BD3sXps12jtrs%3D 10.1042/BST0311358; Weiss, M.F., Erhard, P., Kader-Attia, F.A., Wu, Y.C., Deoreo, P.B., Araki, A., Glomb, M.A., Monnier, V.M., Mechanisms for the formation of glycoxidation products in end-stage renal disease (2000) Kidney Int, 57, pp. 2571-2585. , 1:CAS:528:DC%2BD3cXkt1Cgu78%3D 10.1046/j.1523-1755.2000.00117.x; Agalou, S., Ahmed, N., Thornalley, P.J., Dawnay, A., Advanced glycation end product free adducts are cleared by dialysis (2005) Ann. NY. Acad. Sci., 1043, pp. 734-739. , 1:CAS:528:DC%2BD2MXpvVKqu74%3D 10.1196/annals.1333.085; Brock, J.W.C., Hinton, D.J.S., Cotham, W.E., Metz, T.O., Thorpe, S.R., Baynes, J.W., Ames, J.M., Proteomic analysis of the site specificity of glycation and carboxymethylation of ribonuclease research articles (2003) J. Proteome. Res., 2, pp. 506-513. , 1:CAS:528:DC%2BD3sXkvFyjs7k%3D 10.1021/pr0340173; Odani, H., Shinzato, T., Usami, J., Matsumoto, Y., Frye, E.B., Baynes, J.W., Maeda, K., Imidazolium crosslinks derived from reaction of lysine with glyoxal and methylglyoxal are increased in serum proteins of uremic patients: Evidence for increased oxidative stress in uremia (1998) FEBS Lett., 427, pp. 381-385. , 1:CAS:528:DyaK1cXjtVKitL4%3D 10.1016/S0014-5793(98)00416-5; Kislinger, T., Humeny, A., Peich, C.C., Becker, C.-M., Pischetsrieder, M., Analysis of protein glycation products by MALDI-TOF/MS (2005) Ann. NY. Acad. Sci., 1043, pp. 249-259. , 1:CAS:528:DC%2BD2MXpvVKqsbs%3D 10.1196/annals.1333.030; Mittelmainer, S., Pischetsrieder, M., Multistep ultrahigh performance liquid chromatography/tandem mass spectrometry analysis for untargeted quantification of glycating activity and identification of most relevant glycation products (2011) Anal. Chem., 83, pp. 9660-9668; Lopez-Clavijo, A.F., Barrow, M.P., Rabbani, N., Thornalley, P.J., O'Connor, P.B., Determination of types and binding sites of advanced glycation endproducts for Substance P (2012) Anal. Chem., 84, pp. 10568-10575. , 1:CAS:528:DC%2BC38Xhs12mt7rM 10.1021/ac301583d; Glomb, M.A., Lang, G., Isolation and characterization of glyoxal-arginine modifications (2001) J. Agric. Food Chem., 49, pp. 1493-1501. , 1:CAS:528:DC%2BD3MXhtlKiu7s%3D 10.1021/jf001082d; Schwarzenbolz, U., Haessner, T., Klostermeyer, H., On the reaction of glyoxal with proteins (1997) Z. Leb. Unters. Forsch A., 205, pp. 121-124. , 1:CAS:528:DyaK2sXltlCitbs%3D 10.1007/s002170050137; Al-Abed, Y.M., Bucala, R., N ε-carboxymethyllysine formation by direct addition of glyoxal to lysine during the Maillard reaction (1995) Bioorg. Med. Chem. Lett., 5, pp. 2161-2162. , 1:CAS:528:DyaK2MXot1OksLY%3D 10.1016/0960-894X(95)00375-4; Alt, N., Carson, J.A., Alderson, N.L., Wang, Y., Nagai, R., Henle, T., Thorpe, S.R., Baynes, J.W., Chemical modification of muscle protein in diabetes (2004) Arch. Biochem. Biophys., 425, pp. 200-206. , 1:CAS:528:DC%2BD2cXjsVWmsLk%3D 10.1016/j.abb.2004.03.012; Hayashi, C.M., Nagai, R., Miyazaki, K., Hayase, F., Tomohiro, A., Tomomichi, O., Horiuchi, S., Conversion of Amadori products of the Maillard reaction to N ε-(carboxymethyl)lysine by short-term heating: Possible detection of artifacts by immunohistochemistry (2002) Lab. Invest., 82, pp. 795-807. , 1:CAS:528:DC%2BD38Xls1eju7g%3D 10.1097/01.LAB.0000018826.59648.07; Chellan, P., Nagaraj, R.H., Protein crosslinking by the Maillard reaction: Dicarbonyl-derived imidazolium crosslinks in aging and diabetes (1999) Arch. Biochem. Biophys., 368, pp. 98-104. , 1:CAS:528:DyaK1MXksFanuro%3D 10.1006/abbi.1999.1291; Makita, Z., Yanagisawa, K., Kuwajima, S., Yoshioka, N., Atsumi, T., Hasunuma, Y., Amides are novel protein modifications formed by physiological sugars (2001) J. Biol. Chem., 276, pp. 41638-41647; Eble, A.S., Thorpe, S.R., Baynes, J.W., Nonenzymatic glucosylation and glucose-dependent cross-linking of protein (1983) J. Biol. Chem., 258, pp. 9406-9412. , 1:CAS:528:DyaL3sXkvVCjsrY%3D; Biemel, K.M., Friedl, D.A., Lederer, M.O., Identification and quantification of major Maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound (2002) J. Biol. Chem., 277, pp. 24907-24915. , 1:CAS:528:DC%2BD38XlsVWit78%3D 10.1074/jbc.M202681200; Sell, D.R., Biemel, K.M., Reihl, O., Lederer, M.O., Strauch, C.M., Monnier, V.M., Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes (2005) J. Biol. Chem., 280, pp. 12310-12315. , 1:CAS:528:DC%2BD2MXislyht7g%3D 10.1074/jbc.M500733200; Zimmermang, M.B., Blaine, E.H., Nonenzymatic browning in vivo: Possible process for aging of long-lived proteins (1981) Science, 211, pp. 491-493; Bailey, A.J., Sims, T.J., Avery, N.C., Miles, C.A., Chemistry of collagen crosslinks: Glucose-mediated covalent of type-IV collagen in lens capsules (1993) Biochem. J., 296, pp. 489-496. , 1:CAS:528:DyaK3sXms1OlsLs%3D; Cooper, H.J., Håkansson, K., Marshall, A.G., The role of electron capture dissociation in biomolecular analysis (2005) Mass Spectrom. Rev., 24, pp. 201-222. , 1:CAS:528:DC%2BD2MXit1WgtrY%3D 10.1002/mas.20014; Adamson, J.T., Håkansson, K., Electron capture dissociation of oligosaccharides ionized with alkali, alkaline earth, and transition metals (2007) Anal. Chem., 79, pp. 2901-2910. , 1:CAS:528:DC%2BD2sXitF2htL0%3D 10.1021/ac0621423; Wynne, C., Edwards, N.J., Fenselau, C., Phyloproteomic classification of un-sequenced organisms by top-down identification of bacterial proteins using capLC-MS-MS on an Orbitrap (2010) Proteomics., 10, pp. 3631-3643. , 1:CAS:528:DC%2BC3cXht1OmtbbO 10.1002/pmic.201000172; Comisarow, M.B., Grassi, V., Parisor, G., Fourier transform ion cycotron double resonance (1978) Chem. Phys. Lett., 57, pp. 413-416. , 1:CAS:528:DyaE1cXlsl2isr8%3D 10.1016/0009-2614(78)85537-7; Sweet, S.M.M., Creese, A.J., Cooper, H.J., Strategy for the identification of sites of phosphorylation in proteins: Neutral loss triggered electron capture dissociation (2006) Anal. Chem., 78, pp. 7563-7569. , 1:CAS:528:DC%2BD28XhtVakurnF 10.1021/ac061331i; Mirgorodskaya, E., Hassan, H., Clausen, H., Roepstorff, P., Mass spectrometric determination of O-glycosylation sites using beta-elimination and partial acid hydrolysis (2001) Anal. Chem., 73, pp. 1263-1269. , 1:CAS:528:DC%2BD3MXhtFWqtbc%3D 10.1021/ac001288d; Kelleher, N.L., Zubarev, R.A., Bush, K., Furie, B.C., McLafferty, F.W., Walsh, C.T., Localization of labile posttranslational modifications by electron capture dissociation: The case of gamma-carboxyglutamic acid (1999) Anal. Chem., 71, pp. 4250-4253. , 1:CAS:528:DyaK1MXlt12ksLs%3D 10.1021/ac990684x; Kua, J., Hanley, S.W., De Haan, D.O., Thermodynamics and kinetics of glyoxal dimer formation: A computational study (2008) J. Phys. Chem. A., 112, pp. 66-72. , 1:CAS:528:DC%2BD2sXhsVehtbfJ 10.1021/jp076573g; Tsybin, Y.O., Håkansson, P., Budnik, B.A., Haselmann, K.F., Kjeldsen, F., Gorshkov, M., Zubarev, R.A., Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry (2001) Rapid Commun. Mass Spectrom., 15, pp. 1849-1854. , 1:CAS:528:DC%2BD3MXnsVegs7k%3D 10.1002/rcm.448; Roepstorff, P., Fohlman, J., Proposal for a common nomenclature for sequence ions in mass spectra of peptides (1984) Biomed. Mass Spectrom., 11, p. 601. , 1:CAS:528:DyaL2MXlvVOgtg%3D%3D 10.1002/bms.1200111109; Axelsson, J., Palmblad, M., Håkansson, K., Håkansson, P., Electron capture dissociation of Substance P using a commercially available Fourier transform ion cyclotron resonance mass spectrometer (1999) Rapid Commun. Mass Spectrom., 13, pp. 474-477. , 1:CAS:528:DyaK1MXitVSjtr8%3D 10.1002/(SICI)1097-0231(19990330)13:6<474: AID-RCM505>3.0.CO;2-1; Biemann, K., Nomenclature for peptide fragment ions (positive ions) (1990) Methods Enzymol., 93, pp. 886-887},\ncorrespondence_address1={O'connor, P.B.; Warwick Centre for Analytical Science, Department of Chemistry, University of WarwickUnited Kingdom},\npublisher={Springer New York LLC},\nissn={10440305},\ncoden={JAMSE},\npubmed_id={25315462},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Glyoxal-derived advanced glycation end-products (AGEs) are formed in physiological systems affecting protein/peptide function and structure. These AGEs are generated during aging and chronic diseases such as diabetes and are considered arginine glycating agents. Thus, the study of glyoxal-derived AGEs in lysine residues and amino acid competition is addressed here using acetylated and non-acetylated undecapeptides, with one arginine and one lysine residue available for glycation. Tandem mass spectrometry results from a Fourier transform ion cyclotron resonance mass spectrometer showed glycated species at both the arginine and lysine residues. One species with the mass addition of 116.01096 Da is formed at the arginine residue. A possible structure is proposed to explain this finding (Nδ-[2-(dihydroxymethyl)-2H,3aH,4H,6aH-[1, 3]dioxolo[5,6-d]imidazolin-5-yl]-L-ornithine-derived AGE). The second species corresponded to intramolecular crosslink involving the lysine residue and its presence is checked with ion-mobility mass spectrometry. © 2014 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Mass spectrometric strategies to improve the identification of Pt(II)-modification sites on peptides and proteins.\n \n \n \n \n\n\n \n Li, H.; Snelling, J.; Barrow, M.; Scrivens, J.; Sadler, P.; and O'Connor, P.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 25(7): 1217-1227. 2014.\n cited By 17\n\n\n\n
\n\n\n\n \n \n \"MassPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Li20141217,\nauthor={Li, H. and Snelling, J.R. and Barrow, M.P. and Scrivens, J.H. and Sadler, P.J. and O'Connor, P.B.},\ntitle={Mass spectrometric strategies to improve the identification of Pt(II)-modification sites on peptides and proteins},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2014},\nvolume={25},\nnumber={7},\npages={1217-1227},\ndoi={10.1007/s13361-014-0877-0},\nnote={cited By 17},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904043218&doi=10.1007%2fs13361-014-0877-0&partnerID=40&md5=72309ff19d81ae514a8158756788583c},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; School of Life Science, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={(Chemical Presented) To further explore the binding chemistry of cisplatin (cis-Pt(NH<inf>3</inf>)<inf>2</inf>Cl<inf>2</inf>) to peptides and also establish mass spectrometry (MS) strategies to quickly assign the platinum-binding sites, a series of peptides with potential cisplatin binding sites (Met(S), His(N), Cys(S), disulfide, carboxyl groups of Asp and Glu, and amine groups of Arg and Lys, were reacted with cisplatin, then analyzed by electron capture dissociation (ECD) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Radical-mediated side-chain losses from the charge-reduced Pt-binding species (such as CH<inf>3</inf>S• or CH<inf>3</inf>SH from Met, SH• from Cys, CO<inf>2</inf> from Glu or Asp, and NH<inf>2</inf>• from amine groups) were found to be characteristic indicators for rapid and unambiguous localization of the Pt-binding sites to certain amino acid residues. The method was then successfully applied to interpret the top-down ECD spectrum of an inter-chain Pt-crosslinked insulin dimer, insulin+Pt(NH<inf>3</inf>)<inf>2</inf>+insulin (>10 kDa). In addition, ion mobility MS shows that Pt binds to multiple sites in Substance P, generating multiple conformers, which can be partially localized by collisionally activated dissociation (CAD). Platinum(II) (Pt(II)) was found to coordinate to amine groups of Arg and Lys, but not to disulfide bonds under the conditions used. The coordination of Pt to Arg or Lys appears to arise from the migration of Pt(II) from Met(S) as shown by monitoring the reaction products at different pH values by ECD. No direct binding of cisplatin to amine groups was observed at pH 3∼10 unless Met residues were present in the sequence, but noncovalent interactions between cisplatin hydrolysis and amination [Pt(NH<inf>3</inf>)<inf>4</inf>]2+ products and these peptides were found regardless of pH. © 2014 American Society for Mass Spectrometry.},\nauthor_keywords={FTICR;  Ion mobility;  Post-translational modifications},\nkeywords={Amino acids;  Binding sites;  Carbon dioxide;  Chains;  Chemical analysis;  Chlorine;  Covalent bonds;  Crosslinking;  Dimers;  Dissociation;  Insulin;  Ions;  Mass spectrometers;  Mass spectrometry;  Peptides;  Platinum compounds, Amino acid residues;  Collisionally activated dissociation;  Electron capture dissociation;  Fourier transform ion cyclotron resonance mass spectrometers;  FTICR;  Ion Mobility;  Non-covalent interaction;  Post-translational modifications, Platinum, amine;  angiotensin II;  arginine;  aspartic acid;  bombesin;  cisplatin;  cysteine;  dimer;  disulfide;  glutamine;  histidine;  insulin;  lysine;  methionine;  peptides and proteins;  substance P;  vasopressin;  peptide;  platinum;  protein, amination;  amino acid sequence;  analytic method;  article;  binding site;  chemical interaction;  chemical modification;  chemical reaction;  collisionally activated dissociation;  disulfide bond;  drug identification;  electron capture detection;  hydrolysis kinetics;  ion cyclotron resonance mass spectrometry;  pH;  protein binding;  chemical structure;  chemistry;  procedures;  protein conformation;  tandem mass spectrometry, Hydrogen-Ion Concentration;  Models, Molecular;  Peptides;  Platinum;  Protein Conformation;  Proteins;  Tandem Mass Spectrometry},\nchemicals_cas={angiotensin II, 11128-99-7; arginine, 1119-34-2, 15595-35-4, 7004-12-8, 74-79-3; aspartic acid, 56-84-8, 6899-03-2; bombesin, 31362-50-2; cisplatin, 15663-27-1, 26035-31-4, 96081-74-2; cysteine, 4371-52-2, 52-89-1, 52-90-4; disulfide, 16734-12-6; glutamine, 56-85-9, 6899-04-3; histidine, 645-35-2, 7006-35-1, 71-00-1; insulin, 9004-10-8; lysine, 56-87-1, 6899-06-5, 70-54-2; methionine, 59-51-8, 63-68-3, 7005-18-7; substance P, 33507-63-0; vasopressin, 11000-17-2; platinum, 7440-06-4; protein, 67254-75-5; Peptides; Platinum; Proteins},\nfunding_details={European Research CouncilEuropean Research Council, ERC, 247450},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, BP/G006792},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/F034210/1},\nfunding_details={National Institutes of HealthNational Institutes of Health, NIH, NIH/NIGMS-R01GM078293},\nreferences={Rosenberg, B., Van Camp, L., Krigas, T., Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode (1965) Nature, 205, pp. 698-699; Kelland, L., The resurgence of platinum-based cancer chemotherapy (2007) Nat. Rev. Cancer, 7, pp. 573-584; Karotki, A.V., Vašák, M., Interaction of metallothionein-2 with platinum-modified 5′-guanosine monophosphate and DNA (2008) Biochemistry, 47, pp. 10961-10969; Knipp, M., Karotki, A.V., Chesnov, S., Natile, G., Sadler, P.J., Brabec, V., Vašák, M., Reaction of Zn<inf>7</inf>-metallothionein with cis- and trans-[Pt(N-donor)<inf>2</inf>Cl<inf>2</inf>] anticancer complexes: Trans-Pt(II) complexes retain their N-donor ligands (2007) J. Med. Chem., 50, pp. 4075-4086; Kröning, R., Lichtenstein, A.K., Nagami, G.T., Sulfur-containing amino acids decrease cisplatin cytotoxicity and uptake in renal tubule epithelial cell lines (2000) Cancer Chemother. Pharmacol., 45, pp. 43-49; Gibson, D., Costello, C.E., A mass spectral study of the binding of the anticancer drug cisplatin to ubiquitin (1999) Eur. Mass Spectrom., 5, pp. 501-510; Hartinger, C.G., Tsybin, Y.O., Fuchser, J., Dyson, P.J., Characterization of platinum anticancer drug protein-binding sites using a top-down mass spectrometric approach (2007) Inorg. Chem., 47, pp. 17-19; Li, H., Zhao, Y., Phillips, H.I.A., Qi, Y., Lin, T.-Y., Sadler, P.J., O'Connor, P.B., Mass spectrometry evidence for cisplatin as a protein cross-linking reagent (2011) Anal. Chem., 83, pp. 5369-5376; Moreno-Gordaliza, E., Canas, B., Palacios, M.A., Gomez-Gomez, M.M., Novel insights into the bottom-up mass spectrometry proteomics approach for the characterization of Pt-binding proteins: The insulin-cisplatin case study (2010) Analyst, 135, pp. 1288-1298; Moreno-Gordaliza, E.A., Cañas, B., Palacios, M.A., Gómez- Gómez, M.M., Top-down mass spectrometric approach for the full characterization of insulin-cisplatin adducts (2009) Anal. Chem., 81, pp. 3507-3516; Li, H., Lin, T.-Y., Van Orden, S.L., Zhao, Y., Barrow, M.P., Pizarro, A.M., Qi, Y., O'Connor, P.B., Use of top-down and bottom-up Fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs (2011) Anal. Chem., 83, pp. 9507-9515; Khalaila, I., Allardyce, C.S., Verma, C.S., Dyson, P.J., A mass spectrometric and molecular modelling study of cisplatin binding to transferrin (2005) Chem. BioChem., 6, pp. 1788-1795; Benkestock, K., Edlund, P.-O., Roeraade, J., Electrospray ionization mass spectrometry as a tool for determination of drug binding sites to human serum albumin by noncovalent interaction (2005) Rapid Commun. Mass Spectrom., 19, pp. 1637-1643; Casini, A., Gabbiani, C., Michelucci, E., Pieraccini, G., Moneti, G., Dyson, P., Messori, L., Exploring metallodrug-protein interactions by mass spectrometry: Comparisons between platinum coordination complexes and an organometallic ruthenium compound (2009) J. Biol. Inorg. Chem., 14, pp. 761-770; Zhang, N., Du, Y., Cui, M., Xing, J., Liu, Z., Liu, S., Probing the interaction of cisplatin with cytochrome c by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2012) Anal. Chem., 84, pp. 6206-6212; Hoerner, J.K., Xiao, H., Dobo, A., Kaltashov, I.A., Is there hydrogen scrambling in the gas phase? Energetic and structural determinants of proton mobility within protein ions (2004) J. Am. Chem. Soc., 126, pp. 7709-7717; Bulleigh, K., Howard, A., Do, T., Wu, Q., Anbalagan, V., Stipdonk, M.V., Investigation of intramolecular proton migration in a series of model, metal-cationized tripeptides using in situ generation of an isotope label (2006) Rapid Commun. Mass Spectrom., 20, pp. 227-232; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., Electron capture dissociation of multiply charged protein cations. A nonergodic process (1998) J. Am. Chem. Soc., 120, pp. 3265-3266; Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W., Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity (1999) J. Am. Chem. Soc., 121, pp. 2857-2862; Permyakov, E.A., (2009) Metalloproteomics, , Wiley-Interscience, Hoboken, NJ; Feketeová, L., Ryzhov, V., O'Hair, R.A.J., Comparison of collision-versus electron-induced dissociation of Pt(II) ternary complexes of histidine- and methionine-containing peptides (2009) Rapid Commun. Mass Spectrom., 23, pp. 3133-3143; Wu, C., Siems, W.F., Klasmeier, J., Hill, H.H., Separation of isomeric peptides using electrospray ionization/high- resolution ion mobility spectrometry (1999) Anal. Chem., 72, pp. 391-395; Srebalus, B., Hilderbrand, A.E., Valentine, S.J., Clemmer, D.E., Resolving isomeric peptide mixtures: A combined HPLC/ion mobility-TOFMS analysis of a 4000-component combinatorial library (2002) Anal. Chem., 74, pp. 26-36; Hilton, G.R., Jackson, A.T., Thalassinos, K., Scrivens, J.H., Structural analysis of synthetic polymer mixtures using ion mobility and tandem mass spectrometry (2008) Anal. Chem., 80, pp. 9720-9725; Williams, J.P., Bugarcic, T., Habtemariam, A., Giles, K., Campuzano, I., Rodger, P.M., Sadler, P.J., Isomer separation and gas-phase configurations of organoruthenium anticancer complexes: Ion mobility mass spectrometry and modeling (2009) J. Am. Soc. Mass Spectrom., 20, pp. 1119-1122; Cuyckens, F., Wassvik, C., Mortishire-Smith, R.J., Tresadern, G., Campuzano, I., Claereboudt, J., Product ion mobility as a promising tool for assignment of positional isomers of drug metabolites (2011) Rapid Commun. Mass Spectrom., 25, pp. 3497-3503; Dhara, S.C., A rapid method for the synthesis of cis-[Pt(NH<inf>3</inf>) <inf>2</inf>Cl<inf>2</inf>] (1970) Ind. J. Chem., 8, pp. 193-194; Material Safety Data Sheet from TEVA Parenteral Medicines for Cisplatin, , http://bdipharma.com/MSDS/Teva/Cisplatin_MSDS.pdf, Available at: Accessed 5 Sep 2013; Cisplatin Information Sheet, , http://www.uthsc.edu/research/research_compliance/docs/ Working_with_Cisplatin.pdf, Available at: Accessed 5 Sep 2013; Material Safety Data Sheet for Cisplatin, , http://www.medsafe.govt.nz/profs/datasheet/c/cisplatininj.htm, Available at: Accessed 5 Sep 2013; Giles, K., Williams, J.P., Campuzano, I., Enhancements in travelling wave ion mobility resolution (2011) Rapid Commun. Mass Spectrom., 25, pp. 1559-1566; Thalassinos, K., Grabenauer, M., Slade, S.E., Hilton, G.R., Bowers, M.T., Scrivens, J.H., Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry (2008) Anal. Chem., 81, pp. 248-254; Harrison, A.G., Cyclization of peptide b9 ions (2009) J. Am. Soc. Mass Spectrom., 20, pp. 2248-2253; Atik, A., Yalcin, T., A systematic study of acidic peptides for b-type sequence scrambling (2011) J. Am. Soc. Mass Spectrom., 22, pp. 38-48; Li, X., Huang, Y., O'Connor, P., Lin, C., Structural heterogeneity of doubly-charged peptide b-Ions (2011) J. Am. Soc. Mass Spectrom., 22, pp. 245-254; Lin, C., Cournoyer, J., O'Connor, P., Probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD (2008) J. Am. Soc. Mass Spectrom, 19, pp. 780-789; Wei, H., Wang, X., Liu, Q., Mei, Y., Lu, Y., Guo, Z., Disulfide bond cleavage induced by a platinum(II) methionine complex (2005) Inorg. Chem., 44, pp. 6077-6081; Appleton, T.G., Connor, J.W., Hall, J.R., S,O- versus S,N-chelation in the reactions of the cis- diamminediaquaplatinum(II)cation with methionine and S-methylcysteine (1988) Inorg. Chem., 27, pp. 130-137; Chen, Y., Guo, Z., Del Socorro Murdoch, P., Zang, E.J., Sadler, P., Interconversion between S- and N-bound L-methionine adducts of Pt(dien)2+ (dien = diethylenetriamine) via dien ring-opened intermediates (1998) J. Chem. Soc., Dalton Trans., 9, pp. 1503-1508; Lempers, E.L.M., Reedijk, J., Characterization of products from chloro(diethylenetriamine)platinum(1+) chloride and S-adenosyl-L-homocysteine. Evidence for a pH-dependent migration of the platinum moiety from the sulfur atom to the amine group and vice versa (1990) Inorg. Chem., 29, pp. 1880-1884; Frohling, C.D.W., Sheldrick, W.S., Intramolecular migration of [Pt(dien)]2+ (dien=1,5-diamino-3- azapentane) from sulfur to imidazole-N1 in histidylmethionine (his-metH) (1997) Chem. Commun., 18, pp. 1737-1738; Fung, Y.M.E., Chan, T.W.D., Experimental and theoretical investigations of the loss of amino acid side chains in electron capture dissociation of model peptides (2005) J. Am. Soc. Mass Spectrom., 16, pp. 1523-1535; Falth, M., Savitski, M.M., Nielsen, M.L., Kjeldsen, F., Andren, P.E., Zubarev, R.A., Analytical utility of small neutral losses from reduced species in electron capture dissociation studied using SwedECD database (2008) Anal. Chem., 80, pp. 8089-8094; Savitski, M.M., Nielsen, M.L., Zubarev, R.A., Side-chain losses in electron capture dissociation to improve peptide identification (2007) Anal. Chem., 79, pp. 2296-2302; Moore, B.N., Ly, T., Julian, R.R., Radical conversion and migration in electron capture dissociation (2011) J. Am. Chem. Soc., 133, pp. 6997-7006; Huang, J., Tiedemann, P.W., Land, D.P., McIver, R.T., Hemminger, J.C., Dynamics of ion coupling in an FTMS ion trap and resulting effects on mass spectra, including isotope ratios (1994) Int. J. Mass Spectrom. Ion Processes, 134, pp. 11-21; Peurrung, A.J., Kouzes, R.T., Analysis of space-charge effects in cyclotron resonance mass spectrometry as coupled gyrator phenomena (1995) Int. J. Mass Spectrom. Ion Processes, 145, pp. 139-153; Norman, R.E., Ranford, J.D., Sadler, P.J., Studies of platinum(II) methionine complexes: Metabolites of cisplatin (1992) Inorg. Chem., 31, pp. 877-888; Kleinnijenhuis, A.J., Duursma, M.C., Breukink, E., Heeren, R.M.A., Heck, A.J.R., Localization of intramolecular monosulfide bridges in lantibiotics determined with electron capture induced dissociation (2003) Anal. Chem., 75, pp. 3219-3225; Blundell, T., Dodson, G., Hodgkin, D., Mercola, D., Insulin: The structure in the crystal and its reflection in chemistry and biology (1972) Adv. Protein Chem., 26, pp. 279-402; Frankær, C.G., Knudsen, M.V., Norén, K., Nazarenko, E., Ståhl, K., Harris, P., The structures of T6, T3R3 and R6 bovine insulin: Combining X-ray diffraction and absorption spectroscopy (2012) Acta. Crystallogr. D. Biol. Crystallogr., 68, pp. 1259-1271; Li, H., Wells, S.A., Jimenez-Roldan, J.E., Römer, R.A., Zhao, Y., Sadler, P.J., O'Connor, P.B., Protein flexibility is key to cisplatin crosslinking in calmodulin (2012) Protein Sci., 21, pp. 1269-1279; Back, J.W., De Jong, L., Muijsers, A.O., De Koster, C.G., Chemical cross-linking and mass spectrometry for protein structural modeling (2003) J. Mol. Biol., 331, pp. 303-313},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: p.oconnor@warwick.ac.uk},\npublisher={Springer New York LLC},\nissn={10440305},\ncoden={JAMSE},\npubmed_id={24845349},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n (Chemical Presented) To further explore the binding chemistry of cisplatin (cis-Pt(NH3)2Cl2) to peptides and also establish mass spectrometry (MS) strategies to quickly assign the platinum-binding sites, a series of peptides with potential cisplatin binding sites (Met(S), His(N), Cys(S), disulfide, carboxyl groups of Asp and Glu, and amine groups of Arg and Lys, were reacted with cisplatin, then analyzed by electron capture dissociation (ECD) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Radical-mediated side-chain losses from the charge-reduced Pt-binding species (such as CH3S• or CH3SH from Met, SH• from Cys, CO2 from Glu or Asp, and NH2• from amine groups) were found to be characteristic indicators for rapid and unambiguous localization of the Pt-binding sites to certain amino acid residues. The method was then successfully applied to interpret the top-down ECD spectrum of an inter-chain Pt-crosslinked insulin dimer, insulin+Pt(NH3)2+insulin (>10 kDa). In addition, ion mobility MS shows that Pt binds to multiple sites in Substance P, generating multiple conformers, which can be partially localized by collisionally activated dissociation (CAD). Platinum(II) (Pt(II)) was found to coordinate to amine groups of Arg and Lys, but not to disulfide bonds under the conditions used. The coordination of Pt to Arg or Lys appears to arise from the migration of Pt(II) from Met(S) as shown by monitoring the reaction products at different pH values by ECD. No direct binding of cisplatin to amine groups was observed at pH 3∼10 unless Met residues were present in the sequence, but noncovalent interactions between cisplatin hydrolysis and amination [Pt(NH3)4]2+ products and these peptides were found regardless of pH. © 2014 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Insights into the binding sites of organometallic ruthenium anticancer compounds on peptides using ultra-high resolution mass spectrometry.\n \n \n \n \n\n\n \n Wills, R.; Habtemariam, A.; Lopez-Clavijo, A.; Barrow, M.; Sadler, P.; and O'Connor, P.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 25(4): 662-672. 2014.\n cited By 13\n\n\n\n
\n\n\n\n \n \n \"InsightsPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Wills2014662,\nauthor={Wills, R.H. and Habtemariam, A. and Lopez-Clavijo, A.F. and Barrow, M.P. and Sadler, P.J. and O'Connor, P.B.},\ntitle={Insights into the binding sites of organometallic ruthenium anticancer compounds on peptides using ultra-high resolution mass spectrometry},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2014},\nvolume={25},\nnumber={4},\npages={662-672},\ndoi={10.1007/s13361-013-0819-2},\nnote={cited By 13},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896973162&doi=10.1007%2fs13361-013-0819-2&partnerID=40&md5=46d23192fbb0cea22b77f8af8d0a21e3},\naffiliation={Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom},\nabstract={(Chemical Presented) The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru(N,N)Cl]+, where arene/N,N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/o-phenylenediamine (o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively. © 2014 American Society for Mass Spectrometry.},\nauthor_keywords={Anticancer compounds;  FTICR mass spectrometry;  Ruthenium},\nkeywords={Binding sites;  Chlorine;  Chlorine compounds;  Dissociation;  Insulin;  Mass spectrometry;  Organometallics;  Oxidation;  Peptides;  Ruthenium;  Ruthenium compounds, Anticancer compounds;  Collisionally activated dissociation;  Electron capture dissociation;  Fourier transform ion cyclotron resonance;  FT-ICR mass spectrometry;  Organo-metallic complexes;  Primary binding sites;  Ultrahigh resolution, Amino acids, 4 nitro 1,2 phenylenediamine;  angiotensin;  antineoplastic agent;  biphenyl derivative;  bipyridine derivative;  bombesin;  cysteic acid;  glutamic acid;  histidine;  insulin;  methionine;  organometallic compound;  peptide derivative;  phenylalanine;  polycyclic aromatic hydrocarbon derivative;  ruthenium complex;  tyrosine, article;  collisionally activated dissociation;  complex formation;  drug binding site;  drug protein binding;  electron capture detection;  ion cyclotron resonance mass spectrometry;  mass spectrometry;  molecular interaction, Amino Acid Sequence;  Antineoplastic Agents;  Binding Sites;  Mass Spectrometry;  Molecular Sequence Data;  Organometallic Compounds;  Peptides;  Protein Binding;  Ruthenium Compounds},\nchemicals_cas={4 nitro 1,2 phenylenediamine, 99-56-9; angiotensin, 1407-47-2; bombesin, 31362-50-2; cysteic acid, 13100-82-8, 498-40-8; glutamic acid, 11070-68-1, 138-15-8, 56-86-0, 6899-05-4; histidine, 645-35-2, 7006-35-1, 71-00-1; insulin, 9004-10-8; methionine, 59-51-8, 63-68-3, 7005-18-7; phenylalanine, 3617-44-5, 63-91-2; tyrosine, 16870-43-2, 55520-40-6, 60-18-4},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, BP/G006792},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/ F034210/1},\nfunding_details={National Institutes of HealthNational Institutes of Health, NIH, NIH/NIGMSR01GM078293},\nreferences={Ang, W.H., Dyson, P.J., Classical and non-classical ruthenium-based anticancer drugs: Towards targeted chemotherapy (2006) Eur. J. Inorg. Chem., 20, pp. 4003-4018; Ivanov, A.I., Christodoulou, J., Parkinson, J.A., Barnham, K.J., Tucker, A., Woodrow, J., Sadler, P.J., Cisplatin binding sites on human albumin (1998) J. Biol. Chem., 273, pp. 14721-14730; Zhao, T., King, F.L., A mass spectrometric comparison of the interactions of cisplatin and transplatin with myoglobin (2010) J. Inorg. Biochem., 104, pp. 186-192; Gibson, D., Costello, C.E., A mass spectral study of the binding of the anticancer drug cisplatin to ubiquitin (1999) Eur. Mass Spectrom., 5, pp. 501-510; Moreno-Gordaliza, E., Canas, B., Palacios, M.A., Gomez-Gomez, M.M., Top-down mass spectrometric approach for the full characterization of insulin-cisplatin adducts (2009) Anal. Chem., 81, pp. 3507-3516; Allardyce, C.S., Dyson, P.J., Coffey, J., Johnson, N., Determination of drug binding sites to proteins by electrospray ionization mass spectrometry: The interaction of cisplatin with transferrin (2002) Rapid Commun. Mass Spectrom., 16, pp. 933-935; Khalaila, I., Allardyce, C.S., Verma, C.S., Dyson, P.J., A mass spectrometric and molecular modelling study of cisplatin binding to transferrin (2005) Chem. BioChem., 6, pp. 1788-1795; Li, H.L., Zhao, Y., Phillips, H.I.A., Qi, Y.L., Lin, T.Y., Sadler, P.J., O'Connor, P.B., Mass spectrometry evidence for cisplatin as a protein cross-linking reagent (2011) Anal. Chem., 83, pp. 5369-5376; Li, H., Lin, T.-Y., Van Orden, S.L., Zhao, Y., Barrow, M.P., Pizarro, A.M., Qi, Y., O'Connor, P.B., Use of top-down and bottom-up Fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs (2011) Anal. Chem., 83, pp. 9507-9515; Rademaker-Lakhai, J.M., Van Den Bongard, D., Pluim, D., Beijnen, J.H., Schellens, J.H.M., A phase I and pharmacological study with imidazolium-trans-DMSO- imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent (2004) Clin. Cancer Res., 10, pp. 3717-3727; Alessio, E., Mestroni, G., Bergamo, A., Sava, G., Ruthenium antimetastatic agents (2004) Curr. Top. Med. Chem., 4, pp. 1525-1535; Jakupec, M.A., Galanski, M., Arion, V.B., Hartinger, C.G., Keppler, B.K., Antitumor metal compounds: More than theme and variations (2008) Dalton Trans., 2, pp. 183-194; Groessl, M., Tsybin, Y.O., Hartinger, C.G., Keppler, B.K., Dyson, P.J., Ruthenium versus platinum: Interactions of anticancer metallodrugs with duplex oligonucleotides characterized by electrospray ionization mass spectrometry (2010) J. Biol. Inorg. Chem., 15, pp. 677-688; Kratz, F., Hartmann, M., Keppler, B., Messori, L., The binding-properties of 2 anticancer ruthenium(III) complexes to apotransferrin (1994) J. Biol. Chem., 269, pp. 2581-2588; Yan, Y.K., Melchart, M., Habtemariam, A., Sadler, P.J., Organometallic chemistry, biology, and medicine: Ruthenium arene anticancer complexes (2005) Chem. Commun., 38, pp. 4764-4776; Bugarcic, T., Habtemariam, A., Deeth, R.J., Fabbiani, F.P.A., Parsons, S., Sadler, P.J., Ruthenium(II) arene anticancer complexes with redoxactive diamine ligands (2009) Inorg. Chem., 48, pp. 9444-9453; Aird, R.E., Cummings, J., Ritchie, A.A., Muir, M., Morris, R.E., Chen, H., Sadler, P.J., Jodrell, D.I., In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer (2002) Br. J. Cancer, 86, pp. 1652-1657; Morris, R.E., Aird, R.E., Murdoch, P.D., Chen, H.M., Cummings, J., Hughes, N.D., Parsons, S., Sadler, P.J., Inhibition of cancer cell growth by ruthenium(II) arene complexes (2001) J. Med. Chem., 44, pp. 3616-3621; Habtemariam, A., Melchart, M., Fernandez, R., Parsons, S., Oswald, I.D.H., Parkin, A., Fabbiani, F.P.A., Sadler, P.J., Structure-activity relationships for cytotoxic ruthenium(II) arene complexes containing N, N-, N, O-, and O, O-chelating ligands (2006) J. Med. Chem., 49, pp. 6858-6868; Comisarow, M.B., Marshall, A.G., Fourier transform ion cyclotron resonance spectroscopy (1974) Chem. Phys. Lett., 25, pp. 282-283; Wang, F.Y., Bella, J., Parkinson, J.A., Sadler, P.J., Competitive reactions of a ruthenium arene anticancer complex with histidine, cytochrome c, and an oligonucleotide (2005) J. Biol. Inorg. Chem., 10, pp. 147-155; Jennings, K.R., Collision-induced decompositions of aromatic molecular ions (1968) Int. J. Mass Spectrom. Ion Phys., 1, pp. 227-235; Senko, M.W., Speir, J.P., McLafferty, F.W., Collisional activation of large multiply charged ions using fourier transform mass spectrometry (1994) Anal. Chem., 66, pp. 2801-2808; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., Electron capture dissociation of multiply charged protein cations. A nonergodic process (1998) J. Am. Chem. Soc., 120, pp. 3265-3266; Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W., Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity (1999) J. Am. Chem. Soc., 121, pp. 2857-2862; McLafferty, F.W., Horn, D.M., Breuker, K., Ge, Y., Lewis, M.A., Cerda, B., Zubarev, R.A., Carpenter, B.K., Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance (2001) J. Am. Soc. Mass Spectrom., 12, pp. 245-249; Syrstad, E.A., Turecek, F., Toward a general mechanism of electron capture dissociation (2005) J. Am. Soc. Mass Spectrom., 16, pp. 208-224; Simons, J., Mechanisms for S-S and N- C(alpha) bond cleavage in peptide ECD and ETD mass spectrometry (2010) Chem. Phys. Lett., 484, pp. 81-95; Iavarone, A.T., Paech, K., Williams, E.R., Effects of charge state and cationizing agent on the electron capture dissociation of a peptide (2004) Anal. Chem., 76, pp. 2231-2238; Fung, Y.M.E., Liu, H.C., Chan, T.W.D., Electron capture dissociation of peptides metalated with alkaline-earth metal ions (2006) J. Am. Soc. Mass Spectrom., 17, pp. 757-771; Kleinnijenhuis, A.J., Mihalca, R., Heeren, R.M.A., Heck, A.J.R., Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin (2006) Int. J. Mass Spectrom., 253, pp. 217-224; Liu, H.C., Hakansson, K., Divalent metal ion-peptide interactions probed by electron capture dissociation of trications (2006) J. Am. Soc. Mass Spectrom., 17, pp. 1731-1741; Kaczorowska, M.A., Hotze, A.C.G., Hannon, M.J., Cooper, H.J., Electron capture dissociation mass spectrometry of metallo-supramolecular complexes (2010) J. Am. Soc. Mass Spectrom., 21, pp. 300-309; Turecek, F., Jones, J.W., Holm, A.I.S., Panja, S., Nielsen, S.B., Hvelplund, P., Transition metals as electron traps. I. Structures, energetics, electron capture, and electron-transfer-induced dissociations of ternary copper-peptide complexes in the gas phase (2009) J. Mass Spectrom., 44, pp. 707-724; Turecek, F., Holm, A.I.S., Panja, S., Nielsen, S.B., Hvelplund, P., Transition metals as electron traps. II. Structures, energetics, and electron transfer dissociations of ternary Co, Ni, and Zn-peptide complexes in the gas phase (2009) J. Mass Spectrom, 44, pp. 1518-1531; Chen, X.F., Chan, W.Y.K., Wong, P.S., Yeung, H.S., Chan, T.W.D., Formation of peptide radical cations (M(+center dot)) in electron capture dissociation of peptides adducted with group IIB metal ions (2011) J. Am. Soc. Mass Spectrom., 22, pp. 233-244; Williams, J.P., Brown, J.M., Campuzano, I., Sadler, P.J., Identifying drug metallation sites on peptides using electron transfer dissociation (ETD), collision induced dissociation (CID), and ion mobility-mass spectrometry (IM-MS) (2010) Chem. Commun., 46, pp. 5458-5460; McNae, I.W., Fishburne, K., Habtemariam, A., Hunter, T.M., Melchart, M., Wang, F.Y., Walkinshaw, M.D., Sadler, P.J., Half-sandwich arene ruthenium(II)-enzyme complex (2004) Chem. Commun., 16, pp. 1786-1787; Piccioli, F., Sabatini, S., Messori, L., Orioli, P., Hartinger, C.G., Keppler, B.K., A comparative study of adduct formation between the anticancer ruthenium(III) compound HInd trans-[RuCl4(Ind)2] and serum proteins (2004) J. Inorg. Biochem., 98, pp. 1135-1142; Hartinger, C.G., Casini, A., Duhot, C., Tsybin, Y.O., Messori, L., Dyson, P.J., Stability of an organometallic ruthenium-ubiquitin adduct in the presence of glutathione: Relevance to antitumor activity (2008) J. Inorg. Biochem., 102, pp. 2136-2141; Casini, A., Gabbiani, C., Michelucci, E., Pieraccini, G., Moneti, G., Dyson, P.J., Messori, L., Exploring metallodrug-protein interactions by mass spectrometry: Comparisons between platinum coordination complexes and an organometallic ruthenium compound (2009) J. Biol. Inorg. Chem., 14, pp. 761-770; Casini, A., Karotki, A., Gabbiani, C., Rugi, F., Vasak, M., Messori, L., Dyson, P.J., Reactivity of an antimetastatic organometallic ruthenium compound with metallothionein-2: Relevance to the mechanism of action (2009) Metallomics, 1, pp. 434-441; Hu, W.B., Luo, Q., Ma, X.Y., Wu, K., Liu, J.A., Chen, Y., Xiong, S.X., Wang, F.Y., Arene control over thiolate to sulfinate oxidation in albumin by organometallic ruthenium anticancer complexes (2009) Chem. Eur. J., 15, pp. 6586-6594; Meier, S.M., Hanif, M., Kandioller, W., Keppler, B.K., Hartinger, C.G., Biomolecule binding versus anticancer activity: Reactions of Ru(arene) (thio)pyr-(id)one compounds with amino acids and proteins (2012) J. Inorg. Biochem., 108, pp. 91-95; Casini, A., Mastrobuoni, G., Ang, W.H., Gabbiani, C., Pieraccini, G., Moneti, G., Dyson, P.J., Messori, L., ESI-MS characterization of protein adducts of anticancer ruthenium(II)-arene PTA (RAPTA) complexes (2007) Chem. Med. Chem., 2, pp. 631-635; Chatterjee, S., Kundu, S., Bhattacharyya, A., Hartinger, C., Dyson, P., The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways (2008) J. Biol. Inorg. Chem., 13, pp. 1149-1155; Wu, B., Ong, M.S., Groessl, M., Adhireksan, Z., Hartinger, C.G., Dyson, P.J., Davey, C.A., A ruthenium antimetastasis agent forms specific histone protein adducts in the nucleosome core (2011) Chem. Eur. J., 17, pp. 3562-3566; Wang, Y., Vivekananda, S., Men, L., Zhang, Q., Fragmentation of protonated ions of peptides containing cysteine, cysteine sulfinic acid, and cysteine sulfonic acid (2004) J. Am. Soc. Mass Spectrom., 15, pp. 697-702; Claiborne, A., Yeh, J.I., Mallett, T.C., Luba, J., Crane, E.J., Charrier, V., Parsonage, D., Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation (1999) Biochemistry, 38, pp. 15407-15416; Chang, Y.-C., Huang, C.-N., Lin, C.-H., Chang, H.-C., Wu, C.-C., Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: An integrated approach to explore the cysteine oxidation (2010) Proteomics, 10, pp. 2961-2971; Winterbourn, C.C., Hampton, M.B., Thiol chemistry and specificity in redox signaling (2008) Free Radic. Biol. Med., 45, pp. 549-561; Caravatti, P., Allemann, M., The 'infinity cell': A new trapped-ion cell with radiofrequency covered trapping electrodes for Fourier transform ion cyclotron resonance mass spectrometry (1991) Org. Mass Spectrom., 26, pp. 514-518; Williams, J.P., Lough, J.A., Campuzano, I., Richardson, K., Sadler, P.J., Use of ion mobility mass spectrometry and a collision cross-section algorithm to study an organometallic ruthenium anticancer complex and its adducts with a DNA oligonucleotide (2009) Rapid Commun. Mass Spectrom., 23, pp. 3563-3569; Hu, P., Loo, J.A., Gas-phase coordination properties of Zn2+, Cu2+, Ni2+, and Co2+ with histidine-containing peptides (1995) J. Am. Chem. Soc., 117, pp. 11314-11319; Loo, J.A., Hu, P., Smith, R.D., Interaction of angiotensin peptides and zinc metal ions probed by electrospray ionization mass spectrometry (1994) J. Am. Soc. Mass Spectrom., 5, pp. 959-965; Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W., Electron capture dissociation for structural characterization of multiply charged protein cations (2000) Anal. Chem., 72, pp. 563-573; Leymarie, N., Costello, C.E., O'Connor, P.B., Electron capture dissociation initiates a free radical reaction cascade (2003) J. Am. Chem. Soc., 125, pp. 8949-8958; Belyayev, M.A., Cournoyer, J.J., Lin, C., O'Connor, P.B., The effect of radical trap moieties on electron capture dissociation spectra of Substance P (2006) J. Am. Soc. Mass Spectrom., 17, pp. 1428-1436; Hong, J., Miao, Y., Miao, R., Yang, G., Tang, H., Guo, Z., Zhu, L., Binding sites of [Ru(bpy)2(H2O)2] (BF4)2 with sulfur- and histidin-econtaining peptides studied by electrospray ionization mass spectrometry and tandem mass spectrometry (2005) J. Mass Spectrom., 40, pp. 91-99; Schmidbaur, H., Classen, H.G., Helbig, J., Aspartic and glutamic acid as ligands to alkali and alkaline-earth metals: Structural chemistry as related to magnesium therapy (1990) Angew. Chem. Int. Ed. Engl., 29, pp. 1090-1103; Sajadi, S., Metal ion-binding properties of L-glutamic acid and Laspartic acid, a comparative investigation (2010) Nat. Sci., 2, pp. 85-90},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; email: p.oconnor@warwick.ac.uk},\npublisher={Elsevier Inc.},\nissn={10440305},\ncoden={JAMSE},\npubmed_id={24488754},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n (Chemical Presented) The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru(N,N)Cl]+, where arene/N,N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/o-phenylenediamine (o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively. © 2014 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Study of an unusual advanced glycation end-product (AGE) derived from glyoxal using mass spectrometry.\n \n \n \n \n\n\n \n Lopez-Clavijo, A.; Duque-Daza, C.; Romero Canelon, I.; Barrow, M.; Kilgour, D.; Rabbani, N.; Thornalley, P.; and O'Connor, P.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 25(4): 673-683. 2014.\n cited By 8\n\n\n\n
\n\n\n\n \n \n \"StudyPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Lopez-Clavijo2014673,\nauthor={Lopez-Clavijo, A.F. and Duque-Daza, C.A. and Romero Canelon, I. and Barrow, M.P. and Kilgour, D. and Rabbani, N. and Thornalley, P.J. and O'Connor, P.B.},\ntitle={Study of an unusual advanced glycation end-product (AGE) derived from glyoxal using mass spectrometry},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2014},\nvolume={25},\nnumber={4},\npages={673-683},\ndoi={10.1007/s13361-013-0799-2},\nnote={cited By 8},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896985684&doi=10.1007%2fs13361-013-0799-2&partnerID=40&md5=8ddcdb38c3fc566eda9908011691d476},\naffiliation={Warwick Centre for Analytical Science, Department of Chemistry, University of Warwick, Coventry, United Kingdom; School of Engineering, University of Warwick, Coventry, United Kingdom; Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Bogota, Colombia; Department of Chemistry, University of Warwick, Coventry, United Kingdom; Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, United Kingdom},\nabstract={(Chemical Presented) Glycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer. An unusual type of glyoxal-derived AGE with a mass addition of 21.98436 Da is reported in peptides containing combinations of two arginine-two lysine, and one arginine-three lysine amino acid residues. Electron capture dissociation and collisionally activated dissociation results supported that the unusual glyoxal-derived AGE is formed at the guanidino group of arginine, and a possible structure is proposed to illustrate the 21.9843 Da mass addition. © 2014 American Society for Mass Spectrometry.},\nauthor_keywords={Advanced glycation endproducts (AGEs);  Collision-induced dissociation (CID);  Collisionally activated dissociation (CAD);  Electron capture dissociation (ECD);  Glycation;  Glyoxal;  Maillard reaction;  Mass spectrometry;  PTMs},\nkeywords={Arginine;  Chemical modification;  Dissociation;  Mass spectrometry;  Peptides, Advanced glycation end products;  Collision-induced dissociation;  Collisionally activated dissociation;  Electron capture dissociation;  Glycation;  Glyoxal;  Maillard reaction;  PTMs, Glycosylation, advanced glycation end product;  arginine;  carbonyl derivative;  glyoxal;  guanidine derivative;  lysine, article;  collisionally activated dissociation;  electron capture detection;  ion cyclotron resonance mass spectrometry;  mass;  mass spectrometer;  mass spectrometry;  protein glycosylation;  protein modification;  tandem mass spectrometry, Glycosylation;  Glycosylation End Products, Advanced;  Glyoxal;  Peptides;  Tandem Mass Spectrometry},\nchemicals_cas={arginine, 1119-34-2, 15595-35-4, 7004-12-8, 74-79-3; glyoxal, 107-22-2; lysine, 56-87-1, 6899-06-5, 70-54-2},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/ F034210/1},\nfunding_details={National Institutes of HealthNational Institutes of Health, NIH, GM078293},\nreferences={Zeng, J., Dunlop, R.A., Rodgers, K.J., Davies, M.J., Evidence for inactivation of cysteine proteases by reactive cabonyls via glycation of active site thiols (2006) Biochem. J., 398, pp. 197-206; Namiki, M., Chemistry of Maillard reactions: Recent studies on the browning reaction mechanism and the development of antioxidants and mutagens (1988) Adv. Food Res., 32, pp. 115-184; Thornalley, P.J., Glycation in diabetic neuropathy (2002) Int. Rev. Neurobiol., 50, pp. 37-57; Miyata, T., Kurokawa, K., Van Ypersele De Strihou, C., Advanced glycation and lipoxidation end products: Role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism (2000) J. Am. Soc. Nephrol., 11, pp. 1744-1752; Mera, K., Takeo, K., Izumi, M., Maruyama, T., Otagiri, J., Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin (2010) J. Pharm. Sci., 99, pp. 1614-1625; Miyata, T., Sugiyama, S., Saito, A., Kurokawa, K., Reactive carbonyl compounds related uremic toxicity ("carbonyl stress") (2001) Kidney Int., 59, pp. S25-S31; Thornalley, P.J., Argirova, M., Ahmed, N., Mann, V.M., Agirov, O., Mass spectrometric monitoring of albumin in uremia (2000) Kidney Int., 58, pp. 2228-2234; Beisswenger, P.J., Howell, S.K., Nelson, R.G., Mauer, M., Szwergold, B.S., α-Oxoaldehyde metabolism and diabetic complications (2003) Biochem. Soc. Trans., 31, pp. 1358-1363; Rabbani, N., Sebekova, K., Heidland, A., Thornalley, P.J., Accumulation of free adduct glycation, oxidation, and nitration products follows acute loss of renal function (2007) Kidney Int., 72, pp. 1113-1121; Thornalley, P.J., Argirova, M., Ahmed, N., Mann, V.M., Agirov, O., Effect of reactive aldehydes on the modification and dysfunction of human serum albumin (2010) J. Pharm. Sci., 99, pp. 1614-1625; Makita, Z., Yanagisawa, K., Kuwajima, S., Yoahioka, N., Atsumi, T., Hasunuma, Y., Koite, T., Advanced glycation endproducts and diabetic nephropathy (1995) J. Diabetes Complicat., 9, pp. 265-268; Deguchi, T., Kusuhara, H., Takadate, A., Endou, H., Otagiri, M., Sugiyama, Y., Characterization of uremic toxin transport by organic anion transporters in the kidney (2004) Kidney Int., 65, pp. 162-174; Popova, E.A., Mironova, R.S., Odjakova, M.K., Non-enzymatic glycosilation and deglycating enzymes (2010) Biotechnol. Biotechnol. Equip., 24, pp. 1928-1935; Glomb, M.A., Lang, G., Isolation and characterization of glyoxalarginine modifications (2001) J. Agric. Food Chem., 49, pp. 1493-1501; Schwarzenbolz, U., Haessner, T., Klostermeyer, H., On the reaction of glyoxal with proteins (1997) Z. Lebensm. Unters. Forsch. A, 205, pp. 121-124; Thornalley, P.J., Battah, S., Ahmed, N., Karachalias, N., Agalou, S., Babaei-Jadidi, R., Dawnay, A., Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry (2003) Biochem. J., 375, pp. 581-592; Iijima, K., Murata, M., Takahara, H., Irie, S., Fijuimoto, D., Identification of N-carboxymetthylarginine as a novel acid-labile advanced glycation end product in collagen (2000) Biochem. J., 27, pp. 23-27; Al-Abed, Y.M., Bucala, R., Nε-carboxymethyllysine formation by direct addition of glyoxal to lysine during the maillard reaction (1995) Bioorg. Med. Chem. Lett., 5, pp. 2161-2162; Alt, N., Carson, J.A., Alderson, N.L., Wang, Y., Nagai, R., Henle, T., Thorpe, S.R., Baynes, J.W., Chemical modification of muscle protein in diabetes (2004) Arch. Biochem. Biophys., 425, pp. 200-206; Ahmed, M.U., Thorpe, S.R., Baynes, J.W., Identification of N-epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein (1986) J. Biol. Chem., 261, pp. 4889-4894; Dunn, J.A., Ahmed, M.U., Murtiashaw, M.H., Richardson, J.M., Wall, M.D., Reaction of ascorbate with lysine and protein under autoxidising conditions: Formation of N-epsilon(carboxymethyl)lysine and products of autoxidation of ascorbate (1990) Biochemistry, 29, pp. 10964-10970; Glomb, M.A., Monnier, V.M., Mechanism of protein modification by glyoxal and glycolaldehyde reactive intermiediates of the Maillard reaction (1995) J. Biol. Chem., 270, pp. 1017-10025; Brock, J.W.C., Hinton, D.J.S., Cotham, W.E., Metz, T.O., Thorpe, S.R., Baynes, J.W., Ames, J.M., Proteomic analysis of the site specificity of glycation and carboxymethylation of ribonuclease research articles (2003) J. Proteome Res., 2, pp. 506-513; Kislinger, T., Humeny, A., Peich, C.C., Pischetsrieder, M., Analysis of protein glycation products by MALDI-TOF/MS (2005) Ann. N. Y. Acad. Sci., 1043, pp. 249-259; Mittelmainer, S., Pischetsrieder, M., Multistep ultrahigh performance liquid chromatography/tandem mass spectrometry analysis for untargeted quantification of glycating activity and identification of most relevant glycation products (2011) Anal. Chem., 83, pp. 9660-9668; McCance, D.R., Dyer, D.G., Dunn, J.A., Baiue, K.E., Thorpe, S.R., Maillard reaction products and their complications in insulin-dependent diabetes mellitus (1993) J. Clin. Invest., 91, pp. 2470-2478; Ismail, N., Becker, B., Strzelczyk, P., Ritz, E., Renal disease and hypertension in non-insulin-dependent diabetes mellitus (1999) Kidney Int., 55, pp. 1-28; Perkins, B.A., Rabbani, N., Weston, A., Ficociello, L.H., Adaikalakoteswari, A., Niewczas, M., Warran, J., Thornalley, P.J., Serum levels of advanced glycation endproducts and other markers of protein damage in early diabetic nephropathy in type 1 diabetes (2012) PLoS ONE, 7, pp. e35655; Rabbani, N., Thornalley, P.J., Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome (2012) Amino Acids, 42, pp. 1087-1096; Carter, D.C., Ho, J.X., Structure of serum albumin (1994) Adv. Protein Chem, 4, pp. 158-159; Ahmed, N., Dobler, D., Dean, M., Thornalley, P.J., Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity (2005) J. Biol. Chem., 280, pp. 5724-5732; Cotham, W.E., Metz, T.O., Ferguson, P.L., Brock, J.W., Hinton, D.J.S., Thorpe, S.R., Baynes, J.W., Proteomic analysis of arginine adducts on gluyoxal-modified ribonuclease (2004) Mol. Cell Proteomics, 3, pp. 1145-1153; Lopez-Clavijo, A.F., Barrow, M.P., Rabbani, N., Thornalley, P.J., O'Connor, P.B., Determination of types and binding sites of advanced glycation endproducts for Substance P (2012) Anal. Chem., 84, pp. 10568-10575; Stefanowicz, P., Kijewska, M., Szewczuk, Z., Sequencing of peptide-derived Amadori products by the electron capture dissociation method (2009) J. Mass Spectrom., 44, pp. 1047-1052; Mikesh, L.M., Ueberheide, B., Chi, A., Coon, J.J., Sika, J.E.P., Shabanowitz, J., Hunt, D.F., The utility of ETD mass spectrometry in proteomic analysis (2006) Biochim. Biophys. Acta, 1764, pp. 1811-1822; Coon, J.J., Collisions or electrons? Protein sequence analysis in the 21st century (2009) Anal. Chem., 81, pp. 3208-3215; Kjeldsen, F., Haselmann, K.F., Budnik, B.A., Sorensen, E.S., Zubarev, R.A., Complete characterization of post-translational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage (2003) Anal. Chem., 75, pp. 2355-2361; Kelleher, N.L., Zubarev, R.A., Bush, K., Furie, B., Furie, B.C., McLafferty, F.W., Walsh, C.T., Localization of labile posttranslational modifications by electron capture dissociation: The case of γ-carboxyglutamic acid (1999) Anal. Chem., 71, pp. 4250-4253; Wang, Z., Udeshi, N.D., O'Malley, M., Shabanowitz, J., Hunt, D.G., Hart, G.W., Enrichment and site apping of O-linked N-acetylglucosaine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociations mass spectrometry (2010) Mol. Cell. Proteom., 9, pp. 153-160; Comisarow, M.B., Grassi, V., Parisor, G., Fourier transform ion cycotron double resonance (1978) Chem. Phys. Lett., 57, pp. 413-416; Beauchamp, J.L., Armstrong, J.T., An ion ejection technique for the study of ion-molecule reactions with ion cyclotron resonance spectroscopy (1969) Rev. Sci. Instrum., 40, pp. 123-128; Lin, C., Cournoyer, J.J., O'Connor, P.B., Use of a double resonance electron capture dissociation experiment to probe fragment intermediate lifetimes (2006) J. Am. Soc. Mass Spectrom., 17, pp. 1605-1615; Nguyen, V.H., Afonso, C., Tabet, J.-C., Concomitant EDD and EID of DNA evidenced by MSn and double resonance experiments (2011) Int. J. Mass Spectrom., 301 (1-3), pp. 224-233; Kua, J., Hanley, S.W., De Haan, D.O., Thermodynamics and kinetics of glyoxal dimer formation: A computational study (2008) J. Phys. Chem. A, 112, pp. 66-72; Wessel, D., Flügge, U.I., A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids (1984) Anal. Biochem., 138, pp. 141-143; Caravatti, P., Alleman, M., The infinity cell - A new reapped-ion cell with radiofrequency covered trapping electrodes for Fourier transform ion cyclotron mass spectrometry (1991) Org. Mass Spectrom., 26, pp. 514-518; Tsybin, Y.O., Håkansson, P., Budnik, B.A., Haselmann, K.F., Kjeldsen, F., Gorshkov, M., Zubarev, R.A., Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry (2001) Rapid Commun. Mass Spectrom., 15, pp. 1849-1854; Roepstorff, P., Fohlman, J., Proposal for a common nomenclature for sequence ions in mass spectra of peptides (1984) Biomed. Mass Spectrom., 11, p. 601; Biemann, K., Nomenclature for peptide fragment ions (positive ions) (1990) Methods Enzymol., 193, pp. 886-887; Morgan, D.G., Bursey, M.M., Linear free energy correlation in the low-energy tandem mass spectra of sodiated tripeptides Gly-Gly-Xxx (1995) J. Mass Spectrom., 30, pp. 473-477; Bensadek, D., Monigatti, F., Steen, J.J., Steen, H., Why b, y's? Sodiation-induced tryptic peptide-like fragmentation of non-tryptic peptides (2007) Int. J. Mass Spectrom., 268, pp. 181-189; Bunn, H.F., Shapiro, R., McManus, M., Garrick, L., McDonald, M.J., Gallop, P.M., Structural heterogeneity of human hemoglobin-A due to non-enzmatic glycosylation (1979) J. Biol. Chem., 254, pp. 3892-3898; Lapolla, A., Fedele, D., Reitano, R., Arico, N.C., Seraglia, R., Traldi, P., Marotta, E., Tonani, R., Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides (2004) J. Am. Soc. Mass Spectrom., 15, pp. 496-509; Shaklai, N., Garlick, R.L., Bunn, H.F., Nonenzymatic glycosylation of human serum albumin alters its conformation and function (1984) J. Biol. Chem., 259, pp. 3812-3817; Garlick, R.L., The principal site of nonenzymatic glycosylation of human serum albumin (1983) J. Biol. Chem., 258, pp. 6142-6146; Van Lancker, F., Adams, A., De Kimpe, N., Formation of pyrazines in Maillard model systems of lysine-containing dipeptides (2010) J. Agric. Food Chem., 58, pp. 2470-2478},\ncorrespondence_address1={O'Connor, P.B.; Warwick Centre for Analytical Science, Department of Chemistry, University of Warwick, Coventry, United Kingdom; email: p.oconnor@warwick.ac.uk},\npublisher={Elsevier Inc.},\nissn={10440305},\ncoden={JAMSE},\npubmed_id={24470193},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n (Chemical Presented) Glycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer. An unusual type of glyoxal-derived AGE with a mass addition of 21.98436 Da is reported in peptides containing combinations of two arginine-two lysine, and one arginine-three lysine amino acid residues. Electron capture dissociation and collisionally activated dissociation results supported that the unusual glyoxal-derived AGE is formed at the guanidino group of arginine, and a possible structure is proposed to illustrate the 21.9843 Da mass addition. © 2014 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2013\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Chemical fingerprinting of naphthenic acids and oil sands process waters-A review of analytical methods for environmental samples.\n \n \n \n \n\n\n \n Headley, J.; Peru, K.; Mohamed, M.; Frank, R.; Martin, J.; Hazewinkel, R.; Humphries, D.; Gurprasad, N.; Hewitt, L.; Muir, D.; Lindeman, D.; Strub, R.; Young, R.; Grewer, D.; Whittal, R.; Fedorak, P.; Birkholz, D.; Hindle, R.; Reisdorph, R.; Wang, X.; Kasperski, K.; Hamilton, C.; Woudneh, M.; Wang, G.; Loescher, B.; Farwell, A.; Dixon, D.; Ross, M.; Dos Santos Pereira, A.; King, E.; Barrow, M.; Fahlman, B.; Bailey, J.; McMartin, D.; Borchers, C.; Ryan, C.; Toor, N.; Gillis, H.; Zuin, L.; Bickerton, G.; McMaster, M.; Sverko, E.; Shang, D.; Wilson, L.; and Wrona, F.\n\n\n \n\n\n\n Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(10): 1145-1163. 2013.\n cited By 71\n\n\n\n
\n\n\n\n \n \n \"ChemicalPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Headley20131145,\nauthor={Headley, J.V. and Peru, K.M. and Mohamed, M.H. and Frank, R.A. and Martin, J.W. and Hazewinkel, R.R.O. and Humphries, D. and Gurprasad, N.P. and Hewitt, L.M. and Muir, D.C.G. and Lindeman, D. and Strub, R. and Young, R.F. and Grewer, D.M. and Whittal, R.M. and Fedorak, P.M. and Birkholz, D.A. and Hindle, R. and Reisdorph, R. and Wang, X. and Kasperski, K.L. and Hamilton, C. and Woudneh, M. and Wang, G. and Loescher, B. and Farwell, A. and Dixon, D.G. and Ross, M. and Dos Santos Pereira, A. and King, E. and Barrow, M.P. and Fahlman, B. and Bailey, J. and McMartin, D.W. and Borchers, C.H. and Ryan, C.H. and Toor, N.S. and Gillis, H.M. and Zuin, L. and Bickerton, G. and McMaster, M. and Sverko, E. and Shang, D. and Wilson, L.D. and Wrona, F.J.},\ntitle={Chemical fingerprinting of naphthenic acids and oil sands process waters-A review of analytical methods for environmental samples},\njournal={Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering},\nyear={2013},\nvolume={48},\nnumber={10},\npages={1145-1163},\ndoi={10.1080/10934529.2013.776332},\nnote={cited By 71},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84877660617&doi=10.1080%2f10934529.2013.776332&partnerID=40&md5=e5a24613dcf3c3780cdb3e1ba9d61d9c},\naffiliation={Water Science and Technology Directorate, Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada; Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada; Department of Laboratory Medicine and Pathology, Division of Analytical and Environmental Chemistry, University of Alberta, Edmonton, AB, Canada; Alberta Environment, Edmonton, AB, Canada; Alberta Innovates-Technology Futures, Vegreville, AB, Canada; Water Science and Technology Directorate, Environment Canada, Edmonton, AB, Canada; Water Science and Technology Directorate, Environment Canada, Vancouver, BC, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, Canada; ALS Laboratory Group Environmental Division, Edmonton, AB, Canada; Vogon Laboratory Services Ltd., Calgary, AB, Canada; Departments of Immunology and Pediatrics, National Jewish Health, Denver, CO, United States; Natural Resources Canada, IETS CanmetENERY-Devon, Devon, AB, Canada; AXYS Analytical Services Ltd., Sidney, BC, Canada; Maxxim Analytics, Burnaby, BC, Canada; Department of Biology, University of Waterloo, Canada; Department of Chemistry, University of Warwick, Coventry, United Kingdom; Canadian Forest Service-Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, ON, Canada; Environmental Systems Engineering, University of Regina, Regina, SK, Canada; University of Victoria-Genome BC Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada; Level Science Inc., Saskatoon, SK, Canada; Canadian Light Source Inc., Saskatoon, SK, Canada; Chemistry Department, University of Saskatchewan, Saskatoon, SK, Canada; Water Science and Technology, Environment Canada, Victoria, BC, Canada},\nabstract={This article provides a review of the routine methods currently utilized for total naphthenic acid analyses. There is a growing need to develop chemical methods that can selectively distinguish compounds found within industrially derived oil sands process affected waters (OSPW) from those derived from the natural weathering of oil sands deposits. Attention is thus given to the characterization of other OSPW components such as oil sands polar organic compounds, PAHs, and heavy metals along with characterization of chemical additives such as polyacrylamide polymers and trace levels of boron species. Environmental samples discussed cover the following matrices: OSPW containments, on-lease interceptor well systems, on-and off-lease groundwater, and river and lake surface waters. There are diverse ranges of methods available for analyses of total naphthenic acids. However, there is a need for inter-laboratory studies to compare their accuracy and precision for routine analyses. Recent advances in high-and medium-resolution mass spectrometry, concomitant with comprehensive mass spectrometry techniques following multi-dimensional chromatography or ion-mobility separations, have allowed for the speciation of monocarboxylic naphthenic acids along with a wide range of other species including humics. The distributions of oil sands polar organic compounds, particularly the sulphur containing species (i.e., OxS and OxS2) may allow for distinguishing sources of OSPW. The ratios of oxygen-(i.e., Ox) and nitrogen-containing species (i.e., NOx, and N2Ox) are useful for differentiating organic components derived from OSPW from natural components found within receiving waters. Synchronous fluorescence spectroscopy also provides a powerful screening technique capable of quickly detecting the presence of aromatic organic acids contained within oil sands naphthenic acid mixtures. Synchronous fluorescence spectroscopy provides diagnostic profiles for OSPW and potentially impacted groundwater that can be compared against reference groundwater and surface water samples. Novel applications of X-ray absorption near edge spectroscopy (XANES) are emerging for speciation of sulphur-containing species (both organic and inorganic components) as well as industrially derived boron-containing species. There is strong potential for an environmental forensics application of XANES for chemical fingerprinting of weathered sulphur-containing species and industrial additives in OSPW. © 2013 Taylor & Francis Group, LLC.},\nauthor_keywords={Athabasca River;  Bitumen;  chemical profiles;  heavy metals;  mass spectrometry;  PAHs;  polar organics},\nkeywords={Athabasca;  Bitumen;  Chemical profiles;  Organics;  PAHs, Boron;  Chemical compounds;  Chromatography;  Fluorescence spectroscopy;  Groundwater;  Heavy metals;  Ion chromatography;  Mass spectrometry;  Oil sands;  Organic acids;  Sulfur;  Surface waters, Polycyclic aromatic hydrocarbons, boron;  carboxylic acid;  ground water;  heavy metal;  naphthenic acid;  nitrogen;  oil;  oxygen;  polyacrylamide;  polycyclic aromatic hydrocarbon;  polymer;  river water;  sulfur;  surface water;  unclassified drug, accuracy;  chemical analysis;  chemical fingerprinting;  environmental parameters;  fluorescence spectroscopy;  gas chromatography;  ion mobility spectrometry;  laboratory;  lake;  mass spectrometry;  review;  sand;  screening;  species differentiation;  water sampling;  weathering;  X ray absorption spectroscopy, Carboxylic Acids;  Environmental Monitoring;  Mass Spectrometry;  Polycyclic Hydrocarbons, Aromatic;  Water Pollutants, Chemical},\nchemicals_cas={boron, 7440-42-8; nitrogen, 7727-37-9; oxygen, 7782-44-7; polyacrylamide, 9003-05-8; sulfur, 13981-57-2, 7704-34-9; Carboxylic Acids; Polycyclic Hydrocarbons, Aromatic; Water Pollutants, Chemical; naphthenic acid, 1338-24-5},\nreferences={Grewer, D.M., Young, R.F., Whittal, R.M., Fedorak, P.M., Naphthenic acids and other acid-extractables in water samples from Alberta: What is being measured Sci (2010) Total Environ, 408, pp. 5997-6010; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization (2011) J. Environ. Sci. Health Pt A, 46, pp. 844-854; Headley, J.V., Peru, K.M., Janfada, A., Fahlman, B., Gu, C., Hassan, S., Characterization of oil sands acids in plant tissue using Orbitrap ultra-high resolution mass spectrometry with electrospray ionization (2011) Rapid Commun. Mass Spectrom, 25, pp. 459-462; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2011) Rapid Commun. Mass Spectrom, 25, pp. 1899-1909; Burrowes, A., Marsh, R., Evans, C., Teare, M., Ramos, S., Rahnama, F., Kirschm, A., Harrison, P., (2009) Alberta's Energy Reserves 2008 and Supply/Demand Outlook 2009-2018, ST98-2009, Energy Resources Conservation Board: Calgary, Canada, pp. 1-220; Schramm, L.L., Stasiuk, E.N., MacKinnon, M., Surfactants in Athabasca oil sands extraction and tailing process (2000) Surfactants: Fundamentals and Applications in the Petroleum Industry, pp. 365-430. , Schramm, L.L., Ed.;Cambridge University Press: Cambridge, UK; Environmental management of Alberta's oil sands. Government of Alberta: Edmonton, Alberta 2009; Han, X., MacKinnon, M.D., Martin, J.W., Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS (2009) Chemosphere, 76, pp. 63-70; Fisheries Act Minister of Justice: Canada 1985; Colavecchia, M.V., Backus, S.M., Hodson, P.V., Parrott, J.L., Toxicity of oil sands to early life stages of fathead minnows (Pimephales promelas) (2004) Environ. Toxicol. Chem, 23, pp. 1709-1718; Kelly, E.N., Short, J.W., Schindler, D.W., Hodson, P.V., Ma, M., Kwan, A.K., Fortin, B.L., Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries (2009) Proc. Natl. Acad. Sci, 106, pp. 22346-22351; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca Oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem, 82, pp. 3727-3735; Rhodes, S., Farwell, A., Hewitt, M.L., MacKinnon, M., Dixon, D.G., The effects of dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic development of the Japanesemedaka (2005) Ecotoxicol. Environ. Saf, 60, pp. 247-258; Farwell, A.J., Nero, V., Ganshorn, K., Leonhardt, C., Ciborowski, J., MacKinnon, M., Dixon, D.G., The use of stable isotopes (13C/12C and 15N/14N) to Trace exposure to oil sands processed material in the Alberta oil sands region (2009) J. Toxicol. Environ. Health Pt. A, 72, pp. 385-396; Farwell, A.J., Parrott, J.L., Sherry, J.P., Tetreault, G.R., Van Meer, T., Dixon, D.G., Use of stable carbon and nitrogen isotopes to trace natural and anthropogenic inputs into riverine systems in the Athabasca oil sands region (2009) Water Qual. Res. J. Can, 44, pp. 211-220; Headley, J.V., McMartin, D.W., A review of the occurrence and fate of naphthenic acids in aquatic environments (2004) J. Environ. Sci. Health Pt. A: Toxic/Hazard. Subst. Environ. Eng, A39, pp. 1989-2010; Headley, J.V., Peru, K.M., Barrow, M.P., Mass spectrometric characterization of naphthenic acids in environmental samples: A review (2009) Mass Spectrom. Rev, 28, pp. 121-134; Headley, J.V., Peru, K.M., Armstrong, S.A., Han, X., Martin, J.W., Mapolelo, M.M., Smith, D.F., Marshall, A.G., Aquatic plant-derived changes in oil sands naphthenic acid signatures determined by low-, high-and ultrahigh-resolution mass spectrometry (2009) Rapid Commun. Mass Spectrom, 23, pp. 515-522; Frank Fischer A R, K., Kavanagh, R., Burnison, B.K., Arsenault, G., Headley, J.V., Peru, K.M., Kraak, G.V.D., Solomon, K.R., Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids (2008) Environ. Sci. Technol, 43, pp. 266-271; Farwell, A.J., Nero, V., Croft, M., Rhodes, S., Dixon, D.G., Phototoxicity of oil sands-derived polycyclic aromatic compounds to Japanese medaka (Oryzias latipes) embryos (2006) Environ. Toxicol. Chem, 25, pp. 3266-3274; Kelly, E.N., Schindler, D.W., Hodson, P.V., Short, J.W., Radmanovich, R., Nielsen, C.C., Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries (2010) Proc. Natl. Acad. Sci, 107, pp. 16178-16183; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion (2003) Anal. Chem, 75, pp. 860-866; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Fourier transform ion cyclotron resonance mass spectrometry of principal components in oilsands naphthenic acids (2004) J. Chromatogr. A, 1058, pp. 51-59; Smith, B.E., Rowland, S.J., Aderivatisation and liquid chromatography/electrospray ionisation multistage mass spectrometry method for the characterisation of naphthenic acids (2008) Rapid Commun. Mass Spectrom, 22, pp. 3909-3927; Rowland, S.J., Scarlett, A.G., Jones, D., West, C.E., Frank, R.A., Diamonds in the rough: Identification of individual naphthenic acids in oil sands process water (2011) Environ. Sci. Technol, 45, pp. 3154-3159; Rowland, S.J., Clough, R., West, C.E., Scarlett, A.G., Jones, D., Thompson, S., Synthesis and mass spectrometry of some tri-and tetracyclic naphthenic acids (2011) Rapid Commun. Mass Spectrom, 25, pp. 2573-2578; Rowland, S.J., West, C.E., Scarlett, A.G., Ho, C., Jones, D., Differentiation of two industrial oil sands process-affected waters by two-dimensional gas chromatography/mass spectrometry of diamondoid acid profiles (2012) Rapid Commun. Mass Spectrom, 26, pp. 572-576; Rowland, S.J., West, C.E., Jones, D., Scarlett, A.G., Frank, R.A., Hewitt, L.M., Steroidal aromatic 'naphthenic acids' in oil sands process-affected water: Structural comparisons with environmental estrogens (2011) Environ. Sci. Technol, 45, pp. 9806-9815; Jones, D., Scarlett, A.G., West, C.E., Rowland, S.J., Toxicity of individual naphthenic acids to Vibrio fischeri (2011) Environ. Sci. Technol, 45, pp. 9776-9782; Headley, J.V., Peru, K.M., Fahlman, B., McMartin, D.W., Mapolelo, M.M., Rodgers, R.P., Lobodin, V.V., Marshall, A.G., Comparison of the levels of chloride ions to the characterization of oil sands polar organics in natural waters by use of Fourier transform ion cyclotron resonance mass spectrometry (2012) Energ. Fuel, 26, pp. 2585-2590; Kavanagh, R.J., Burnison, B.K., Frank, R.A., Solomon, K.R., Van DerKraakG.Detecting oil sands process-affected waters in theAlberta oil sands region using synchronous fluorescence spectroscopy (2009) Chemosphere, 76, pp. 120-126; Mohamed, M.H., Wilson, L.D., Headley, J.V., Peru, K.M., Screening of oil sands naphthenic acids by UV-Vis absorption and fluorescence emission spectrophotometry (2008) J. Environ. Sci. Health Pt. A: Toxic/Hazard. Subst. Environ. Eng, 43, pp. 1700-1705; Headley, J.V., Peru, K.M., Mishra, S., Meda, V., Dalai, A.K., Mc-Martin, D.W., Mapolelo, M.M., Marshall, A.G., Characterization of oil sands naphthenic acids treated with ultraviolet and microwave radiation by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (2010) Rapid Commun. Mass Spectrom, 24, pp. 3121-3126; Headley, J.V., Armstrong, S.A., Peru, K.M., Mikula, R.J., Germida, J.J., Mapolelo, M.M., Rodgers, R.P., Marshall, A.G., Ultrahighresolution mass spectrometry of simulated runoff from treated oil sands mature fine tailings (2010) Rapid Commun. Mass Spectrom, 24, pp. 2400-2406; Martin, J.W., Han, X., Peru, K.M., Headley, J.V., Comparison of high-and low-resolution electrospray ionization mass spectrometry for the analysis of naphthenic acid mixtures in oil sands process water (2008) Rapid Commun. Mass Spectrom, 22, pp. 1919-1924; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., Characterization of naphthenic acids from Athabasca oil sands using electrospray ionization: The significant influence of solvents (2007) Anal. Chem, 79, pp. 6222-6229; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Data visualization for the characterization of naphthenic acids within petroleum samples (2009) Energ. Fuel, 23, pp. 2592-2599; (2010) Exploring Oil Sands Science, , http://www.science.gc.ca/default.aspLang=En&n=51B9FB6A, Natural Resources Canada Available at accessed Jul 2012; Droppo, I.G., Bickerton, G., Booty, B., Brownlee, B., Grapentine, L., Marvin, C., Phillips, R., Mikula, R.J., Oil sands tailings ponds: Current state of knowledge (2011) Oil Sands Management Group, , Environment Canada: Ottawa, ON; Armstrong, S.A., Headley, J.V., Peru, K.M., Mikula, R.J., Phytotoxicity, J.G.J., And naphthenic acid dissipation from oil sands fine tailings treatments planted with the emergent macrophyte Phragmites australis (2010) J. Environ. Sci. Health Pt A, 45, pp. 1008-1016; Rodgers, R.P., McKenna, A.M., Petroleum analysis (2011) Anal. Chem, 83, pp. 4665-4687; Stoyanov, S.R., Yin, C.-X., Gray, M.R., Stryker, J.M., Gusarov, S., Kovalenko, A., Computational and experimental study of the structure, binding preferences, and spectroscopy of nickel(II) and vanadyl porphyrins in petroleum (2010) J. Phys. Chem B, 114, pp. 2180-2188; Stoyanov, S.R., Gusarov, S., Kuznicki, S.M., Kovalenko, A., Theoretical modeling of zeolite nanoparticle surface acidity for heavy oil upgrading (2008) J. Phys. Chem C, 112, pp. 6794-6810; Kim, S., Hur, M., Yeo, I., Cho, Y., Paving the way for predicting and understanding properties of crude oil based on molecular level information and statistical analysis (2010) Petroinformatics, , Pacifichem: Honolulu HI Dec 15-20; Yang, C., Wang, Z., Yang, Z., Hollebone, B., Brown, C.E., Landriault, M., Fieldhouse, B., Chemical fingerprints of Alberta oil sands and related petroleum products (2011) Environ. Forensics, 12, pp. 173-188; Yang, Z., Yang, C., Wang, Z., Hollebone, B., Landriault, M., Brown, C.E., Oil fingerprinting analysis using commercial solid phase extraction (SPE) cartridge and gas chromatography-mass spectrometry (GC-MS) (2011) Anal. Meth, 3, pp. 628-635; Timoney, K.P., Lee, P., Polycyclic aromatic hydrocarbons increase in Athabasca River delta sediment: Temporal trends and environmental correlates (2011) Environ. Sci. Technol, 45, pp. 4278-4284; Parrott, J.L., Norwood, W.P., Kirk, J., Frank, R., Gillis, P.L., Headley, J.V., Wang, Z., Hewitt, L.M., Larval fish toxicity of snow melt waters from oil sands areas (2011) Oil Sands, Natural Gas Exploration and Shale Gas, , Aquatic Toxicity Workshop Winnipeg, Manitoba, Oct 1-3, Fisheries and Ocean Canada: Winnipeg, Canada; Rowland, S.J., West, C.E., Scarlett, A.G., Jones, D., Identification of individual acids in a commercial sample of naphthenic acids from petroleum by two-dimensional comprehensive gas chromatography/mass spectrometry (2011) Rapid Commun. Mass Spectrom, 25, pp. 1741-1751; Headley, J.V., Peru, K.M., McMartin, D.W., Winkler, M., Determination of dissolved naphthenic acids in natural waters by using negative-ion electrospraymass spectrometry (2002) J. AOAC Int, 85, pp. 182-187; Leung, S.S., MacKinnon, M.D., Smith, R.E.H., The ecological effects of naphthenic acids and salts on phytoplankton from the Athabasca oil sands region (2003) Aquat. Toxicol, 62, pp. 11-26; Kavanagh, R.J., Frank, R.A., Oakes, K.D., Servos, M.R., Young, R.F., Fedorak, P.M., MacKinnon, M.D., Van Der Kraak, G., Fathead minnow (Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters (2011) Aquat. Toxicol, 101, pp. 214-220; Franklin, J.A., Renault, S., Croser, C., Zwiazek, J.J., MacKinnon, M., Jack pine growth and elemental composition are affected by saline tailings water (2002) J. Environ. Qual, 31, pp. 648-653; Nero, V., Farwell, A., Lister, A., Van Der Kraak, G., Lee, L.E.J., Van Meer, T., MacKinnon, M.D., Dixon, D.G., Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Carassius auratus) exposed to oil sands process-affected water (2006) Ecotoxicol. Environ. Saf, 63, pp. 365-377; Holowenko, F.M., MacKinnon, M.D., Fedorak, P.M., Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry (2002) Water Res, 36, pp. 2843-2855; Scott, A.C., Young, R.F., Fedorak, P.M., Comparison of GC-MS and FTIR methods for quantifying naphthenic acids in water samples (2008) Chemosphere, 73, pp. 1258-1264; Humphries, D., Speciation and fingerprinting of classical naphthenic acids (2011) Western Canada Trace Organics Workshop, , In Trace Organics;Thompson, T.;Johnson, S.;Humphries, D.;Chau D., Eds. Edmonton, Alberta, May 8-11. WCTOW: Edmonton, Alberta, Canada; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., Capillary HPLC/QTOF-MSfor characterizing complex naphthenic acidmixtures and their microbial transformation (2006) Anal. Chem, 78, pp. 8354-8361; Noestheden, M., Improving quantification of naphthenic acids:mass accuracy and ion suppression (2011) Western Canada Trace OrganicsWorkshop, Edmonton, Alberta, , In Trace Organics;Thompson, T.;Johnson, S.;Humphries, D.;Chau D., Eds. May 8-11.WCTOW: Edmonton, Alberta, Canada; Martin, J., Wang, Y., Perez-Estrada, L., Gamal El-Din, M., Fingerprinting complex organic acid mixtures in oil sands process affected water (2010) Petroinformatics, pp. 15-20. , Pacifichem: Honolulu, HI, Dec; Han, X., Scott, A.C., Fedorak, P.M., Bataineh, M., Martin, J.W., Influence of molecular structure on the biodegradability of naphthenic acids (2008) Environ. Sci. Technol, 42, pp. 1290-1295; Frank, R.A., Sanderson, H., Kavanagh, R., Burnison, B.K., Headley, J.V., Solomon, K.R., Use of a (quantitative) structure-activity relationship [(Q)Sar] model to predict the toxicity of naphthenic acids (2009) J. Toxicol. Environ. Health Pt. A, 73, pp. 319-329; Wang, X., Kasperski, K.L., Analysis of naphthenic acids in aqueous solution using HPLC-MS/MS (2010) Anal. Meth, 2, pp. 1715-1722; Woudneh, M., Hamilton, C., Wang, G., McEachern, P., LC/MS/MS method for analysis of naphthenic acids in aqueous samples (2010) Thursday Platform Abstracts;Society of Environmental Toxicology and Chemistry (SETAC), , Portland, OR, Nov 7-11; Rudzinski, W.E., Oehlers, L., Zhang, Y., Najera, B., Tandem mass spectrometric characterization of commercial naphthenic acids and a Maya crude oil (2002) Energ. Fuel, 16, pp. 1178-1185; Qian, K., Edwards, K.E., Dechert, G.J., Jaffe, S.B., Green, L.A., Olmstead, W.N., Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry (2008) Anal. Chem, 80, pp. 849-855; Young, R.F., Martinez Michel, L., Fedorak, P.M., Distribution of naphthenic acids in tissues of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in Alberta (2011) Canada. Ecotoxicol. Environ. Saf, 74, pp. 889-896; Young, R.F., Orr, E.A., Goss, G.G., Fedorak, P.M., Detection of naphthenic acids in fish exposed to commercial naphthenic acids and oil sands process-affected water (2007) Chemosphere, 68, pp. 518-527; Gabryelski, W., Froese, K.L., Characterization of naphthenic acids by electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry (2003) Anal. Chem, 75, pp. 4612-4623; Russell, D.H., Becker, C., Ion mobility-mass spectrometry for structural characterization of petroleum crude (2010) Petroinformatics, , Pacifichem: Honolulu, HI, Dec 15-20; Rodgers, R.P., McKenna, A.M., Compositional continuum of petroleum revealed by ultrahigh resolution FT-ICR mass spectrometry (2011) Petroleum Phase Behaviour and Fouling, , Petrophase: London, Jul 10-14; Del Rio, L.F., Hadwin, A.K.M., Pinto, L.J., MacKinnon, M.D., Moore, M.M., Degradation of naphthenic acids by sediment microorganisms (2006) J. Appl. Microbiol, 101, pp. 1049-1061; Videla, P.P., Farwell, A.J., Butler, B.J., Dixon, D.G., Examining the microbial degradation of naphthenic acids using stable isotope analysis of carbon and nitrogen (2009) Water Air Soil Pollut, 197, pp. 107-119; Ahad, J., Pakdel, H., Savard, M., Peru, K., Headley, J., Carboxyl group delta 13C values of naphthenic acids: A novel approach to source discrimination (2012) Earth in Evolution, , 22nd V.M. Goldschmidt Conference, Montreal, Quebec, Jun 24-29; Rakotondradany, F., Gray, M.R., Rahimi, P., Rodgers, R.P., Smith, D., Separation and identification of corrosive naphthenic acids in the vacuum gas oil fraction of Athabasca bitumen (2007) Exploiting the Value of Heavy Oil, , 2nd AIChE/SPEWorkshop, Houston, TX, Apr 26-27. AlChE/SPE: Houston, TX; Oiffer, A.A.L., Barker, J.F., Gervais, F.M., Mayer, K.U., Ptacek, C.J., Rudolph, D.L., A detailed field-based evaluation of naphthenic acid mobility in groundwater (2009) J. Contam. Hydrol, 108, pp. 89-106; Ryan, C.H., Toor, N.S., Gillis, H.M., Zuin, L., Headley, J.V., Identification of boron in naphthenic acid derived from oil sands process affected water using X-ray absorption near-edge spectroscopy (2011) 12th International Conference on Environmental Science and Technology (CEST2011);Rhodes Island, Greece, , Sept 8-10; Ryan, C.H., Toor, N., Gillis, H.M., Zuin, L., Regier, T., Hu, Y., Headley, J.V., Application of X-ray absorption near-edge spectroscopy (XANES) for the characterization of naphthenic acids derived from the process waters of the Athabasca oil sands (2012) Int. J. Environ. Anal. Chem, , Submitted},\ncorrespondence_address1={Headley, J.V.; Water Science and Technology Directorate, Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada; email: John.Headley@ec.gc.ca},\nissn={10934529},\ncoden={JATEF},\npubmed_id={23647107},\nlanguage={English},\nabbrev_source_title={J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng.},\ndocument_type={Review},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n This article provides a review of the routine methods currently utilized for total naphthenic acid analyses. There is a growing need to develop chemical methods that can selectively distinguish compounds found within industrially derived oil sands process affected waters (OSPW) from those derived from the natural weathering of oil sands deposits. Attention is thus given to the characterization of other OSPW components such as oil sands polar organic compounds, PAHs, and heavy metals along with characterization of chemical additives such as polyacrylamide polymers and trace levels of boron species. Environmental samples discussed cover the following matrices: OSPW containments, on-lease interceptor well systems, on-and off-lease groundwater, and river and lake surface waters. There are diverse ranges of methods available for analyses of total naphthenic acids. However, there is a need for inter-laboratory studies to compare their accuracy and precision for routine analyses. Recent advances in high-and medium-resolution mass spectrometry, concomitant with comprehensive mass spectrometry techniques following multi-dimensional chromatography or ion-mobility separations, have allowed for the speciation of monocarboxylic naphthenic acids along with a wide range of other species including humics. The distributions of oil sands polar organic compounds, particularly the sulphur containing species (i.e., OxS and OxS2) may allow for distinguishing sources of OSPW. The ratios of oxygen-(i.e., Ox) and nitrogen-containing species (i.e., NOx, and N2Ox) are useful for differentiating organic components derived from OSPW from natural components found within receiving waters. Synchronous fluorescence spectroscopy also provides a powerful screening technique capable of quickly detecting the presence of aromatic organic acids contained within oil sands naphthenic acid mixtures. Synchronous fluorescence spectroscopy provides diagnostic profiles for OSPW and potentially impacted groundwater that can be compared against reference groundwater and surface water samples. Novel applications of X-ray absorption near edge spectroscopy (XANES) are emerging for speciation of sulphur-containing species (both organic and inorganic components) as well as industrially derived boron-containing species. There is strong potential for an environmental forensics application of XANES for chemical fingerprinting of weathered sulphur-containing species and industrial additives in OSPW. © 2013 Taylor & Francis Group, LLC.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Absorption-mode fourier transform mass spectrometry: The effects of apodization and phasing on modified protein spectra.\n \n \n \n \n\n\n \n Qi, Y.; Li, H.; Wills, R.; Perez-Hurtado, P.; Yu, X.; Kilgour, D.; Barrow, M.; Lin, C.; and O'Connor, P.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 24(6): 828-834. 2013.\n cited By 15\n\n\n\n
\n\n\n\n \n \n \"Absorption-modePaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Qi2013828,\nauthor={Qi, Y. and Li, H. and Wills, R.H. and Perez-Hurtado, P. and Yu, X. and Kilgour, D.P.A. and Barrow, M.P. and Lin, C. and O'Connor, P.B.},\ntitle={Absorption-mode fourier transform mass spectrometry: The effects of apodization and phasing on modified protein spectra},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2013},\nvolume={24},\nnumber={6},\npages={828-834},\ndoi={10.1007/s13361-013-0600-6},\nnote={cited By 15},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84877735801&doi=10.1007%2fs13361-013-0600-6&partnerID=40&md5=4c24a1d66e0e7a54486f939e375bfd77},\naffiliation={Department of Chemistry, University of Warwick, Coventry, United Kingdom; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, United States; Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States},\nabstract={The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode. [Figure not available: see fulltext.] © 2013 American Society for Mass Spectrometry.},\nauthor_keywords={Absorption-mode;  Apodization;  Harmonics;  Top-down},\nkeywords={Absorption-mode;  Apodizations;  Fourier transform ion cyclotron resonance;  Fourier transform mass spectrometry;  Harmonics;  Internal calibration;  Modified proteins;  Topdown, Proteins, Mass spectrometry, Absorption mode Fourier transform mass spectrometry;  absorption spectroscopy;  analytic method;  apodization;  article;  artifact reduction;  calibration;  chemical parameters;  controlled study;  data analysis;  Fourier transform mass spectrometry;  phase transition;  protein determination;  protein modification;  quality control, Absorption;  Acoustics;  Artifacts;  Fourier Analysis;  Mass Spectrometry;  Peptides;  Proteins;  Signal-To-Noise Ratio},\nchemicals_cas={Peptides; Proteins},\nreferences={Amster, I.J., Fourier transform mass spectrometry (1996) J. Mass Spectrom., 31, pp. 1325-1337. , 10.1002/(SICI)1096-9888(199612)31:12<1325: AID-JMS453>3.0.CO;2-W 1:CAS:528:DyaK2sXis12htQ%3D%3D; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry - A primer (1998) Mass Spectrom. Rev., 17, pp. 1-35. , 10.1002/(SICI)1098-2787(1998)17:1<1: AID-MAS1>3.0.CO;2-K 1:CAS:528:DyaK1cXmsFantbk%3D; O'Connor, P.B., Speir, J.P., Senko, M.W., Little, D.P., McLafferty, F.W., Tandem mass specatrometry of carbonic anhydrase (29 kDa) (1995) J. Mass Spectrom., 30, pp. 88-93. , 10.1002/jms.1190300114; Kelleher, N.L., Peer reviewed: Top-down proteomics (2004) Anal. Chem., 76, p. 196. , 10.1021/ac0415657 1:CAS:528:DC%2BD2cXksVKitLY%3D A-203 A; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., Electron capture dissociation of multiply charged protein cations - A nonergodic process (1998) J. Am. Chem. Soc., 120, pp. 3265-3266. , 10.1021/ja973478k 1:CAS:528:DyaK1cXhslyqt7o%3D; Horn, D.M., Zubarev, R.A., McLafferty, F.W., Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules (2000) J. Am. Soc. Mass Spectrom., 11, pp. 320-332. , 10.1016/S1044-0305(99)00157-9 1:CAS:528:DC%2BD3cXhs12isLc%3D; Mathur, R., O'Connor, P.B., Artifacts in Fourier transform mass spectrometry (2009) Rapid Commun. Mass Spectrom., 23, pp. 523-529. , 10.1002/rcm.3904 1:CAS:528:DC%2BD1MXitVakt7k%3D; Marshall, A.G., Verdun, F.R., (1990) Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook, p. 460. , Elsevier Amsterdam; Xian, F., Hendrickson, C., Blakney, G.T., Beu, S.C., Marshall, A.G., Automated broadband phase correction of Fourier transform ion cyclotron resonance mass spectra (2010) Anal. Chem., 82, pp. 8807-8812. , 10.1021/ac101091w 1:CAS:528:DC%2BC3cXht12jtbrF; Kilgour D. .P., .A., Wills R., .H., Qi, Y., O'Connor P., .B., Autophaser: An algorithm for automated generation of absorption mode spectra for FT-ICR MS (2012) Anal. Chem., , doi: 10.1021/ac303289c; Qi, Y., Thompson, C., Van Orden, S., O'Connor, P., Phase correction of Fourier transform ion cyclotron resonance mass spectra using MatLab (2011) J. Am. Soc. Mass Spectrom., 22, pp. 138-147. , 10.1007/s13361-010-0006-7 1:CAS:528:DC%2BC3MXnt1Khur8%3D; Qi, Y., Barrow, M.P., Van Orden, S.L., Thompson, C.J., Li, H., Perez-Hurtado, P., O'Connor, P.B., Variation of the Fourier transform mass spectra phase function with experimental parameters (2011) Anal. Chem., 83, pp. 8477-8483. , 10.1021/ac2017585 1:CAS:528:DC%2BC3MXhtlKksb%2FO; Qi, Y., Barrow, M.P., Li, H., Meier, J.E., Van Orden, S.L., Thompson, C.J., O'Connor, P.B., Absorption-mode: The next generation of Fourier transform mass spectra (2012) Anal. Chem., 84, pp. 2923-2929. , 10.1021/ac3000122 1:CAS:528:DC%2BC38XisFShs70%3D; Qi, Y., Witt, M., Jertz, R., Baykut, G., Barrow, M.P., Nikolaev, E.N., O'Connor, P.B., Absorption-mode spectra on the dynamically harmonized Fourier transform ion cyclotron resonance cell (2012) Rapid Commun. Mass Spectrom., 26, pp. 2021-2026. , 10.1002/rcm.6311 1:CAS:528:DC%2BC38XhtFalu7bP; Perez-Hurtado, P., O'Connor, P.B., Deamidation of collagen (2012) Anal. Chem., 84, pp. 3017-3025. , 10.1021/ac202980z 1:CAS:528:DC%2BC38XhsVSqt7c%3D; Li, H., Zhao, Y., Phillips, H.I.A., Qi, Y., Lin, T.-Y., Sadler, P.J., O'Connor, P., Mass spectrometry evidence for cisplatin as a protein cross-linking reagent (2011) Anal. Chem., 83, pp. 5369-5376. , 10.1021/ac200861k 1:CAS:528:DC%2BC3MXmvFKqtL0%3D; Li, H., Lin, T.-Y., Van Orden, S.L., Zhao, Y., Barrow, M.P., Pizarro, A.M., Qi, Y., O'Connor, P.B., Use of top-down and bottom-up Fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs (2011) Anal. Chem., 83, pp. 9507-9515. , 10.1021/ac202267g 1:CAS:528:DC%2BC3MXhtlyjsrrJ; Wills, R., Habtemariam, A., Sadler, P.J., O'Connor, P., Mapping the binding sites of organometallic ruthenium anticancer compounds on peptides using FT-ICR mass spectrometry (2012) J. Am. Soc. Mass Spectrom, , submitted; Li, X., Yu, X., Costello, C.E., Lin, C., O'Connor, P.B., Top-down study of β2-microglobulin deamidation (2012) Anal. Chem., 84, pp. 6150-6157. , 10.1021/ac3009324 1:CAS:528:DC%2BC38XoslGiurw%3D; König, S., Fales, H.M., Calibration of mass ranges up to m/z 10,000 in electrospray mass spectrometers (1999) J. Am. Soc. Mass Spectrom., 10, pp. 273-276. , 10.1016/S1044-0305(98)00150-0; Hannis, J., Muddiman, D., A dual electrospray ionization source combined with hexapole accumulation to achieve high mass accuracy of biopolymers in Fourier transform ion cyclotron resonance mass spectrometry (2000) J. Am. Soc. Mass Spectrom., 11, pp. 876-883. , 10.1016/S1044-0305(00)00160-4 1:CAS:528:DC%2BD3cXmsFOitr0%3D; Caravatti, P., Allemann, M., The 'Infinity Cell': A new trapped-ion cell with radiofrequency covered trapping electrodes for Fourier transform ion cyclotron resonance mass spectrometry (1991) Org. Mass Spectrom., 26, pp. 514-518. , 10.1002/oms.1210260527 1:CAS:528:DyaK3MXktFyhtrc%3D; Lee, J.P., Comisarow, M.B., Advantageous apodization functions for magnitude-mode Fourier transform spectroscopy (1987) Appl. Spectrosc., 41, pp. 93-98. , 10.1366/0003702874868016 1:CAS:528:DyaL2sXpt1Omug%3D%3D; Lee, J.P., Comisarow, M.B., Advantageous Apodization Functions for Absorption-Mode Fourier Transform Spectroscopy (1989) Appl. Spectrosc., 43, pp. 599-604. , 10.1366/0003702894202517 1:CAS:528:DyaL1MXksVOhurY%3D; Xian, F., Corilo, Y.E., Hendrickson, C.L., Marshall, A.G., Baseline correction of absorption-mode Fourier transform ion cyclotron resonance mass spectra (2012) Int. J. Mass Spectrom., 325-327, pp. 67-72. , 10.1016/j.ijms.2012.06.007; Loo, J.A., Studying noncovalent protein complexes by electrospray ionization mass spectrometry (1997) Mass Spectrom. Rev., 16, pp. 1-23. , 10.1002/(SICI)1098-2787(1997)16:1<1: AID-MAS1>3.0.CO;2-L 1:CAS:528:DyaK2sXlsVKhtr0%3D; Habtemariam, A., Melchart, M., Fernández, R., Parsons, S., Oswald, I.D.H., Parkin, A., Fabbiani, F.P.A., Sadler, P.J., Structure-activity relationships for cytotoxic ruthenium(II) arene complexes containing N, N-, N, O-, and O, O-chelating ligands (2006) J. Med. Chem., 49, pp. 6858-6868. , 10.1021/jm060596m 1:CAS:528:DC%2BD28XhtVOqsL3N; Leymarie, N., Costello, C.E., O'Connor, P.B., Electron capture dissociation initiates a free radical reaction cascade (2003) J. Am. Chem. Soc., 125, pp. 8949-8958. , 10.1021/ja028831n 1:CAS:528:DC%2BD3sXkvFyjsrk%3D; O'Connor, P.B., Lin, C., Cournoyer, J.J., Pittman, J.L., Belyayev, M., Budnik, B.A., Long-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction (2006) J. Am. Soc. Mass Spectrom., 17, pp. 576-585. , 10.1016/j.jasms.2005.12.015; Perez-Hurtado, P., O'Connor, P.B., Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry (2012) Mass Spectrom. Rev., 31, pp. 609-625},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Coventry, United Kingdom; email: p.oconnor@warwick.ac.uk},\nissn={10440305},\ncoden={JAMSE},\npubmed_id={23568027},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode. [Figure not available: see fulltext.] © 2013 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Structural characterization of chlorophyll-a by high resolution tandem mass spectrometry.\n \n \n \n \n\n\n \n Wei, J.; Li, H.; Barrow, M.; and O'Connor, P.\n\n\n \n\n\n\n Journal of the American Society for Mass Spectrometry, 24(5): 753-760. 2013.\n cited By 23\n\n\n\n
\n\n\n\n \n \n \"StructuralPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Wei2013753,\nauthor={Wei, J. and Li, H. and Barrow, M.P. and O'Connor, P.B.},\ntitle={Structural characterization of chlorophyll-a by high resolution tandem mass spectrometry},\njournal={Journal of the American Society for Mass Spectrometry},\nyear={2013},\nvolume={24},\nnumber={5},\npages={753-760},\ndoi={10.1007/s13361-013-0577-1},\nnote={cited By 23},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879466904&doi=10.1007%2fs13361-013-0577-1&partnerID=40&md5=08304853aaaaa289be8aa88046ef0e1a},\naffiliation={Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom},\nabstract={A high resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer is used for characterizing the fragmentation of chlorophyll-a. Three tandem mass spectrometry (MS/MS) techniques, including electron-induced dissociation (EID), collisionally activated dissociation (CAD), and infrared mutiphoton dissociation (IRMPD) are applied to the singly protonated chlorophyll-a. Some previously unpublished fragments are identified unambiguously by utilizing high resolution and accurate mass value provided by the FTICR mass spectrometer. According to this research, the two long aliphatic side chains are shown to be the most labile parts, and favorable cleavage sites are proposed. Even though similar fragmentation patterns are generated by all three methods, there are much more abundant peaks in EID and IRMPD spectra. The similarities and differences are discussed in detail. Comparatively, cleavage leading to odd electron species and H• loss both seem more common in EID experiments. Extensive loss of small side groups (e.g.; methyl and ethyl) next to the macrocyclic ring was observed. Coupling the high performance FTICR mass spectrometer with contemporary MS/MS techniques, especially IRMPD and EID, proved to be very promising for the structural characterization of chlorophyll, which is also suitable for the rapid and accurate structural investigation of other singly charged porphyrinic compounds. [Figure not available: see fulltext.] © 2013 American Society for Mass Spectrometry.},\nauthor_keywords={Chlorophyll;  Electron induced dissociation (EID);  Fourier transform ion cyclotron resonance (FTICR) mass spectrometer;  Tandem mass spectrometry},\nkeywords={Collisionally activated dissociation;  Electron induced dissociations;  Electron-induced dissociation;  Fourier transform ion cyclotron resonance;  High-resolution tandem mass spectrometries;  Structural characterization;  Structural investigation;  Tandem mass spectrometry, Characterization;  Dissociation;  Electron cyclotron resonance;  Mass spectrometers;  Mass spectrometry, Chlorophyll, chlorophyll a;  porphyrin, absorption;  accuracy;  article;  chemical analysis;  chemical composition;  chemical structure;  collisionally activated dissociation;  controlled study;  cyclization;  electron induced dissociation;  infrared mutiphoton dissociation;  intermethod comparison;  ion cyclotron resonance mass spectrometry;  proton transport;  tandem mass spectrometry, Chlorophyll;  Ions;  Models, Molecular;  Tandem Mass Spectrometry},\nchemicals_cas={chlorophyll a, 479-61-8; porphyrin, 24869-67-8; Chlorophyll, 1406-65-1; Ions; chlorophyll a, YF5Q9EJC8Y},\nfunding_details={Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research Council, EPSRC, EP/F034210/1},\nreferences={Björn, L., Papageorgiou, G., Blankenship, R., Govindjee, G., A viewpoint: Why chlorophyll-a (2009) Photosynth. Res., 99, pp. 85-98. , 10.1007/s11120-008-9395-x; Aronoff, S., Mackinney, G., The photo-oxidation of chlorophyll (1943) J. Am. Chem. Soc., 65, pp. 956-958. , 10.1021/ja01245a052 1:CAS:528:DyaH3sXisV2nsA%3D%3D; Scheer, H., (2006) Chlorophylls and Bacteriochlorophylls, pp. 1-26. , B. Grimm R.J. Porra W. Rüdiger H. Scheer (eds) Springer The Netherlands 10.1007/1-4020-4516-6-1; De Paula, J.C., Robblee, J.H., Pasternack, R.F., Aggregation of chlorophyll-a probed by resonance light scattering spectroscopy (1995) Biophys. J., 68, pp. 335-341. , 10.1016/S0006-3495(95)80192-X; Wang, X.-F., Xiang, J., Wang, P., Koyama, Y., Yanagida, S., Wada, Y., Hamada, K., Tamiaki, H., Dye-sensitized solar cells using a chlorophyll-a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers (2005) Chem. Phys. Lett., 408, pp. 409-414. , 10.1016/j.cplett.2005.04.067 1:CAS:528:DC%2BD2MXltVKhu7o%3D; Hörtensteiner, S., Kräutler, B., Chlorophyll breakdown in higher plants (2011) Biochim. Biophys. Acta Bioenerg., 1807, pp. 977-988. , 10.1016/j.bbabio.2010.12.007; Sleno, L., Windust, A., Volmer, D., Structural study of spirolide marine toxins by mass spectrometry (2004) Anal. Bioanal. Chem., 378, pp. 969-976. , 10.1007/s00216-003-2297-z 1:CAS:528:DC%2BD2cXhsVOqtb8%3D; Mosely, J.A., Smith, M.J.P., Prakash, A.S., Sims, M., Bristow, A.W.T., Electron-induced dissociation of singly charged organic cations as a tool for structural characterization of pharmaceutical type molecules (2011) Anal. Chem., 83, pp. 4068-4075. , 10.1021/ac200045n 1:CAS:528:DC%2BC3MXlsVOjsr8%3D; Wolff, J.J., Laremore, T.N., Aslam, H., Linhardt, R.J., Amster, I.J., Electron-induced dissociation of glycosaminoglycan tetrasaccharides (2008) J. Am. Soc. Mass. Spectrom., 19, pp. 1449-1458. , 10.1016/j.jasms.2008.06.024 1:CAS:528:DC%2BD1cXht1SntLnI; Hanson, C.W., Thaler, E.R., Electronic nose prediction of a clinical pneumonia score: Biosensors and microbes (2005) Anesthesiology, 102, pp. 63-68. , 10.1097/00000542-200501000-00013; Van Breemen, R.B., Canjura, F.L., Schwartz, S.J., Identification of chlorophyll derivatives by mass spectrometry (1991) J. Agric. Food Chem., 39, pp. 1452-1456. , 10.1021/jf00008a018; Suman, M., De Maria, R., Catellani, D., Chromatographic evaluation of chlorophyll derivatives in pasta-based food products: Effects of pasteurization treatments and correlation with sensory profiles (2008) J. Sci. Food Agric., 88, pp. 471-478. , 10.1002/jsfa.3109 1:CAS:528:DC%2BD1cXhvVOlurk%3D; Kao, T.H., Chen, C.J., Chen, B.H., An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz (2011) Talanta, 86, pp. 349-355. , 10.1016/j.talanta.2011.09.027 1:CAS:528:DC%2BC3MXhsVaqt7vM; Bale, N.J., Llewellyn, C.A., Airs, R.L., Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of type II chlorophyll-a transformation products: Diagnostic fragmentation patterns (2010) Org. Geochem., 41, pp. 473-481. , 10.1016/j.orggeochem.2010.01.007 1:CAS:528:DC%2BC3cXjvFSjsrg%3D; Suzuki, T., Midonoya, H., Shioi, Y., Analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (2009) Anal. Biochem., 390, pp. 57-62. , 10.1016/j.ab.2009.04.005 1:CAS:528:DC%2BD1MXmsVCntb0%3D; Hunt, J.E., Macfarlane, R.D., Katz, J.J., Dougherty, R.C., High-energy fragmentation of chlorophyll-a and its fully deuterated analog by californium-252 plasma desorption mass spectrometry (1981) J. Am. Chem. Soc., 103, pp. 6775-6778. , 10.1021/ja00412a054 1:CAS:528:DyaL3MXlsl2mtLg%3D; Chait, B.T., Field, F.H., Californium-252 fission fragment ionization mass spectrometry of chlorophyll-a (1984) J. Am. Chem. Soc., 106, pp. 1931-1938. , 10.1021/ja00319a005 1:CAS:528:DyaL2cXht12gt78%3D; Grese, R.P., Cerny, R.L., Gross, M.L., Senge, M., Determination of structure and properties of modified chlorophylls by using fast atom bombardment combined with tandem mass spectrometry (1990) J. Am. Soc. Mass. Spectrom., 1, pp. 72-84. , 10.1016/1044-0305(90)80008-B 1:CAS:528:DyaK3cXls1ygsLY%3D; Dale, M.J., Costello, K.F., Jones, A.C., Langridge-Smith, P.R.R., Investigation of porphyrins and metalloporphyrins using two-step laser mass spectrometry (1996) J. Mass Spectrom., 31, pp. 590-601. , 10.1002/(SICI)1096-9888(199606)31:6<590: AID-JMS308>3.0.CO;2-C 1:CAS:528:DyaK28Xjs1Gisr4%3D; Van Berkel, G.J., Glish, G.L., McLuckey, S.A., Tuinman, A.A., Porphyrin pyrrole sequencing: Low-energy collision-induced dissociation of (M + 7H)+ generated in-situ during ammonia chemical ionization (1990) Anal. Chem., 62, pp. 786-793. , 10.1021/ac00207a003; Rosario, M., Domingues, M., Nemirovskiy, O., Graço, M., Marques, O., Neves, M., Cavaleiro, J., Gross, M., High- and low-energy collisionally activated decompositions of octaethylporphyrin and its metal complexes (1998) J. Am. Soc. Mass. Spectrom., 9, pp. 767-774. , 10.1016/S1044-0305(98)00048-8; Mayer, P.M., Poon, C., The mechanisms of collisional activation of ions in mass spectrometry (2009) Mass Spectrom. Rev., 28, pp. 608-639. , 10.1002/mas.20225 1:CAS:528:DC%2BD1MXos1Whs7c%3D; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., Electron capture dissociation of multiply charged protein cations. A nonergodic process (1998) J. Am. Chem. Soc., 120, pp. 3265-3266. , 10.1021/ja973478k 1:CAS:528:DyaK1cXhslyqt7o%3D; Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W., Electron capture dissociation for structural characterization of multiply charged protein cations (2000) Anal. Chem., 72, pp. 563-573. , 10.1021/ac990811p 1:CAS:528:DC%2BD3cXmsFeg; Lioe, H., O'Hair, R., Comparison of collision-induced dissociation and electron-induced dissociation of singly protonated aromatic amino acids, cystine and related simple peptides using a hybrid linear ion trap-FT-ICR mass spectrometer (2007) Anal. Bioanal. Chem., 389, pp. 1429-1437. , 10.1007/s00216-007-1535-1 1:CAS:528:DC%2BD2sXht1GhsL3I; Khairallah, G.N., O'Hair, R.A.J., Bruce, M.I., Gas-phase synthesis and reactivity of binuclear gold hydride cations, (R3PAu)2H+ (R = Me and Ph) (2006) Dalton Trans, , doi: 10.1039/B604404B; Wills, R.H., Tosin, M., O'Connor, P.B., Structural characterization of polyketides using high mass accuracy tandem mass spectrometry (2012) Anal. Chem., 84, pp. 8863-8870. , 10.1021/ac3022778 1:CAS:528:DC%2BC38XhtlGntbfJ; Kaczorowska, M.A., Cooper, H.J., Electron induced dissociation (EID) tandem mass spectrometry of octaethylporphyrin and its iron(III) complex (2011) Chem. Commun., 47, pp. 418-420. , 10.1039/c0cc02198a 1:CAS:528:DC%2BC3cXhsFeqtLnN; Bernigaud, V., Drenck, K., Huber, B.A., Hvelplund, P., Jabot, T., Kadhane, U., Kirketerp, M.-B., Nielsen, S.B., Electron capture induceddissociation of protoporphyrin IX ions (2008) J. Am. Soc. Mass. Spectrom., 19, pp. 809-813. , 10.1016/j.jasms.2008.01.002 1:CAS:528:DC%2BD1cXmtlCjt7Y%3D; Zhao, C., Sethuraman, M., Clavreul, N., Kaur, P., Cohen, R.A., O'Connor, P.B., Detailed map of oxidative post-translational modifications of human P21Ras using Fourier transform mass spectrometry (2006) Anal. Chem., 78, pp. 5134-5142. , 10.1021/ac060525v 1:CAS:528:DC%2BD28XlsFegu7Y%3D; Caravatti, P., Allemann, M., The 'infinity cell': A new trapped-ion cell with radiofrequency covered trapping electrodes for fourier transform ion cyclotron resonance mass spectrometry (1991) Org. Mass Spectrom., 26, pp. 514-518. , 10.1002/oms.1210260527 1:CAS:528:DyaK3MXktFyhtrc%3D; Fiedor, L., Kania, A., Myåliwa-Kurdziel, B., Orzeł, Ł., Stochel, G., Understanding chlorophylls: Central magnesium ion and phytyl as structural determinants (2008) Biochim. Biophys. Acta Bioenerg., 1777, pp. 1491-1500. , 10.1016/j.bbabio.2008.09.005 1:CAS:528:DC%2BD1cXhsVGgsbnP; Qi, Y., Thompson, C., Van Orden, S., O'Connor, P., Phase correction of Fourier transform ion cyclotron resonance mass spectra using MatLab (2011) J. Am. Soc. Mass. Spectrom., 22, pp. 138-147. , 10.1007/s13361-010-0006-7 1:CAS:528:DC%2BC3MXnt1Khur8%3D; De Hoffmann, E., Stroobant, V., (2007) Mass Spectrometry: Principles and Applications, , John Wiley and Son Ltd England; Chow, H.-C., Serlin, R., Strouse, C.E., Crystal and molecular structure and absolute configuration of ethyl chlorophyllide a dihydrate. Model for the different spectral forms of chlorophyll a (1975) J. Am. Chem. Soc., 97, pp. 7230-7237. , 10.1021/ja00858a006 1:CAS:528:DyaE28XhsVOruw%3D%3D; Zubarev, R.A., Haselmann, K.F., Budnik, B., Kjeldsen, F., Jensen, F., Towards an understanding of the mechanism of electron-capture dissociation: A historical perspective and modern ideas (2002) Eur. J. Mass Spectrom., 8, pp. 337-349. , 10.1255/ejms.517 1:CAS:528:DC%2BD38Xps1SrtL0%3D; Grese, R.P., Cerny, R.L., Gross, M.L., Senge, M., Determination of structure and properties of modified chlorophylls by using fast atom bombardment combined with tandem mass spectrometry (1990) J. Am. Soc. Mass. Spectrom., 1, pp. 72-84. , 10.1016/1044-0305(90)80008-B 1:CAS:528:DyaK3cXls1ygsLY%3D; Mauzerall, D., Multiple excitations in photosynthetic systems (1976) Biophys. J., 16, pp. 87-91. , 10.1016/S0006-3495(76)85665-2 1:STN:280:DyaE28%2FovFeltg%3D%3D; Weigl, J.W., Livingston, R., Infrared spectra of chlorophyll andrelated compounds (1953) J. Am. Chem. Soc., 75, pp. 2173-2176. , 10.1021/ja01105a046 1:CAS:528:DyaG3sXntV2itg%3D%3D; Holt, A.S., Jacobs, E.E., Infra-red absorption spectra of chlorophylls and derivatives (1955) Plant Physiol., 30, pp. 553-559. , 10.1104/pp.30.6.553 1:CAS:528:DyaG28XksFektA%3D%3D; Eckardt, N.A., A new chlorophyll degradation pathway (2009) Plant Cell, 21, p. 700. , 10.1105/tpc.109.210313 1:CAS:528:DC%2BD1MXlsFyltb8%3D},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; email: p.oconnor@warwick.ac.uk},\nissn={10440305},\ncoden={JAMSE},\npubmed_id={23504642},\nlanguage={English},\nabbrev_source_title={J. Am. Soc. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n A high resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer is used for characterizing the fragmentation of chlorophyll-a. Three tandem mass spectrometry (MS/MS) techniques, including electron-induced dissociation (EID), collisionally activated dissociation (CAD), and infrared mutiphoton dissociation (IRMPD) are applied to the singly protonated chlorophyll-a. Some previously unpublished fragments are identified unambiguously by utilizing high resolution and accurate mass value provided by the FTICR mass spectrometer. According to this research, the two long aliphatic side chains are shown to be the most labile parts, and favorable cleavage sites are proposed. Even though similar fragmentation patterns are generated by all three methods, there are much more abundant peaks in EID and IRMPD spectra. The similarities and differences are discussed in detail. Comparatively, cleavage leading to odd electron species and H• loss both seem more common in EID experiments. Extensive loss of small side groups (e.g.; methyl and ethyl) next to the macrocyclic ring was observed. Coupling the high performance FTICR mass spectrometer with contemporary MS/MS techniques, especially IRMPD and EID, proved to be very promising for the structural characterization of chlorophyll, which is also suitable for the rapid and accurate structural investigation of other singly charged porphyrinic compounds. [Figure not available: see fulltext.] © 2013 American Society for Mass Spectrometry.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2012\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Determination of types and binding sites of advanced glycation end products for substance P.\n \n \n \n \n\n\n \n Lopez-Clavijo, A.; Barrow, M.; Rabbani, N.; Thornalley, P.; and O'Connor, P.\n\n\n \n\n\n\n Analytical Chemistry, 84(24): 10568-10575. 2012.\n cited By 7\n\n\n\n
\n\n\n\n \n \n \"DeterminationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Lopez-Clavijo201210568,\nauthor={Lopez-Clavijo, A.F. and Barrow, M.P. and Rabbani, N. and Thornalley, P.J. and O'Connor, P.B.},\ntitle={Determination of types and binding sites of advanced glycation end products for substance P},\njournal={Analytical Chemistry},\nyear={2012},\nvolume={84},\nnumber={24},\npages={10568-10575},\ndoi={10.1021/ac301583d},\nnote={cited By 7},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871340357&doi=10.1021%2fac301583d&partnerID=40&md5=c0b29c39380badc8be5952ec0b4c6372},\naffiliation={Warwick Centre for Analytical Science, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, CV2 2DX, United Kingdom},\nabstract={Glycation by endogenous dicarbonyl metabolites such as glyoxal is an important spontaneous post-translational (PTM) modification of peptides and proteins associated with structural and functional impairment. The aim of this study was to investigate types and site of PTM of glyoxal-derived advanced glycation end-products-in the neuropeptide substance P by ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR), mass spectrometry, and tandem mass spectrometry (MS/MS) experiments. The main site of PTM by glyoxal was the side chain guanidine moiety of the arginine residue. Binding site identification has been achieved by electron capture dissociation, double-resonance electron capture dissociation, and collision-activated dissociation, with assignment of the modified amino acid residue with mass error <1 ppm. © 2012 American Chemical Society.},\nkeywords={Advanced glycation end products;  Arginine residue;  Collision-activated dissociations;  Electron capture dissociation;  Fourier transform ion cyclotron resonance;  Glycation;  Glyoxal;  Modified amino acids;  Neuropeptides;  Side-chains;  Site identification;  Substance-P;  Tandem mass spectrometry, Binding sites;  Dissociation;  Glycosylation;  Mass spectrometry;  Proteins, Amino acids, advanced glycation end product;  substance P, article;  binding site;  chemistry;  metabolism;  physiology, Binding Sites;  Glycosylation End Products, Advanced;  Substance P},\nchemicals_cas={substance P, 33507-63-0; Glycosylation End Products, Advanced; Substance P, 33507-63-0},\nreferences={Thornalley, P.J., (1985) Environ. Health Perspect., 64, pp. 297-307; Abordo, E.A., Minhas, H.S., Thornalley, P.J., (1999) Biochem. Pharmacol., 58, pp. 641-648; Anderson, M.M., Haxen, S.L., Hsu, F.F., Heinecke, J.W., (1997) J. Clin. Invest., 99, pp. 424-432; Awada, M., Dedon, P.C., (2001) Biochemistry, 40, pp. 8649-8650; Loidl-Stahlhofen, A., Spiteller, G., (1994) Biochim. Biophys. Acta, 1211, pp. 156-160; Namiki, O., (1988) Adv. Food Res., 32, pp. 115-184; Odani, H., Shinzato, T., Usami, J., Matsumoto, Y., Frye, E.B., Baynes, J.W., Maeda, K., (1998) FEBS Lett., 427, pp. 381-385; Rabbani, N., Thornalley, P.J., (2011) Amino Acids, 42, pp. 1133-1142; Beisswenger, P.J., Howell, S.K., Nelson, R.G., Mauer, M., Szwergold, B.S., (2003) Biochem. Soc. Trans., 31, pp. 1358-1363; Rabbani, N., Sebekova, K., Heidland, A., Thornalley, P.J., (2007) Kidney Int., 72, pp. 1113-1121; Makita, Z., Yanagisawa, K., Kuwajima, S., Yoshioka, N., Atsumi, T., Hasunuma, Y., Koike, T., (1995) J. Diabetes Complications, 9, pp. 265-268; Deguchi, T., Kusuhara, H., Takadate, A., Endou, H., Otagiri, M., Sugiyama, Y., (2004) Kidney Int., 65, pp. 162-174; Thornalley, P.J., (2002) Int. Rev. Neurobiol., 50, pp. 37-57; Karachalias, N., Babaei-Jadidi, R., Rabbani, N., Thornalley, P.J., (2010) Diabetologia, 53, pp. 1506-1516; Degenhardt, T.P., Thorpe, S.R., Baynes, J.W., (1998) Cell. Mol. Biol., 44, pp. 1139-1145; Thornalley, P.J., Battah, S., Ahmed, N., Karachalias, N., Agalou, S., Babaei-Jadidi, R., Dawnay, A., (2003) Biochem. J., 375, pp. 581-592; Zhang, Y., Cocklin, R.R., Bidasee, K.R., Wang, M., (2003) J. Biomol. Tech., 14, pp. 224-230; Montgomery, H., Tanaka, K., Belgacem, O., (2010) Rapid Commun. Mass Spectrom., 24, pp. 841-848; Brancia, F.L., Bereszczak, J.A., Lapola, A., Fedele, D., Baccarin, L., Seraglia, R., Traldi, P., (2006) J. Mass Spectrom., 41, pp. 1179-1185; Ahmed, N., Dobler, D., Dean, M., Thornalley, P.J., (2005) J. Biol. Chem., 280, pp. 5724-5732; Lapolla, A., Fedele, D., Reitano, R., Aricoì, N.C., Seraglia, R., Traldi, P., Marotta, E., Tonani, R., (2004) J. Am. Soc. Mass Spectrom., 15, pp. 496-509; Cotham, W.E., Metz, T.O., Ferguson, P.L., Brock, J.W.C., Hinton, D.J.S., Thorpe, S.R., Baynes, J.W., (2004) Mol. Cell. Proteomics, 3, pp. 1145-1153; Wynne, C., Edwards, N.J., Fenselau, C., (2010) Proteomics, 10, pp. 3631-3643; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., (1998) J. Am. Chem. Soc., 120, pp. 3265-3266; Stefanowicz, P., Kijewska, M., Szewczuk, Z., (2009) J. Mass Spectrom., 44, pp. 1047-1052; Syka, J.E.P., (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 9528-9533; Harrison, R., Hitchen, P.G., Panico, M., Morris, H.R., Mekhaiel, D., Pleass, R.J., Dell, A., Hasla, S.M., (2012) Glycobiology, 22, pp. 662-675; Leymarie, N., McCobb, M., Naymy, H., Staples, G.O., Zaia, J., (2012) Int. J. Mass Spectrom., 312, pp. 144-154; Benshnbg, L., Held, J.M., Schilling, B., Danielson, S.R., Gibson, B.W., (2011) J. Proteomics, 74, pp. 2510-2521; Zhang, Q., Schepmoes, A.A., Brock, J.W.C., Wu, S., Moore, R.J., Purvine, S.O., Baynes, J.W., Metz, T.O., (2008) Anal. Chem., 80, pp. 9822-9829; Zhao, C., Sethuraman, M., Clavreul, N., Kaur, P., Cohen, R.A., O'Connor, P.B., (2006) Anal. Chem., 78, pp. 5134-5142; Kelleher, N.L., Zubarev, R.A., Bush, K., Furie, B.C., McLafferty, F.W., Walsh, C.T., (1999) Anal. Chem., 71, pp. 4250-4253; Hakansson, K., Cooper, H.J., Emmett, M.R., Costello, C.E., Marshall, A.G., Nilson, C.L., (2001) Anal. Chem., 73, pp. 4530-4536; Mirgorodskaya, E., Hassan, H., Clausen, H., Roepstorff, P., (2001) Anal. Chem., 73, pp. 1263-1269; Wang, Z., Udeshi, N.D., Ómalley, Shabanowitz, J., Hunt, D.F., Hart, G.W., Gobert, J., (2010) Mol. Cell. Proteomics, 9, pp. 153-160; Cournoyer, J.J., Lin, C., O'Connor, P.B., (2006) Anal. Chem., 78, pp. 1264-1271; Sargaeva, N.P., Lin, C., O'Connor, P.B., (2011) Anal. Chem., 83, pp. 6675-6682; Kua, J., Hanley, S.W., Haan, D.O.D., (2008) J. Phys. Chem. A, 112, pp. 66-72; Whipple, E.B., (1970) J. Am. Chem. Soc., 92, pp. 7183-7186; Nakajima, K., Ohta, K., Mostefaoui, T.A., Chai, W., Utsukihara, T., Horiuchi, C.A., Murakami, M., (2007) J. Chromatogr., A, 1161, pp. 338-341; Caravatti, P., Alleman, M., (1991) Org. Mass Spectrom., 26, pp. 514-518; Tsybin, Y.O., Haìškansson, P., Budnik, B.A., Haselmann, K.F., Kjeldsen, F., Gorshkov, M., Zubarev, R.A., (2001) Rapid Commun. Mass Spectrom., 15, pp. 1849-1854; Comisarow, M.B., Grassi, V., Parisor, G., (1978) Chem. Phys. Lett., 57, pp. 413-416; Beauchamp, J.L., (1969) Rev. Sci. Instrum., 40, p. 123; He, H., Emmett, M., Nilsson, C.L., Conrad, A.C., Marshall, A.G., (2011) Int. J. Mass Spectrom., 305, pp. 116-119; Tsybin, Y.O., Witt, M., Baykut, G., Kjeldsen, F., Haìškansson, P., (2003) Rapid Commun. Mass Spectrom., 17, pp. 1759-1768; De Haan, D.O., Corrigan, A.L., Smith, K.W., Stroiik, D.R., Turley, J.J., Lee, F.E., Tolbert, M.A., Ferrell, G.R., (2009) Environ. Sci. Technol., 43, pp. 2818-2824; Roepstorff, P., Fohlman, J., (1984) Biomed. Mass Spectom., 11, p. 601; Lin, C., Cournoyer, J.J., O'Connor, P.B., (2006) J. Am. Soc. Mass Spectrom., 17, pp. 1605-1615; Bunn, H.F., Shapiro, R., McManus, M., Garrick, L., McDonald, M.J., Gallop, P.M., Gabbay, K., (1979) J. Biol. Chem., 254, pp. 3892-3898; Axelsson, J., Palmblad, M., Haìškansson, K., Haìš kansson, P., (1999) Rapid Commun. Mass Spectrom., 13, pp. 474-477; Tsybin, Y.O., Haselmann, K.F., Emmett, M.R., Hendrickson, C.L., Marshall, A.G., (2006) J. Am. Soc. Mass Spectrom., 17, pp. 1704-1711; Ahmed, N., Thornalley, P.J., Dawczynski, J., Franke, S., Strobel, J., Stein, G., Haik, G.M., (2003) Invest. Ophthalmol. Visual Sci., 44, pp. 5287-5292; Mittelmainer, S., Pischetsrieder, M., (2011) Anal. Chem., 83, pp. 9660-9668},\ncorrespondence_address1={O'Connor, P.B.; Warwick Centre for Analytical Science, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: p.oconnor@warwick.ac.uk},\nissn={00032700},\ncoden={ANCHA},\npubmed_id={23163806},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Glycation by endogenous dicarbonyl metabolites such as glyoxal is an important spontaneous post-translational (PTM) modification of peptides and proteins associated with structural and functional impairment. The aim of this study was to investigate types and site of PTM of glyoxal-derived advanced glycation end-products-in the neuropeptide substance P by ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR), mass spectrometry, and tandem mass spectrometry (MS/MS) experiments. The main site of PTM by glyoxal was the side chain guanidine moiety of the arginine residue. Binding site identification has been achieved by electron capture dissociation, double-resonance electron capture dissociation, and collision-activated dissociation, with assignment of the modified amino acid residue with mass error <1 ppm. © 2012 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Absorption-mode spectra on the dynamically harmonized Fourier transform ion cyclotron resonance cell.\n \n \n \n \n\n\n \n Qi, Y.; Witt, M.; Jertz, R.; Baykut, G.; Barrow, M.; Nikolaev, E.; and O'Connor, P.\n\n\n \n\n\n\n Rapid Communications in Mass Spectrometry, 26(17): 2021-2026. 2012.\n cited By 20\n\n\n\n
\n\n\n\n \n \n \"Absorption-modePaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Qi20122021,\nauthor={Qi, Y. and Witt, M. and Jertz, R. and Baykut, G. and Barrow, M.P. and Nikolaev, E.N. and O'Connor, P.B.},\ntitle={Absorption-mode spectra on the dynamically harmonized Fourier transform ion cyclotron resonance cell},\njournal={Rapid Communications in Mass Spectrometry},\nyear={2012},\nvolume={26},\nnumber={17},\npages={2021-2026},\ndoi={10.1002/rcm.6311},\nnote={cited By 20},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864753098&doi=10.1002%2frcm.6311&partnerID=40&md5=01fd59898e87d515fd5a2f2a24160b78},\naffiliation={Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; Bruker Daltonik GmbH, Fahrenheitstrasse 4, 28359 Bremen, Germany; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38, k.2, Moscow 119334, Russian Federation; Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Pogodiskaja 10, Moscow 119121, Russian Federation},\nabstract={RATIONALE The recently designed dynamically harmonized Fourier transform ion cyclotron resonance (FT-ICR) cell creates a more harmonized electric field for the detection of the cyclotron motion of ions and prolongs the ion transient from seconds to minutes. In order to achieve its best performance, phase correction was applied in the spectra, and new advantages of the absorption-mode were revealed. METHODS Spectra were acquired from both simple standard and complex mixtures using either narrowband or broadband mode, and the data were processed to compare the performance of the spectra in magnitude and absorption-mode. RESULTS The research shows that phase correction works well with data from Nikolaev's new cell, which produces the maximum improvement in resolving power (2×), and improves the match with the theoretical intensities of the isotopic peaks. In addition, the harmonic peaks can be diagnosed immediately in the absorption-mode. CONCLUSIONS The manuscript demonstrates absorption-mode spectra from Nikolaev's ICR cell, which will be of interest to the community. The improved relative peak intensities and immediate identification of harmonic peaks will facilitate data interpretation. Copyright © 2012 John Wiley & Sons, Ltd.},\nkeywords={petroleum, absorption;  article;  cyclotron;  Fourier analysis;  instrumentation;  mass spectrometry;  methodology, Absorption;  Cyclotrons;  Fourier Analysis;  Mass Spectrometry;  Petroleum},\nchemicals_cas={petroleum, 8002-05-9; Petroleum},\nreferences={Marshall, A.G., Hendrickson, C.L., Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry - A primer (1998) Mass Spectrom. Rev., 17, p. 1; Amster, I.J., Fourier transform mass spectrometry (1996) J. Mass Spectrom., 31, p. 1325; Marshall, A.G., Hendrickson, C.L., Shi, S.D.H., Peer reviewed: Scaling MS plateaus with high-resolution FT-ICRMS (2002) Anal. Chem., 74, p. 252. , A; Shi, S.D.H., Hendrickson, C.L., Marshall, A.G., Counting individual sulfur atoms in a protein by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins (1998) Proc. Natl. Acad. Sci., 95, p. 11532; Nikolaev, E.N., Jertz, R., Grigoryev, A., Baykut, G., Fine structure in isotopic peak distributions measured using a dynamically harmonized Fourier transform ion cyclotron resonance cell at 7 T (2012) Anal. Chem., 84, p. 2275; Brown, L.S., Gabrielse, G., Geonium theory: Physics of a single electron or ion in a Penning trap (1986) Revi. Modern Phys., 58, p. 233; Comisarow, M.B., Cubic trapped-ion cell for ion cyclotron resonance (1981) Int. J. Mass Spectrom. Ion Phys., 37, p. 251; Kofel, P., Allemann, M., Kellerhals, H., Wanczek, K.P., Coupling of axial and radial motions in ICR cells during excitation (1986) Int. J. Mass Spectrom. Ion Processes, 74, p. 1; Caravatti, P., Allemann, M., The 'infinity cell': A new trapped-ion cell with radiofrequency covered trapping electrodes for Fourier transform ion cyclotron resonance mass spectrometry (1991) Org. Mass Spectrom., 26, p. 514; Aizikov, K., Mathur, R., O'Connor, P.B., The spontaneous loss of coherence catastrophe in Fourier transform ion cyclotron resonance mass spectrometry (2009) J. Am. Soc. Mass Spectrom., 20, p. 247; Gabrielse, G., Haarsma, L., Rolston, S.L., Open-endcap Penning traps for high precision experiments (1989) Int. J. Mass Spectrom. Ion Processes, 88, p. 319; Brustkern, A., Rempel, D., Gross, M., An electrically compensated trap designed to eighth order for FT-ICR mass spectrometry (2008) J. Am. Soc. Mass Spectrom., 19, p. 1281; Tolmachev, A., Robinson, E., Wu, S., Kang, H., Lourette, N., Paša- Tolić, L., Smith, R., Trapped-ion cell with improved DC potential harmonicity for FT-ICR MS (2008) J. Am. Soc. Mass Spectrom., 19, p. 586; Nikolaev, E., Boldin, I., Jertz, R., Baykut, G., Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization (2011) J. Am. Soc. Mass Spectrom., 22, p. 1125; Comisarow, M.B., Melka, J.D., Error estimates for finite zero-filling in Fourier transform spectrometry (1979) Anal. Chem., 51, p. 2198; Marshall, A.G., Comisarow, M.B., Parisod, G., Relaxation and spectral line shape in Fourier transform ion resonance spectroscopy (1979) J. Chem. Phys., 71, p. 4434; Qi, Y., Barrow, M.P., Van Orden, S.L., Thompson, C.J., Li, H., Perez-Hurtado, P., O'Connor, P.B., Variation of the Fourier transform mass spectra phase function with experimental parameters (2011) Anal. Chem., 83, p. 8477; Qi, Y., Barrow, M.P., Li, H., Meier, J.E., Van Orden, S.L., Thompson, C.J., O'Connor, P.B., Absorption-mode: The next generation of Fourier transform mass spectra (2012) Anal. Chem., 84, p. 2923; Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G., Automated broadband phase correction of Fourier transform ion cyclotron resonance mass spectra (2010) Anal. Chem., 82, p. 8807; Marshall, A.G., Verdun, F.R., (1990) Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook, p. 460. , Elsevier, Amsterdam, p; Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G., Effects of zero-filling and apodization on absorption-mode FT-ICR mass spectra (2011) Proc. 59th ASMS Conf. Mass Spectrometry and Allied Topics, Denver, CO, USA; Qi, Y., Thompson, C.J., Van Orden, S.L., O'Connor, P.B., Phase correction of Fourier transform ion cyclotron resonance mass spectra using MatLab (2011) J. Am. Soc. Mass Spectrom., 22, p. 138; Rockwood, A.L., Van Orden, S.L., Smith, R.D., Ultrahigh resolution isotope distribution calculations (1996) Rapid Commun. Mass Spectrom., 10, p. 54; Nikolaev, E.N., Miluchihin, N.V., Inoue, M., Evolution of an ion cloud in a Fourier transform ion cyclotron resonance mass spectrometer during signal detection: Its influence on spectral line shape and position (1995) Int. J. Mass Spectrom. Ion Processes, 148, p. 145; Lee, J.P., Comisarow, M.B., Advantageous apodization functions for absorption-mode Fourier transform spectroscopy (1989) Appl. Spectrosc., 43, p. 599; Mathur, R., O'Connor, P.B., Artifacts in Fourier transform mass spectrometry (2009) Rapid Commun. Mass Spectrom., 23, p. 523},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; email: p.oconnor@warwick.ac.uk},\nissn={09514198},\ncoden={RCMSE},\npubmed_id={22847701},\nlanguage={English},\nabbrev_source_title={Rapid Commun. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n RATIONALE The recently designed dynamically harmonized Fourier transform ion cyclotron resonance (FT-ICR) cell creates a more harmonized electric field for the detection of the cyclotron motion of ions and prolongs the ion transient from seconds to minutes. In order to achieve its best performance, phase correction was applied in the spectra, and new advantages of the absorption-mode were revealed. METHODS Spectra were acquired from both simple standard and complex mixtures using either narrowband or broadband mode, and the data were processed to compare the performance of the spectra in magnitude and absorption-mode. RESULTS The research shows that phase correction works well with data from Nikolaev's new cell, which produces the maximum improvement in resolving power (2×), and improves the match with the theoretical intensities of the isotopic peaks. In addition, the harmonic peaks can be diagnosed immediately in the absorption-mode. CONCLUSIONS The manuscript demonstrates absorption-mode spectra from Nikolaev's ICR cell, which will be of interest to the community. The improved relative peak intensities and immediate identification of harmonic peaks will facilitate data interpretation. Copyright © 2012 John Wiley & Sons, Ltd.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Absorption-mode: The next generation of Fourier transform mass spectra.\n \n \n \n \n\n\n \n Qi, Y.; Barrow, M.; Li, H.; Meier, J.; Van Orden, S.; Thompson, C.; and O'Connor, P.\n\n\n \n\n\n\n Analytical Chemistry, 84(6): 2923-2929. 2012.\n cited By 39\n\n\n\n
\n\n\n\n \n \n \"Absorption-mode:Paper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Qi20122923,\nauthor={Qi, Y. and Barrow, M.P. and Li, H. and Meier, J.E. and Van Orden, S.L. and Thompson, C.J. and O'Connor, P.B.},\ntitle={Absorption-mode: The next generation of Fourier transform mass spectra},\njournal={Analytical Chemistry},\nyear={2012},\nvolume={84},\nnumber={6},\npages={2923-2929},\ndoi={10.1021/ac3000122},\nnote={cited By 39},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863391289&doi=10.1021%2fac3000122&partnerID=40&md5=02f05312b405e2005c3c04079330f7dd},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Bruker Daltonics, 40 Manning Road, Billerica, MA 01821, United States},\nabstract={The Fourier transform spectrum can be presented in the absorption-mode (commonly used in FT-NMR), magnitude-mode (FT-ICR), and power-mode (engineering applications). As is routinely used in FT-NMR, it is well-known that the absorption-mode display gives a much narrower peak shape which greatly improves the spectrum; recently, the successful solution of the phase equation allowed broadband phase correction which makes it possible to apply the absorption-mode routinely in FT-ICR. With the empirical evidence provided herein, it has been confirmed that in addition to the improvement on resolving power, compared to the conventional magnitude-mode, the new absorption-mode improves the signal-to-noise ratio (S/N) of a spectrum by 1.4-fold and can improve the mass accuracy up to 2-fold with no extra cost in instrumentation. Therefore, it is worthwhile to apply and promote absorption-mode in routine FT-ICR experiments. © 2012 American Chemical Society.},\nkeywords={Empirical evidence;  Engineering applications;  Fourier transform spectra;  Mass accuracy;  Mass spectra;  Peak shapes;  Phase corrections;  Phase equation;  Signal to noise (S/N) ratios, Chemical analysis;  Chemistry, Mass spectrometry},\nreferences={Amster, I.J., (1996) J. Mass Spectrom., 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev., 17, pp. 1-35; Schmidt, A., Gehlenborg, N., Bodenmiller, B., Mueller, L.N., Campbell, D., Mueller, M., Aebersold, R., Domon, B., (2008) Mol. Cell. Proteomics, 7, pp. 2138-2150; Brown, S.C., Kruppa, G., Dasseux, J.-L., (2005) Mass Spectrom. Rev., 24, pp. 223-231; Rodgers, R.P., McKenna, A.M., (2011) Anal. Chem., 83, pp. 4665-4687; Marshall, A.G., Guan, S.H., (1996) Rapid Commun. Mass Spectrom., 10, pp. 1819-1823; Kaiser, N., Skulason, G., Weisbrod, C., Bruce, J., (2009) J. Am. Soc. Mass Spectrom., 20, pp. 755-762; Nikolaev, E., Boldin, I., Jertz, R., Baykut, G., (2011) J. Am. Soc. Mass Spectrom., 22, pp. 1125-1133; Brustkern, A., Rempel, D., Gross, M., (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1281-1285; Lin, T.Y., Green, R.J., O'Connor, P.B., (2011) Rev. Sci. Instrum., 82, p. 124101; Mathur, R., Knepper, R., O'Connor, P., (2007) J. Am. Soc. Mass Spectrom., 18, pp. 2233-2241; Guo, X., Duursma, M., Al-Khalili, A., McDonnell, L.A., Heeren, R.M.A., (2004) Int. J. Mass Spectrom., 231, pp. 37-45; Blakney, G.T., Hendrickson, C.L., Marshall, A.G., (2011) Int. J. Mass Spectrom., 306, pp. 246-252; Aizikov, K., O'Connor, P.B., (2006) J. Am. Soc. Mass Spectrom., 17, pp. 836-843; Senko, M.W., Canterbury, J.D., Guan, S.H., Marshall, A.G., (1996) Rapid Commun. Mass Spectrom., 10, pp. 1839-1844; Klerk, L.A., Broersen, A., Fletcher, I.W., Van Liere, R., Heeren, R.M.A., (2007) Int. J. Mass Spectrom., 260, pp. 222-236; Taban, I.M., Van Der Burgt, Y.E.M., Duursma, M., Takáts, Z., Seynen, M., Konijnenburg, M., Vijftigschild, A., Heeren, R.M.A., (2008) Rapid Commun. Mass Spectrom., 22, pp. 1245-1256; Kaur, P., O'Connor, P.B., (2006) J. Am. Soc. Mass Spectrom., 17, pp. 459-468; Qi, Y., Thompson, C., Van Orden, S., O'Connor, P., (2011) J. Am. Soc. Mass Spectrom., 22, pp. 138-147; Qi, Y., Barrow, M.P., Van Orden, S.L., Thompson, C.J., Li, H., Perez-Hurtado, P., O'Connor, P.B., (2011) Anal. Chem., 83, pp. 8477-8483; Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G., (2010) Anal. Chem., 82, pp. 8807-8812; Comisarow, M.B., (1971) J. Chem. Phys., 55, pp. 205-217; Marshall, A.G., (1971) J. Chem. Phys., 55, pp. 1343-1354; Dzhyugis, A.S., (1989) Comput. Math. Math. Phys., 29, pp. 88-90; Krot, A.M., (1989) Comput. Math. Math. Phys., 29, pp. 23-34; Craig, E.C., Santos, I., (1987) Rapid Commun. Mass Spectrom., 1, pp. 33-37; Zhang, L.-K., Rempel, D., Pramanik, B.N., Gross, M.L., (2005) Mass Spectrom. Rev., 24, pp. 286-309; De Graaf, R.A., (2007) In Vivo Nmr Spectroscopy: Principles and Techniques, , 2 nd ed. Wiley: Chichester and Hoboken, NJ; Ernst, R.R., Bodenhausen, G., Wokaun, A., (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, , Oxford University Press: London; Craig, E.C., Marshall, A.G., (1988) J. Magn. Reson., 76, pp. 458-475; Marshall, A.G., Verdun, F.R., (1990) Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook, , Elsevier: Amsterdam; Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G., Effects of Zero-Filling and Apodization on Absorption-Mode FT-ICR Mass Spectra (2011) 59th ASMS Conference on Mass Spectrometry & Allied Topics, , Presented at the, Denver, CO, USA; Brenton, A., Godfrey, A., (2010) J. Am. Soc. Mass Spectrom., 21, pp. 1821-1835; Caravatti, P., Allemann, M., (1991) Org. Mass Spectrom., 26, pp. 514-518; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., (1998) J. Am. Chem. Soc., 120, pp. 3265-3266; Gorshkov, M.V., Masselon, C.D., Nikolaev, E.N., Udseth, H.R., Pasa-Tolic, L., Smith, R.D., (2004) Int. J. Mass Spectrom., 234, pp. 131-136; Mormann, M., Peter-Katalinić, J., (2003) Rapid Commun. Mass Spectrom., 17, pp. 2208-2214; Bartholdi, E., Ernst, R.R., (1973) J. Magn. Reson. (1969), 11, pp. 9-19; Ledford, E.B., Rempel, D.L., Gross, M.L., (1984) Anal. Chem., 56, pp. 2744-2748; O'Connor, P.B., Costello, C.E., (2000) Anal. Chem., 72, pp. 5881-5885; Li, H., Zhao, Y., Phillips, H.I.A., Qi, Y., Lin, T.-Y., Sadler, P.J., O'Connor, P.B., (2011) Anal. Chem., 83, pp. 5369-5376; Rockwood, A.L., Van Orden, S.L., Smith, R.D., (1995) Anal. Chem., 67, pp. 2699-2704; Brenna, J.T., Creasy, W.R., (1989) Int. J. Mass Spectrom. Ion Process., 90, pp. 151-166; Noest, A.J., Kort, C.W.F., (1982) Comput. Chem., 6, pp. 111-113; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., (2010) Anal. Chem., 82, pp. 3727-3735; Savory, J.J., Kaiser, N.K., McKenna, A.M., Xian, F., Blakney, G.T., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., (2011) Anal. Chem., 83, pp. 1732-1736; Weisbrod, C.R., Kaiser, N.K., Skulason, G.E., Bruce, J.E., (2010) Anal. Chem., 82, pp. 6281-6286; Ledford Jr., E.B., Ghaderi, S., White, R.L., Spencerr, B., Kulkarni, P.S., Wilkins, C.L., Gross, M.L., (1980) Anal. Chem., 52, pp. 463-468; Aizikov, K., Mathur, R., O'Connor, P.B., (2009) J. Am. Soc. Mass Spectrom., 20, pp. 247-256; Brown, L.S., Gabrielse, G., (1986) Rev. Mod. Phys., 58, pp. 233-311},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: p.oconnor@warwick.ac.uk},\nissn={00032700},\ncoden={ANCHA},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The Fourier transform spectrum can be presented in the absorption-mode (commonly used in FT-NMR), magnitude-mode (FT-ICR), and power-mode (engineering applications). As is routinely used in FT-NMR, it is well-known that the absorption-mode display gives a much narrower peak shape which greatly improves the spectrum; recently, the successful solution of the phase equation allowed broadband phase correction which makes it possible to apply the absorption-mode routinely in FT-ICR. With the empirical evidence provided herein, it has been confirmed that in addition to the improvement on resolving power, compared to the conventional magnitude-mode, the new absorption-mode improves the signal-to-noise ratio (S/N) of a spectrum by 1.4-fold and can improve the mass accuracy up to 2-fold with no extra cost in instrumentation. Therefore, it is worthwhile to apply and promote absorption-mode in routine FT-ICR experiments. © 2012 American Chemical Society.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2011\n \n \n (4)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Use of top-down and bottom-up fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs.\n \n \n \n \n\n\n \n Li, H.; Lin, T.; Van Orden, S.; Zhao, Y.; Barrow, M.; Pizarro, A.; Qi, Y.; Sadler, P.; and O'Connor, P.\n\n\n \n\n\n\n Analytical Chemistry, 83(24): 9507-9515. 2011.\n cited By 41\n\n\n\n
\n\n\n\n \n \n \"UsePaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Li20119507,\nauthor={Li, H. and Lin, T.-Y. and Van Orden, S.L. and Zhao, Y. and Barrow, M.P. and Pizarro, A.M. and Qi, Y. and Sadler, P.J. and O'Connor, P.B.},\ntitle={Use of top-down and bottom-up fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs},\njournal={Analytical Chemistry},\nyear={2011},\nvolume={83},\nnumber={24},\npages={9507-9515},\ndoi={10.1021/ac202267g},\nnote={cited By 41},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-83655172714&doi=10.1021%2fac202267g&partnerID=40&md5=fb98cdd22492d29cb5e63042a9d70b5c},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom; Bruker Daltonics, 40 Manning Road, Billerica, MA 01821, United States},\nabstract={Calmodulin (CaM) is a highly conserved, ubiquitous, calcium-binding protein; it binds to and regulates many different protein targets, thereby functioning as a calcium sensor and signal transducer. CaM contains 9 methionine (Met), 1 histidine (His), 17 aspartic acid (Asp), and 23 glutamine acid (Glu) residues, all of which can potentially react with platinum compounds; thus, one-third of the CaM sequence is a possible binding target of platinum anticancer drugs, which represents a major challenge for identification of specific platinum modification sites. Here, top-down electron capture dissociation (ECD) was used to elucidate the transition metal-platinum(II) modification sites. By using a combination of top-down and bottom-up mass spectrometric (MS) approaches, 10 specific binding sites for mononuclear complexes, cisplatin and [Pt(dien)Cl]Cl, and dinuclear complex [{cis-PtCl 2(NH 3)} 2(μ-NH 2(CH 2) 4NH 2)] on CaM were identified. High resolution MS of cisplatin-modified CaM revealed that cisplatin mainly targets Met residues in solution at low molar ratios of cisplatin-CaM (2:1), by cross-linking Met residues. At a high molar ratio of cisplatin:CaM (8:1), up to 10 platinum(II) bind to Met, Asp, and Glu residues. [{cis-PtCl 2(NH 3)} 2(μ-NH 2(CH 2) 4NH 2)] forms mononuclear adducts with CaM. The alkanediamine linker between the two platinum centers dissociates due to a trans-labilization effect. [Pt(dien)Cl]Cl forms {Pt(dien)} 2+ adducts with CaM, and the preferential binding sites were identified as Met51, Met71, Met72, His107, Met109, Met124, Met144, Met145, Glu45 or Glu47, and Asp122 or Glu123. The binding of these complexes to CaM, particularly when binding involves loss of all four original ligands, is largely irreversible which could result in their failure to reach the target DNA or be responsible for unwanted side-effects during chemotherapy. Additionally, the cross-linking of cisplatin to CaM might lead to the loss of the biological function of CaM or CaM-Ca 2+ due to limiting the flexibility of the CaM or CaM-Ca 2+ complex to recognize target proteins or blocking the binding region of target proteins to CaM. © 2011 American Chemical Society.},\nkeywords={Aspartic acids;  Biological functions;  Calcium binding proteins;  Calcium sensors;  Cis-platin;  Dinuclear complex;  Electron capture dissociation;  Fourier transform ion cyclotron resonance mass spectrometry;  High resolution;  Molar ratio;  Mononuclear complexes;  Platinum anticancer drugs;  Preferential binding;  Protein targets;  Side effect;  Signal transducers;  Specific binding;  Target proteins;  Topdown, Amino acids;  Binding sites;  Calcium;  Calmodulin;  Cams;  Chemotherapy;  Chlorine compounds;  Electrochemical sensors;  Mass spectrometry;  Platinum;  Transition metals, Platinum compounds, antineoplastic agent;  calmodulin;  cisplatin;  coordination compound;  platinum, article;  binding site;  chemistry;  electrospray mass spectrometry;  Fourier analysis;  protein analysis, Antineoplastic Agents;  Binding Sites;  Calmodulin;  Cisplatin;  Coordination Complexes;  Fourier Analysis;  Platinum;  Protein Interaction Mapping;  Spectrometry, Mass, Electrospray Ionization},\nchemicals_cas={cisplatin, 15663-27-1, 26035-31-4, 96081-74-2; platinum, 7440-06-4; Antineoplastic Agents; Calmodulin; Cisplatin, 15663-27-1; Coordination Complexes; Platinum, 7440-06-4},\nreferences={Kelland, L., (2007) Nat. Rev. Cancer, 7, pp. 573-584; Wang, X., Guo, Z., (2007) Anti-Cancer Agents Med. Chem., 7, pp. 19-34; Cohen, S., Lippard, M., Lippard, S.J., (2001) Prog. Nucleic Acid Res. Mol. Biol., 67, pp. 94-129; Borst, P., Rottenberg, S., Jonkers, J., (2008) Cell Cycle, 7, pp. 1353-1359; Kroning, R., Lichtenstein, A.K., Nagami, G.T., (2000) Cancer Chemother. Pharmacol., 45, pp. 43-49; Arnesano, F., Boccarelli, A., Cornacchia, D., Nushi, F., Sasanelli, R., Coluccia, M., Natile, G., (2009) J. Med. Chem., 52, pp. 7847-7855; Karotki, A.V., Vasak, M., (2008) Biochemistry, 47, pp. 10961-10969; Knipp, M., Karotki, A.V., Chesnov, S., Natile, G., Sadler, P.J., Brabec, V., Vasak, M., (2007) J. Med. Chem., 50, pp. 4075-4086; Lau, J.K., Deubel, D., (2005) Chem.-Eur. J., 11, pp. 2849-2855; Crivici, A., Ikura, M., (1995) Annu. Rev. Biophys. Biomol. Struct., 24, pp. 85-116; Nelson, M.R., Chazin, W.J., (1998) Protein Sci., 7, pp. 270-282; Vetter, S.W., Leclerc, E., (2003) Eur. J. Biochem., 270, pp. 404-414; O'Neil, K.T., Degrado, W.F., (1990) Trends Biochem. Sci., 15, pp. 59-64; Gao, J., Yin, D.H., Yao, Y., Sun, H., Qin, Z., Schoneich, C., Williams, T.D., Squier, T.C., (1998) Biophys. J., 74, pp. 1115-1134; Bartlett, R.K., Urbauer, R.J.B., Anbanandam, A., Smallwood, H.S., Urbauer, J.L., Squier, T.C., (2003) Biochemistry, 42, pp. 3231-3228; Vougier, S., Mary, J., Dautin, N., Vinh, J., Friguet, B., Ladant, D., (2004) J. Biol. Chem., 279, pp. 30210-30218; Yao, Y., Yin, D., Jas, G.S., Kuczera, K., Williams, T.D., Schoneih, C., Squier, T., (1996) Biochemistry, 35, pp. 2767-2787; Bigelow, D.J., Squier, T.C., (2005) Biochim. Biophys. Acta, 1703, pp. 121-134; Jarve, R.K., Aggarwal, S.K., (1997) Cancer Chemother. Pharmacol., 39, pp. 341-348; Car, S.A., Annan, R.S., (2001) Curr. Protoc. Mol. Biol., , 10.21.1-10.21.27; Zhao, T., King, F.L., (2009) J. Am. Soc. Mass Spectrom., 20, pp. 1141-1147; Gibson, D., Costello, C.E., (1999) Eur. Mass Spectrom., 5, pp. 501-510; Will, J., Sheldrick, W.S., (2008) J. Biol. Inorg. Chem., 13, pp. 421-434; Allardyce, C.S., Dyson, P.J., Coffey, J., Johnson, N., (2002) Rapid Commun. Mass Spectrom., 16, pp. 933-935; Moreno-Gordaliza, E., Canas, B., Palacios, M.A., Gomez-Gomez, M.M., (2009) Anal. Chem., 81, pp. 3507-3516; Hartinger, C., Tsybin, Y., Fuchser, J., Dyson, P.J., (2008) Inorg. Chem., 47, pp. 17-19; Mandal, R., Li, X., (2006) Rapid Coummun. Mass Spectrom., 20, pp. 48-52; Kelleher, N.L., Lin, H.Y., Valaskovic, G.A., Aaserud, D.J., Fridriksson, E.K., McLafferty, F.W., (1999) J. Am. Chem. Soc., 121, pp. 806-812; Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.M., (1999) J. Am. Chem. Soc., 121, pp. 2857-2862; Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Keller, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.M., (2000) Anal. Chem., 72, pp. 563-573; Xie, Y., Zhang, J., Yin, S., Loo, J.A., (2006) J. Am. Chem. Soc., 128, pp. 14432-14433; Breuker, K., Jin, M., Han, X., Jiang, H., McLafferty, F.M., (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1045-1053; Horn, D., Ge, Y., McLafferty, F.W., (2000) Anal. Chem., 72, pp. 4778-4784; Feketeova, L., Ryzhov, V., O'Hair, R.A.J., (2009) Rapid Commun. Mass Spectrom., 23, pp. 3133-3143; Li, H., Zhao, Y., Phillips, H.I.A., Qi, Y., Lin, T.Y., Sadler, P.J., O'Connor, P.B., (2011) Anal. Chem., 83, pp. 5369-5376; Timerbaev, A.R., Hartinger, C.G., Aleksenko, S.S., Keppler, B.K., (2006) Chem. Rev., 106, pp. 2224-2248; Dhara, S.C., (1970) Indian J. Chem., 8, pp. 193-194; Annibale, G., Brandolisio, M., Pitteri, B., (1995) Polyhedron, 14, pp. 451-453; Farrell, N., Qu, Y., (1989) Inorg. Chem., 18, pp. 3416-3420; Caravatti, P., Allemann, M., (1991) Org. Mass Spectrom., 26, pp. 514-518; Tsybin, Y.O., Quinn, J.P., Tsybin, O.Y., Hendrickson, C.L., Marshall, A.G., (2008) J. Am. Mass Spectrom., 19, pp. 762-771; Gorshkov, M.V., Masselon, C.D., Nokolaev, E.N., Udseth, H.R., Pasa-Tolic, L., Smith, R.D., (2004) Int. J. Mass Spectrom., 234, pp. 131-136; Mormann, M., Peter-Katalinic, J., (2003) Rapid Commun. Mass Spectrom., 17, pp. 2208-2214; Kasherman, Y., Sturup, S., Gibson, D., (2009) J. Biol. Chem., 14, pp. 387-399; Crider, S.E., Holbrook, R.J., Franz, K.J., (2010) Metallomics, 2, pp. 74-83; Wu, Z., Liu, W., Liang, X., Yang, X., Wang, N., Wang, X., Sun, H., Guo, Z., (2009) J. Biol. Chem., 14, pp. 1313-1323; Oehlsen, M.E., Qu, Y., Farrell, N., (2003) Inorg. Chem., 42, pp. 5498-5506; Rodriguez, J., Gupta, N., Smith, R.D., Pevzner, P.A., (2007) J. Proteome Res., 7, pp. 300-305; Carpenter, F.H., (1967) Methods Enzymol., 11, p. 237; Kleinnigenhuis, A.J., Mihalca, R., Heeren, R.M.A., Heck, A.J.R., (2006) Int. J. Mass Spectrom., 253, pp. 217-224; Liu, H., Hakansson, K., (2006) J. Am. Mass Spectrom., 17, pp. 1731-1741; Turecek, F., Jones, J.W., Holm, A.I.S., Panja, S., Nielsen, S.B., Hvelplund, P., (2009) J. Mass Spectrom., 44, pp. 707-724; Moore, B.N., Julian, R.R., (2011) J. Am. Chem. Soc., 133, pp. 6997-7006; Fuertes, M.A., Alonso, C., Perez, J.M., (2003) Chem. Rev., 103, pp. 645-662; Balog, E.M., Norton, L.E., Thomas, D.D., Fruen, B.R., (2006) Am. J. Physiol.: Heart Circ. Physiol., 290, pp. 794-H799; Vogel, H.J., Zhang, M., (1995) Mol. Cell. Biochem., 149-150, pp. 3-15},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: p.oconnor@warwick.ac.uk},\nissn={00032700},\ncoden={ANCHA},\npubmed_id={22032417},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Calmodulin (CaM) is a highly conserved, ubiquitous, calcium-binding protein; it binds to and regulates many different protein targets, thereby functioning as a calcium sensor and signal transducer. CaM contains 9 methionine (Met), 1 histidine (His), 17 aspartic acid (Asp), and 23 glutamine acid (Glu) residues, all of which can potentially react with platinum compounds; thus, one-third of the CaM sequence is a possible binding target of platinum anticancer drugs, which represents a major challenge for identification of specific platinum modification sites. Here, top-down electron capture dissociation (ECD) was used to elucidate the transition metal-platinum(II) modification sites. By using a combination of top-down and bottom-up mass spectrometric (MS) approaches, 10 specific binding sites for mononuclear complexes, cisplatin and [Pt(dien)Cl]Cl, and dinuclear complex [cis-PtCl 2(NH 3) 2(μ-NH 2(CH 2) 4NH 2)] on CaM were identified. High resolution MS of cisplatin-modified CaM revealed that cisplatin mainly targets Met residues in solution at low molar ratios of cisplatin-CaM (2:1), by cross-linking Met residues. At a high molar ratio of cisplatin:CaM (8:1), up to 10 platinum(II) bind to Met, Asp, and Glu residues. [cis-PtCl 2(NH 3) 2(μ-NH 2(CH 2) 4NH 2)] forms mononuclear adducts with CaM. The alkanediamine linker between the two platinum centers dissociates due to a trans-labilization effect. [Pt(dien)Cl]Cl forms Pt(dien) 2+ adducts with CaM, and the preferential binding sites were identified as Met51, Met71, Met72, His107, Met109, Met124, Met144, Met145, Glu45 or Glu47, and Asp122 or Glu123. The binding of these complexes to CaM, particularly when binding involves loss of all four original ligands, is largely irreversible which could result in their failure to reach the target DNA or be responsible for unwanted side-effects during chemotherapy. Additionally, the cross-linking of cisplatin to CaM might lead to the loss of the biological function of CaM or CaM-Ca 2+ due to limiting the flexibility of the CaM or CaM-Ca 2+ complex to recognize target proteins or blocking the binding region of target proteins to CaM. © 2011 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Variation of the fourier transform mass spectra phase function with experimental parameters.\n \n \n \n \n\n\n \n Qi, Y.; Barrow, M.; Van Orden, S.; Thompson, C.; Li, H.; Perez-Hurtado, P.; and O'Connor, P.\n\n\n \n\n\n\n Analytical Chemistry, 83(22): 8477-8483. 2011.\n cited By 20\n\n\n\n
\n\n\n\n \n \n \"VariationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Qi20118477,\nauthor={Qi, Y. and Barrow, M.P. and Van Orden, S.L. and Thompson, C.J. and Li, H. and Perez-Hurtado, P. and O'Connor, P.B.},\ntitle={Variation of the fourier transform mass spectra phase function with experimental parameters},\njournal={Analytical Chemistry},\nyear={2011},\nvolume={83},\nnumber={22},\npages={8477-8483},\ndoi={10.1021/ac2017585},\nnote={cited By 20},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-81255144223&doi=10.1021%2fac2017585&partnerID=40&md5=06e788366710e0ac356c1ea974e29611},\naffiliation={Department of Chemistry, University of Warwick, Coventry, United Kingdom; Bruker Daltonics, 40 Manning Road, Billerica, MA 01821, United States},\nabstract={It has been known for almost 40 years that phase correction of Fourier transform ion cyclotron resonance (FTICR) data can generate an absorption-mode spectrum with much improved peak shape compared to the conventional magnitude-mode. However, research on phasing has been slow due to the complexity of the phase-wrapping problem. Recently, the method for phasing a broadband FTICR spectrum has been solved in the MS community which will surely resurrect this old topic. This paper provides a discussion on the data processing procedure of phase correction and features of the phase function based on both a mathematical treatment and experimental data. Finally, it is shown that the same phase function can be optimized by adding correction factors and can be applied from one experiment to another with different instrument parameters, regardless of the sample measured. Thus, in the vast majority of cases, the phase function needs to be calculated just once, whenever the instrument is calibrated. © 2011 American Chemical Society.},\nkeywords={Correction factors;  Experimental data;  Experimental parameters;  Fourier transform ion cyclotron resonance;  Mass spectra;  Mathematical treatments;  Peak shapes;  Phase corrections;  Phase functions;  Processing procedures, Data handling;  Mass spectrometry, Functions, petroleum, article;  calibration;  cyclotron;  Fourier analysis;  mass spectrometry;  methodology, Calibration;  Cyclotrons;  Fourier Analysis;  Mass Spectrometry;  Petroleum},\nchemicals_cas={petroleum, 8002-05-9; Petroleum},\nreferences={Amster, I.J., (1996) J. Mass Spectrom., 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev., 17, pp. 1-35; Ledford Jr., E.B., Ghaderi, S., White, R.L., Spencerr, B., Kulkarni, P.S., Wilkins, C.L., Gross, M.L., (1980) Anal. Chem., 52, pp. 463-468; Schaub, T.M., Hendrickson, C.L., Horning, S., Quinn, J.P., Senko, M.W., Marshall, A.G., (2008) Anal. Chem., 80, pp. 3985-3990; O'Connor, P.B., Speir, J.P., Senko, M.W., Little, D.P., McLafferty, F.W., (1995) J. Mass Spectrom., 30, pp. 88-93; Comisarow, M.B., (1971) J. Chem. Phys., 55, pp. 205-217; Marshall, A.G., (1971) J. Chem. Phys., 55, pp. 1343-1354; Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G., (2010) Anal. Chem., 82, pp. 8807-8812; Qi, Y., Thompson, C., Van Orden, S., O'Connor, P., (2011) J. Am. Soc. Mass Spectrom., 22, pp. 138-147; Dzhyugis, A.S., (1989) Comput. Math. Math. Phys., 29, pp. 88-90; Krot, A.M., (1989) Comput. Math. Math. Phys., 29, pp. 23-34; Craig, E.C., Santos, I., Marshall, A.G., Nibbering, N.M.M., (1987) Rapid Commun. Mass Spectrom., 1, pp. 33-37; Zhang, L.-K., Rempel, D., Pramanik, B.N., Gross, M.L., (2005) Mass Spectrom. Rev., 24, pp. 286-309; Cody, R.B., Kinsinger, J.A., Ghaderi, S., Amster, I.J., McLafferty, F.W., Brown, C.E., (1985) Anal. Chim. Acta, 178, pp. 43-66; Comisarow, M.B., Marshall, A.G., (1974) Chem. Phys. Lett., 25, pp. 282-283; Comisarow, M.B., Marshall, A.G., (1974) Chem. Phys. Lett., 26, pp. 489-490; Comisarow, M.B., Marshall, A.G., (1974) Can. J. Chem., 52, pp. 1997-1999; Derome, A.E., (1987) Modern NMR Techniques for Chemistry Research, , Pergamon: Oxford, U.K; Fukushima, E., Roeder, S.B.W., (1981) Experimental Pulse NMR: A Nuts and Bolts Approach, , Addison-Wesley: Reading, MA; Marshall, A.G., Verdun, F.R., (1990) Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook, , Elsevier: Amsterdam, The Netherlands; Marshall, A.G., Comisarow, M.B., Parisod, G., (1979) J. Chem. Phys., 71, pp. 4434-4444; Aarstol, M., Comisarow, M.B., (1987) Int. J. Mass Spectrom. Ion Processes, 76, pp. 287-297; Brenna, J.T., Creasy, W.R., (1989) Int. J. Mass Spectrom. Ion Processes, 90, pp. 151-166; Brown, L.S., Gabrielse, G., (1986) Rev. Mod. Phys., 58, p. 233; O'Connor, P.B., Costello, C.E., (2000) Anal. Chem., 72, pp. 5881-5885; Easterling, M.L., Mize, T.H., Amster, I.J., (1999) Anal. Chem., 71, pp. 624-632; Francl, T.J., Sherman, M.G., Hunter, R.L., Locke, M.J., Bowers, W.D., (1983) Int. J. Mass Spectrom. Ion Processes, 54, pp. 189-199; Ledford, E.B., Rempel, D.L., Gross, M.L., (1984) Anal. Chem., 56, pp. 2744-2748; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., (1998) J. Am. Chem. Soc., 120, pp. 3265-3266; Aizikov, K., Mathur, R., O'Connor, P.B., (2009) J. Am. Soc. Mass Spectrom., 20, pp. 247-256; Schweikhard, L., Marshall, A., (1993) J. Am. Soc. Mass Spectrom., 4, pp. 433-452; Brustkern, A., Rempel, D., Gross, M., (2008) J. Am. Soc. Mass Spectrom., 19, pp. 1281-1285; Tolmachev, A., Robinson, E., Wu, S., Kang, H., Lourette, N., Paša- Tolić, L., Smith, R., (2008) J. Am. Soc. Mass Spectrom., 19, pp. 586-597; Nikolaev, E., Boldin, I., Jertz, R., Baykut, G., (2011) J. Am. Soc. Mass Spectrom., 22, pp. 1125-1133; Caravatti, P., Allemann, M., (1991) Org. Mass Spectrom., 26, pp. 514-518; Leach, F.E., Kharchenko, A., Heeren, R., Nikolaev, E., Amster, I.J., (2010) J. Am. Soc. Mass Spectrom., 21, pp. 203-208; Comisarow, M.B., Melka, J.D., (1979) Anal. Chem., 51, pp. 2198-2203; Bartholdi, E., Ernst, R.R., (1973) J. Magn. Reson., 11, pp. 9-19; Grothe Jr., R.A., (2009) Estimation of Ion Cyclotron Resonance Parameters in Fourier Transform Mass Spectrometry, , U.S. Patent Application 20090278037A1, November 12; Kaur, P., O'Connor, P.B., (2006) J. Am. Soc. Mass Spectrom., 17, pp. 459-468; Brenton, A.G., Godfrey, A.R., (2010) J. Am. Soc. Mass Spectrom., 21, pp. 1821-1835; Savory, J.J., Kaiser, N.K., McKenna, A.M., Xian, F., Blakney, G.T., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., (2011) Anal. Chem., 83, pp. 1732-1736},\ncorrespondence_address1={O'Connor, P.B.; Department of Chemistry, University of Warwick, Coventry, United Kingdom; email: p.oconnor@warwick.ac.uk},\nissn={00032700},\ncoden={ANCHA},\npubmed_id={21975143},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n It has been known for almost 40 years that phase correction of Fourier transform ion cyclotron resonance (FTICR) data can generate an absorption-mode spectrum with much improved peak shape compared to the conventional magnitude-mode. However, research on phasing has been slow due to the complexity of the phase-wrapping problem. Recently, the method for phasing a broadband FTICR spectrum has been solved in the MS community which will surely resurrect this old topic. This paper provides a discussion on the data processing procedure of phase correction and features of the phase function based on both a mathematical treatment and experimental data. Finally, it is shown that the same phase function can be optimized by adding correction factors and can be applied from one experiment to another with different instrument parameters, regardless of the sample measured. Thus, in the vast majority of cases, the phase function needs to be calculated just once, whenever the instrument is calibrated. © 2011 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.\n \n \n \n \n\n\n \n Headley, J.; Barrow, M.; Peru, K.; Fahlman, B.; Frank, R.; Bickerton, G.; McMaster, M.; Parrott, J.; and Hewitt, L.\n\n\n \n\n\n\n Rapid Communications in Mass Spectrometry, 25(13): 1899-1909. 2011.\n cited By 112\n\n\n\n
\n\n\n\n \n \n \"PreliminaryPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@ARTICLE{Headley20111899,\nauthor={Headley, J.V. and Barrow, M.P. and Peru, K.M. and Fahlman, B. and Frank, R.A. and Bickerton, G. and McMaster, M.E. and Parrott, J. and Hewitt, L.M.},\ntitle={Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry},\njournal={Rapid Communications in Mass Spectrometry},\nyear={2011},\nvolume={25},\nnumber={13},\npages={1899-1909},\ndoi={10.1002/rcm.5062},\nnote={cited By 112},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-79958162496&doi=10.1002%2frcm.5062&partnerID=40&md5=9a148947c77ee5b29d7d9cfa0f908206},\naffiliation={Water Science and Technology Division, Environment Canada, 11 Innovation Boulevard, Saskatoon, SK, S7N3H5, Canada; Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom; Water Science and Technology Division, Environment Canada, 867 Lakeshore Rd, Burlington, ON, L7R 4A6, Canada},\nabstract={There is a growing need to develop analytical methods that can distinguish compounds found within industrially derived oil sands process water (OSPW) from those derived from natural weathering of oil sands deposits. This is a difficult challenge as possible leakage beyond tailings pond containments will probably be in the form of mixtures of water-soluble organics that may be similar to those leaching naturally into aquatic environments. We have evaluated the potential of negative ion electrospray ionization high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) for comparing oil sands polar organics from tailing ponds, interceptor wells, groundwater, river and lake surface waters. Principal component analysis was performed for all species observed. which included the O2 class (often assumed to be monocarbxoylic naphthenic acids) along with a wide range of other species including humic substances in the river and lake samples: On where n = 1-16; NOn and N2On where n = 1-13; and O nS and OnS2 where n = 1-10 and 1-8, respectively. A broad range of species was investigated because classical naphthenic acids can be a small fraction of the 'organics' detected in the polar fraction of OSPW, river water and groundwater. Aquatic toxicity and environmental chemistry are attributed to the total organics (not only the classical naphthenic acids). The distributions of the oil sands polar organics, particularly the sulfur-containing species, OnS and O nS2, may have potential for distinguishing sources of OSPW. The ratios of species containing On along with nitrogen-containing species: NOn, and N2On, were useful for differentiating organic components derived from OSPW from those found in river and lake waters. Further application of the FTICRMS technique for a diverse range of OSPW of varying ages and composition, as well as the surrounding groundwater wells, may be critical in assessing whether leakage from industrial sources to natural waters is occurring. Copyright © 2011 John Wiley &amp; Sons, Ltd.},\nreferences={(2009) Alberta's Energy Reserves 2008 and Supply/Demand Outlook 2009-2018, , Energy Resources Conservation Board, in, (Ed: ERC Board), Government of Alberta, Calgary; Schramm, L.L., Stasiuk, E.N., MacKinnon, M., (2000) Surfactants, Fundamentals and Applications in the Petroleum Industry, pp. 365-430. , (Ed: L. L. Schramm), Cambridge University Press, UK; (2009) Environmental Management of Alberta's Oil Sands, , Government of Alberta, in, (Ed: OSM Division), Government of Alberta, AB, Canada; Han, X.M., MacKinnon, M.D., Martin, J.W., Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS (2009) Chemosphere, 76, p. 63; Canadian Fisheries Act. (R.S.C. 1985, c. F-14), Section 36. Available; Colavecchia, M.V., Backus, S.M., Hodson, P.V., Parrott, J.L., Toxicity of oil sands to early life stages of fathead minnows (Pimephales promelas) (2004) Environ. Toxicol. Chem., 23, p. 1709; Kelly, E.N., Short, J.W., Schindler, D.W., Hodson, P.V., Ma, M.S., Kwan, A.K., Fortin, B.L., Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries (2009) Proc. Natl Acad. Sci. USA, 106, p. 22346; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem., 82, p. 3727; Headley, J.V., McMartin, D., A review of the occurrence and fate of naphthenic acids in aquatic environments (2004) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 39, p. 1989; Headley, J.V., Peru, K.M., Barrow, M.P., Mass spectrometric characterization of naphthenic acids in environmental samples: A review (2009) Mass Spectrom. Rev., 28, p. 121; Headley, J.V., Peru, K.M., Armstrong, S., Han, X., Martin, J.W., Mapolelo, M., Smith, D., Marshall, A., Aquatic plant derived changes in oil sands naphthenic acid signatures determined by low, high and ultra-high resolution mass spectrometry (2009) Rapid Commun. Mass Spectrom., 23, p. 1; Frank, R., Fischer, K., Kavanagh, R., Burnison, B.K., Arsenault, G., Headley, J.V., Peru, K.M., Solomon, K.R., Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids (2009) Environ. Sci. Technol., 43, p. 266; Grewer, D.M., Young, R.F., Whittal, R.M., Fedorak, P.M., Naphthenic acids and other acid-extractables in water samples in from Alberta: What is being measured? (2010) Sci. Total Environ., 408, p. 5997; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion (2003) Anal. Chem., 75, p. 860; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Fourier transform ion cyclotron resonance mass spectrometry of principal components in oil sands naphthenic acids (2004) J. Chromatogr. A, 1058, p. 51; Smith, B.E., Rowland, S.J., A derivatisation and liquid chromatography/electrospray ionisation multistage mass spectrometry method for the characterization of naphthenic acids (2008) Rapid Commun. Mass Spectrom., 22, p. 3909; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization (2011) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., , in press; Headley, J.V., Peru, K.M., Jafanda, A., Fahlman, B., Gu, C., Hassan, S., Characterization of oil sands acids in aquatic plant tissue using Orbitrap ultra-high resolution mass spectrometry with electrospray ionization (2011) Rapid Commun. Mass Spectrom., 25, p. 459; Kavanagh, R.J., Burnison, B.K., Frank, R.A., Solomon, K.R., Van Der Kraak, G., Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy (2009) Chemosphere, 76, p. 120; Mohamed, M., Wilson, L., Headley, J.V., Peru, K.M., Screening of oil sands naphthenic acids by UV/VIS absorption and fluorescence emission spectrophotometry (2008) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 43, p. 1700; Headley, J.V., Peru, K.M., Mishra, S.V., Meda, V., Dalai, A.K., McMartin, D.W., Mapolelo, M., Marshall, A.G., Characterization of oil sands naphthenic acids treated with ultraviolet and microwave radiation by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (2010) Rapid Commun. Mass Spectrom., 21, p. 3121; Headley, J.V., Peru, K.M., Armstrong, S., Mikula, R., Mapolelo, M., Rogers, R., Marshall, A., Ultrahigh-resolution mass spectrometry of simulated runoff from treated oil sands mature fine tailings (2010) Rapid Commun. Mass Spectrom., 16, p. 2400; Martin, J.W., Han, X., Peru, K.M., Headley, J.V., Comparison of high and low resolution electrospray ionization mass spectrometry for the analysis of naphthenic acid mixtures in oil sands process water (2008) Rapid Commun. Mass Spectrom., 22, p. 1919; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., Characterization of naphthenic acids from Athabasca oil sands using electrospray ionization: The significant influence of solvents (2007) Anal. Chem., 79, p. 6222; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Data visualization for the characterization of naphthenic acids within petroleum samples (2009) Energy Fuels, 23, p. 2592; Witt, M., Fuchser, J., Koch, B.P., Fragmentation studies of fulvic acids using collision induced dissociation Fourier transform ion cyclotron resonance mass spectrometry (2009) Anal. Chem., 81, p. 2688; Available; Available},\ncorrespondence_address1={Headley, J. V.; Water Science and Technology Division, Environment Canada, 11 Innovation Boulevard, Saskatoon, SK, S7N3H5, Canada; email: john.headley@ec.gc.ca},\nissn={09514198},\ncoden={RCMSE},\nlanguage={English},\nabbrev_source_title={Rapid Commun. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n There is a growing need to develop analytical methods that can distinguish compounds found within industrially derived oil sands process water (OSPW) from those derived from natural weathering of oil sands deposits. This is a difficult challenge as possible leakage beyond tailings pond containments will probably be in the form of mixtures of water-soluble organics that may be similar to those leaching naturally into aquatic environments. We have evaluated the potential of negative ion electrospray ionization high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) for comparing oil sands polar organics from tailing ponds, interceptor wells, groundwater, river and lake surface waters. Principal component analysis was performed for all species observed. which included the O2 class (often assumed to be monocarbxoylic naphthenic acids) along with a wide range of other species including humic substances in the river and lake samples: On where n = 1-16; NOn and N2On where n = 1-13; and O nS and OnS2 where n = 1-10 and 1-8, respectively. A broad range of species was investigated because classical naphthenic acids can be a small fraction of the 'organics' detected in the polar fraction of OSPW, river water and groundwater. Aquatic toxicity and environmental chemistry are attributed to the total organics (not only the classical naphthenic acids). The distributions of the oil sands polar organics, particularly the sulfur-containing species, OnS and O nS2, may have potential for distinguishing sources of OSPW. The ratios of species containing On along with nitrogen-containing species: NOn, and N2On, were useful for differentiating organic components derived from OSPW from those found in river and lake waters. Further application of the FTICRMS technique for a diverse range of OSPW of varying ages and composition, as well as the surrounding groundwater wells, may be critical in assessing whether leakage from industrial sources to natural waters is occurring. Copyright © 2011 John Wiley & Sons, Ltd.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 46(8): 844-854. 2011.\n cited By 39\n\n\n\n
\n\n\n\n \n \n \"Salting-outPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n There is growing interest in the mass spectrometric characterization of oil sands acids present in natural waters and contaminated soils. This interest stems from efforts to isolate the principal toxic components of oil sands acid extractable organics in aquatic environment. Salting-out effects are demonstrated for nanospray ionization mass spectra of Athabasca oil sands acid extractable organics (naphthenic acids), using Fourier transformion cyclotron resonance (FT-ICR)mass spectrometry. The differences in spectra obtained for the sodium naphthenates in dichloromethane/acetonitrile cosolvents compared to spectra obtained in the absence of saturated sodium chloride salts, are used here as a surrogate to indicate the more bioavailable or toxic components in natural waters. Whereas, monocarboxylic compounds (CnH2n+ZO 2) were prevalent in the Z = -4, -6, and -12 (2, 3 and 6-ring naphthenic acids respectively) family in the carbon number range of 13 to 19 in the dichloromethane/acetonitrile cosolvent systems, salting-out effects resulted in a general enhancement of Z= -4 species, relative to others. Likewise, the shift in relative intensities of species containing O1, O 3, O4, O2S and O3S was dramatic for systems with and without saturated salts present. The O4 and O 3S species for example, were prevalent in the dichloromethane/ acetonitrile cosolvent but were non-detected in the presence of saturated salts. Interactions of oil sands acids with salts are expected to occur in oil sands processed waters and natural saline waters. As evident by the distribution of species observed, salting-out effects will play a major role in limiting the bioavailability of oil sands acids in aquatic systems. Copyright © Taylor & Francis Group, LLC.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2010\n \n \n (2)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Petroleomics: Study of the old and the new.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Biofuels, 1(5): 651-655. 2010.\n cited By 20\n\n\n\n
\n\n\n\n \n \n \"Petroleomics:Paper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.\n \n \n \n \n\n\n \n Barrow, M.; Witt, M.; Headley, J.; and Peru, K.\n\n\n \n\n\n\n Analytical Chemistry, 82(9): 3727-3735. 2010.\n cited By 136\n\n\n\n
\n\n\n\n \n \n \"AthabascaPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Barrow20103727,\nauthor={Barrow, M.P. and Witt, M. and Headley, J.V. and Peru, K.M.},\ntitle={Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry},\njournal={Analytical Chemistry},\nyear={2010},\nvolume={82},\nnumber={9},\npages={3727-3735},\ndoi={10.1021/ac100103y},\nnote={cited By 136},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-77951842446&doi=10.1021%2fac100103y&partnerID=40&md5=b053d3caf3247d760c40ef9c72e072c7},\naffiliation={Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; Bruker Daltonik GmbH, 28359 Bremen, Germany; Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Environment Canada, Saskatoon, SK, Canada},\nabstract={The Athabasca oil sands in Canada are a less conventional source of oil which have seen rapid development. There are concerns about the environmental impact, with particular respect to components in oil sands process water which may enter the aquatic ecosystem. Naphthenic acids have been previously targeted for study, due to their implications in toxicity toward aquatic wildlife, but it is believed that other components, too, contribute toward the potential toxicity of the oil sands process water. When mass spectrometry is used, it is necessary to use instrumentation with a high resolving power and mass accuracy when studying complex mixtures, but the technique has previously been hindered by the range of compounds that have been accessible via common ionization techniques, such as electrospray ionization. The research described here applied Fourier transform ion cyclotron resonance mass spectrometry in conjunction with electrospray ionization and atmospheric pressure photoionization, in both positive-ion and negative-ion modes, to the characterization of oil sands process water for the first time. The results highlight the need for broader characterization when investigating toxic components within oil sands process water. © 2010 American Chemical Society.},\nkeywords={Aquatic ecosystem;  Aquatic wildlife;  Athabasca oil sands;  Atmospheric pressure photo ionization;  Complex mixture;  Fourier transform ion cyclotron resonance mass spectrometry;  Mass accuracy;  Naphthenic acid;  Process water;  Rapid development;  Resolving power;  Toxic components, Atmospheric ionization;  Atmospheric pressure;  Cyclotrons;  Electron cyclotron resonance;  Environmental impact;  Fourier transforms;  Ions;  Mass spectrometry;  Oil sands;  Organic acids;  Particle detectors;  Photoionization;  Plasmas;  Resonance;  Sand;  Toxicity, Electrospray ionization},\nreferences={Slavcheva, E., Shone, B., Turnbull, A., (1999) Br. Corros. J., 34, pp. 125-131; Turnbull, A., Slavcheva, E., Shone, B., (1998) Corrosion, 54, pp. 922-930; Rogers, V.V., Wickstrom, M., Liber, K., MacKinnon, M.D., (2002) Toxicol. Sci., 66, pp. 347-355; Leung, S.S., MacKinnon, M.D., Smith, R.E.H., (2003) Aquat. Toxicol., 62, pp. 11-26; Clemente, J.S., Fedorak, P.M., (2005) Chemosphere, 60, pp. 585-600; Nero, V., Farwell, A., Lee, L.E.J., Van Meer, T., MacKinnon, M.D., Dixon, D.G., (2006) Ecotoxicol. Environ. Saf., 65, pp. 252-264; Lo, C.C., Brownlee, B.G., Bunce, N.J., (2006) Water Res., 40, pp. 655-664; Dzidic, I., Somerville, A.C., Raia, J.C., Hart, H.V., (1988) Anal. Chem., 60, pp. 1318-1323; Fan, T.P., (1991) Energy Fuels, 5, pp. 371-375; St. John, W.P., Rughani, J., Green, S.A., McGinnis, G.D., (1998) J. Chromatogr., A, 807, pp. 241-251; Hsu, C.S., Dechert, G.J., Robbins, W.K., Fukuda, E.K., (2000) Energy Fuels, 14, pp. 217-223; Rudzinski, W.E., Oehlers, L., Zhang, Y., Najera, B., (2002) Energy Fuels, 16, pp. 1178-1185; Headley, J.V., Peru, K.M., McMartin, D.W., Winkler, M., (2002) J. AOAC Int., 85, pp. 182-187; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., (2003) Anal. Chem., 75, pp. 860-866; Clemente, J.S., Prasad, N.G.N., MacKinnon, M.D., Fedorak, P.M., (2003) Chemosphere, 50, pp. 1265-1274; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., (2004) J. Chromatogr., A, 1058, pp. 51-59; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., (2006) Anal. Chem., 78, pp. 8354-8361; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., (2007) Anal. Chem., 79, pp. 6222-6229; Smith, B.E., Lewis, C.A., Belt, S.T., Whitby, C., Rowland, S.J., (2008) Environ. Sci. Technol., 42, pp. 9323-9328; Smith, B.E., Rowland, S.J., (2008) Rapid Commun. Mass Spectrom., 22, pp. 3909-3927; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., (2009) Energy Fuels, 23, pp. 2592-2599; Headley, J.V., Peru, K.M., Barrow, M.P., (2009) Mass Spectrom. Rev., 28, pp. 121-134; Baugh, T.D., Wolf, N.O., Mediaas, H., Vindstad, J.E., Grande, K., (2004) Abstr. Pap. Am. Chem. Soc., 228, pp. 172-U172; Smith, B.E., Sutton, P.A., Lewis, C.A., Dunsmore, B., Fowler, G., Krane, J., Lutnaes, B.F., Rowland, S.J., (2007) J. Sep. Sci., 30, pp. 375-380; Smith, D.F., Schaub, T.M., Rahimi, P., Teclemariam, A., Rodgers, R.P., Marshall, A.G., (2007) Energy Fuels, 21, pp. 1309-1316; Da Campo, R., Barrow, M.P., Shepherd, A.G., Salisbury, M., Derrick, P.J., (2009) Energy Fuels, 23, pp. 5544-5549; Zhan, D., Fenn, J.B., (2000) Int. J. Mass Spectrom., 194, pp. 197-208; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., (2001) Energy Fuels, 15, pp. 1505-1511; Stanford, L.A., Kim, S., Rodgers, R.P., Marshall, A.G., (2006) Energy Fuels, 20, pp. 1664-1673; Klein, G.C., Kim, S., Rodgers, R.P., Marshall, A.G., Yen, A., (2006) Energy Fuels, 20, pp. 1973-1979; Teravainen, M.J., Pakarinen, J.M.H., Wickstrom, K., Vainiotalo, P., (2007) Energy Fuels, 21, pp. 266-273; Qian, K., Edwards, K.E., Dechert, G.J., Jaffe, S.B., Green, L.A., Olmstead, W.N., (2008) Anal. Chem., 80, pp. 849-855; Smith, D.F., Schaub, T.M., Kim, S., Rodgers, R.P., Rahimi, P., Teclemariam, A., Marshall, A.G., (2008) Energy Fuels, 22, pp. 2372-2378; Hughey, C.A., Minardi, C.S., Galasso-Roth, S.A., Paspalof, G.B., Mapolelo, M.M., Rodgers, R.P., Marshall, A.G., Ruderman, D.L., (2008) Rapid Commun. Mass Spectrom., 22, pp. 3968-3976; Kim, S., Rodgers, R.P., Blakney, G.T., Hendrickson, C.L., Marshall, A.G., (2009) J. Am. Soc. Mass Spectrom., 20, pp. 263-268; Lo, C.C., Brownlee, B.G., Bunce, N.J., (2003) Anal. Chem., 75, pp. 6394-6400; Mapolelo, M.M., Stanford, L.A., Rodgers, R.P., Yen, A.T., Debord, J.D., Asomaning, S., Marshall, A.G., (2009) Energy Fuels, 23, pp. 349-355; Robb, D.B., Covey, T.R., Bruins, A.P., (2000) Anal. Chem., 72, pp. 3653-3659; Kauppila, T.J., Kotiaho, T., Kostiainen, R., Bruins, A.P., (2004) J. Am. Soc. Mass Spectrom., 15, pp. 203-211; Kauppila, T.J., Kostiainen, R., Bruins, A.P., (2004) Rapid Commun. Mass Spectrom., 18, pp. 808-815; Kauppila, T.J., Bruins, A.P., Kostiainen, R., (2005) J. Am. Soc. Mass Spectrom., 16, pp. 1399-1407; Raffaelli, A., Saba, A., (2003) Mass Spectrom. Rev., 22, pp. 318-331; Purcell, J.M., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., (2006) Anal. Chem., 78, pp. 5906-5912; McKenna, A.M., Purcell, J.M., Rodgers, R.P., Marshall, A.G., (2009) Energy Fuels, 23, pp. 2122-2128; Kauppila, T.J., Ostman, P., Marttila, S., Ketola, R.A., Kotiaho, T., Franssila, S., Kostiainen, R., (2004) Anal. Chem., 76, pp. 6797-6801; Haapala, M., Purcell, J.M., Saarela, V., Franssila, S., Rodgers, R.P., Hendrickson, C.L., Kotiaho, T., Kostiainen, R., (2009) Anal. Chem., 81, pp. 2799-2803; Schaub, T.M., Hendrickson, C.L., Qian, K., Quinn, J.P., Marshall, A.G., (2003) Anal. Chem., 75, pp. 2172-2176; Schaub, T.M., Hendrickson, C.L., Quinn, J.P., Rodgers, R.P., Marshall, A.G., (2005) Anal. Chem., 77, pp. 1317-1324; Müller, H., Andersson, J.T., Schrader, W., (2005) Anal. Chem., 77, pp. 2536-2543; Hughey, C.A., Rodgers, R.P., Marshall, A.G., (2002) Anal. Chem., 74, pp. 4145-4149; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., (2001) Energy Fuels, 15, pp. 1505-1511; Qian, K., Rodgers, R.P., Hendrickson, C.L., Emmett, M.R., Marshall, A.G., (2001) Energy Fuels, 15, pp. 492-498; Wu, Z., Jernstrom, S., Hughey, C.A., Rodgers, R.P., Marshall, A.G., (2003) Energy Fuels, 17, pp. 946-953; Kind, T., Fiehn, O., (2007) BMC Bioinf., 8, p. 105; Hsu, C.S., Qian, K.N., Chen, Y.N.C., (1992) Anal. Chim. Acta, 264, pp. 79-89; Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K., (2001) Anal. Chem., 73, pp. 4676-4681; Stenson, A.C., Marshall, A.G., Cooper, W.T., (2003) Anal. Chem., 75, pp. 1275-1284; Kim, S., Kramer, R.W., Hatcher, P.G., (2003) Anal. Chem., 75, pp. 5336-5344; Wu, Z., Rodgers, R.P., Marshall, A.G., (2004) Anal. Chem., 76, pp. 2511-2516; Wu, Z., Rodgers, R.P., Marshall, A.G., Strohm, J.J., Song, C., (2005) Energy Fuels, 19, pp. 1072-1077; Klein, G.C., Angström, A., Rodgers, R.P., Marshall, A.G., (2006) Energy Fuels, 20, pp. 668-672; Reemtsma, T., These, A., Venkatachari, P., Xia, X., Hopke, P.K., Springer, A., Linscheid, M., (2006) Anal. Chem., 78, pp. 8299-8304; Reemtsma, T., These, A., Springer, A., Linscheid, M., (2006) Environ. Sci. Technol., 40, pp. 5839-5845; Panda, S.K., Schrader, W., Al-Hajji, A., Andersson, J.T., (2007) Energy Fuels, 21, pp. 1071-1077; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., In Analysis of Athabasca Oil Sands Process Water by ESI and APPI Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Proceedings of the 18th International Mass Spectrometry Conference, Bremen, Germany, August 30-September 4, 2009; Rogers, V.V., Liber, K., MacKinnon, M.D., (2002) Chemosphere, 48, pp. 519-527; Korsten, H., (1997) AIChE J., 43, pp. 1559-1568; Pellegrin, V., (1983) J. Chem. Educ., 60, pp. 626-633; Soffer, M.D., (1958) Science, 127, p. 880; Purcell, J.M., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., (2007) J. Am. Soc. Mass Spectrom., 18, pp. 1265-1273},\ncorrespondence_address1={Barrow, M. P.; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; email: M.P.Barrow@warwick.ac.uk},\nissn={00032700},\ncoden={ANCHA},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The Athabasca oil sands in Canada are a less conventional source of oil which have seen rapid development. There are concerns about the environmental impact, with particular respect to components in oil sands process water which may enter the aquatic ecosystem. Naphthenic acids have been previously targeted for study, due to their implications in toxicity toward aquatic wildlife, but it is believed that other components, too, contribute toward the potential toxicity of the oil sands process water. When mass spectrometry is used, it is necessary to use instrumentation with a high resolving power and mass accuracy when studying complex mixtures, but the technique has previously been hindered by the range of compounds that have been accessible via common ionization techniques, such as electrospray ionization. The research described here applied Fourier transform ion cyclotron resonance mass spectrometry in conjunction with electrospray ionization and atmospheric pressure photoionization, in both positive-ion and negative-ion modes, to the characterization of oil sands process water for the first time. The results highlight the need for broader characterization when investigating toxic components within oil sands process water. © 2010 American Chemical Society.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2009\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Characterization of naphthenic acid singly charged noncovalent dimers and their dependence on the accumulation time within a hexapole in fourier transform ion cyclotron resonance mass spectrometry.\n \n \n \n \n\n\n \n Da Campo, R.; Barrow, M.; Shepherd, A.; Salisbury, M.; and Derrick, P.\n\n\n \n\n\n\n Energy and Fuels, 23(11): 5544-5549. 2009.\n cited By 21\n\n\n\n
\n\n\n\n \n \n \"CharacterizationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{DaCampo20095544,\nauthor={Da Campo, R. and Barrow, M.P. and Shepherd, A.G. and Salisbury, M. and Derrick, P.J.},\ntitle={Characterization of naphthenic acid singly charged noncovalent dimers and their dependence on the accumulation time within a hexapole in fourier transform ion cyclotron resonance mass spectrometry},\njournal={Energy and Fuels},\nyear={2009},\nvolume={23},\nnumber={11},\npages={5544-5549},\ndoi={10.1021/ef900594d},\nnote={cited By 21},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-72449175920&doi=10.1021%2fef900594d&partnerID=40&md5=9ca608029c07822622660685363fde5e},\naffiliation={Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom; Shell Global Solutions, Post Office Box 38000, 1030 BN Amsterdam, Netherlands; Shell Global Solutions, Post Office Box 1, Chester CH1 3SH, United Kingdom; Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand},\nabstract={Naphthenic acids are believed to be responsible for a number of unwanted phenomena occurring during the processing and transport of crude oil, such as pipeline corrosion and precipitation of calcium salts. In this paper, Fourier transform ion cyclotron resonance mass spectrometry is used to analyze a mixture of naphthenic acids. Naphthenic acids have been shown to form multimers, and the study of multimer association could lead to a better understanding of naphthenic acid phase behavior in crude oil production systems. The dependence of the signal intensity of such aggregates on the accumulation time within the ion source hexapole has been studied, and it has been highlighted that such a dependence suggests a noncovalent interaction as the primary cause for aggregation. Thiswould account for the decrease in signal intensitywith accumulation time as a result of the increasing chance of undergoing collisional dissociation. The nature, role and behaviour of naphthenic acid dimers may be better understood by the application of mass spectrometry and this has potential to be applied to samples of importance to the oil industry.},\nkeywords={Accumulation time;  Calcium salts;  Collisional dissociation;  Crude oil production;  Fourier transform ion cyclotron resonance mass spectrometry;  Hexapole;  Multimers;  Naphthenic acid;  Non-covalent interaction;  Noncovalent;  Oil industries;  Pipeline corrosion;  Signal intensities, Calcium;  Crude oil;  Cyclotrons;  Dimers;  Electron cyclotron resonance;  Ion sources;  Ions;  Mass spectrometers;  Mass spectrometry;  Organic acids;  Petroleum refineries;  Plasmas;  Resonance;  Salts;  Tissue, Fourier transforms},\nreferences={Qu, D.R., Zheng, Y.G., Jang, X., Ke, W., Correlation between the corrosivity of naphthenic acids and their chemical structures (2007) Anti-Corros. Methods Mater., 54 (4), pp. 211-218; Hsu, C.S., Dechert, G.J., Robbins, W.K., Fukuda, E.K., Naphthenic acids in crude oils characterized by mass spectrometry (2000) Energy Fuels, 14 (1), pp. 217-223; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Fourier transform ion cyclotron resonance mass spectrometry of principal components in oilsands naphthenic acids (2004) J. Chromatogr., A, 1058 (1-2), pp. 51-59; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation (2006) Anal. Chem., 78 (24), pp. 8354-8361; McMartin, D.W., Headley, J.V., Friesen, D.A., Peru, K.M., Gillies, J.A., Photolysis of naphthenic acids in natural surface water (2004) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 39 (6), pp. 1361-1383; Smith, D.F., Schaub, T.M., Rahimi, P., Teclemariam, A., Rodgers, R.P., Marshall, A.G., Self-association of organic acids in petroleum and canadian bitumen characterized by low-and highresolution mass spectrometry (2007) Energy Fuels, 21 (3), pp. 1309-1316; Evdokimov, I.N., Eliseev, N.Y., Akhmetov, B.R., Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy; I. Structure of the absorbance spectrum (2003) J. Pet. Sci. Eng., 37 (3-4), pp. 135-143; Evdokimov, I.N., Eliseev, N.Y., Akhmetov, B.R., Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy; II. Concentration dependencies of absorptivities (2003) J. Pet. Sci. Eng., 37 (3-4), pp. 145-152; Goncalves, S., Castillo, J., Fernandez, A., Hung, J., Absorbance and fluorescence spectroscopy on the aggregation behavior of asphaltene-toluene solutions (2004) Fuel, 83 (13), pp. 1823-1828; Evdokimov, I.N., Eliseev, N.Y., Akhmetov, B.R., Initial stages of asphaltene aggregation in dilute crude oil solutions: Studies of viscosity and NMR relaxation (2003) Fuel, 82 (7), pp. 817-823; Tanaka, R., Sato, E., Hunt, J.E., Winans, R.E., Sato, S., Takanohashi, T., Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering (2004) Energy Fuels, 18 (4), pp. 1118-1125; Qian, K., Edwards, K.E., Dechert, G.J., Jaffe, S.B., Green, L.A., Olmstead, W.N., Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry (2008) Anal. Chem., 80 (3), pp. 849-855; Amster, I.J., Fourier transform mass spectrometry (1996) J. Mass Spectrom, 31 (12), pp. 1325-1337; Barrow, M.P., McDonnell, L.A., Feng, X.D., Walker, J., Derrick, P.J., Determination of the nature of naphthenic acids present in crude oils using nanospray fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion (2003) Anal. Chem., 75 (4), pp. 860-866; Brandal, O., Hanneseth, A.M., Hemmingsen, P.V., Sjoblom, J., Kim, S., Rodgers, R.P., Marshall, A.G., Isolation and characterization of naphthenic acids from a metal naphthenate deposit: Molecular properties at oil-water and air-water interfaces (2006) J. Dispersion Sci. Technol., 27 (3), pp. 295-305; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry: A primer (1998) Mass Spectrom. Rev., 17 (1), pp. 1-35; Scott, A.C., Young, R.F., Fedorak, P.M., Comparison of GC-MS and FTIR methods for quantifying naphthenic acids in water samples (2008) Chemosphere, 73 (8), pp. 1258-1264; Caravatti, P., Allemann, M., The infinity cell;a new trapped ion cell with radio frequency covered trapping electrodes for fourier transform ion cyclotron resonance mass spectrometry (1991) Org. Mass Spectrom, 26 (5), pp. 514-518; Rogers, V.V., Liber, K., MacKinnon, M.D., Isolation and characterization of naphthenic acids from athabasca oil sands tailings pond water (2002) Chemosphere, 48 (5), pp. 519-527; Yen, T.W., Marsh, W.P., MacKinnon, M.D., Fedorak, P.M., Measuring naphthenic acids concentrations in aqueous environmental samples by liquid chromatography (2004) J. Chromatogr., A, 1033 (1), pp. 83-90; Saab, J., Mokbel, I., Razzouk, A.C., Ainous, N., Zydowicz, N., Jose, J., Quantitative extraction procedure of naphthenic acids contained in crude oils. Characterization with different spectroscopic methods (2005) Energy Fuels, 19 (2), pp. 525-531; Hakansson, K., Axelsson, J., Palmblad, M., Hakansson, P., Mechanistic studies of multipole storage assisted dissociation (2000) J. Am. Soc. Mass Spectrom, 11 (3), pp. 210-217; Sannes-Lowery, K., Griffey, R.H., Kruppa, G.H., Speir, J.P., Hofstadler, S.A., Multipole storage assisted dissociation, a novel insource dissociation technique for electrospray ionization generated ions (1998) Rapid Commun. Mass Spectrom, 12 (23), pp. 1957-1961; Kim, S., Kramer, R.W., Hatcher, P.G., Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram (2003) Anal. Chem., 75 (20), pp. 5336-5344; Marshall, A.G., Rodgers, R.P., Petroleomics: The next grand challenge for chemical analysis (2004) Acc. Chem. Res., 37 (1), pp. 53-59},\ncorrespondence_address1={Da Campo, R.; Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom; email: r.da-campo@warwick.ac.uk},\nissn={08870624},\ncoden={ENFUE},\nlanguage={English},\nabbrev_source_title={Energy Fuels},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Naphthenic acids are believed to be responsible for a number of unwanted phenomena occurring during the processing and transport of crude oil, such as pipeline corrosion and precipitation of calcium salts. In this paper, Fourier transform ion cyclotron resonance mass spectrometry is used to analyze a mixture of naphthenic acids. Naphthenic acids have been shown to form multimers, and the study of multimer association could lead to a better understanding of naphthenic acid phase behavior in crude oil production systems. The dependence of the signal intensity of such aggregates on the accumulation time within the ion source hexapole has been studied, and it has been highlighted that such a dependence suggests a noncovalent interaction as the primary cause for aggregation. Thiswould account for the decrease in signal intensitywith accumulation time as a result of the increasing chance of undergoing collisional dissociation. The nature, role and behaviour of naphthenic acid dimers may be better understood by the application of mass spectrometry and this has potential to be applied to samples of importance to the oil industry.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Data visualization for the characterization of naphthenic acids within petroleum samples.\n \n \n \n \n\n\n \n Barrow, M.; Headley, J.; Peru, K.; and Derrick, P.\n\n\n \n\n\n\n Energy and Fuels, 23(5): 2592-2599. 2009.\n cited By 71\n\n\n\n
\n\n\n\n \n \n \"DataPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Barrow20092592,\nauthor={Barrow, M.P. and Headley, J.V. and Peru, K.M. and Derrick, P.J.},\ntitle={Data visualization for the characterization of naphthenic acids within petroleum samples},\njournal={Energy and Fuels},\nyear={2009},\nvolume={23},\nnumber={5},\npages={2592-2599},\ndoi={10.1021/ef800985z},\nnote={cited By 71},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-66149171173&doi=10.1021%2fef800985z&partnerID=40&md5=5814a7cd17e400cc21701ca470c221a1},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate Environment Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada; Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand},\nabstract={Fourier transform ion cyclotron resonance mass spectrometry has made a significant contribution to the characterization of naphthenic acids in petroleum samples. The characterization of naphthenic acids is of particular interest due to their believed involvement in corrosion and deposit formation, as well as their toxicity toward aquatic organisms. Analysis of a complex mixture, such as a petroleum sample, can present challenges in terms of data analysis and visualization. A variety of graphical methods for representing the data are evaluated, and the use of a heat map, a method primarily used within molecular biology, is highlighted. An Athabasca oil sands sample was characterized and compounds of the empirical formula CnH 2n+zOx, where x = 2-5, were observed. The range of oxygen content is of particular relevance in light of other research, which has shown that the total acid number of a petroleum sample is not a reliable method for evaluating the acid content, as not all of the acids are monoprotic. © 2009 American Chemical Society.},\nkeywords={Acid content;  Aquatic organisms;  Athabasca oil sands;  Complex mixture;  Data analysis;  Deposit formation;  Empirical formulas;  Fourier transform ion cyclotron resonance mass spectrometry;  Graphical methods;  Naphthenic acid;  Oxygen content;  Total acid number, Aquaculture;  Biochemistry;  Mass spectrometry;  Molecular biology;  Oil sands;  Organic acids;  Oxygen;  Petroleum research;  Visualization, Data visualization},\nreferences={Headley, J.V., Peru, K.M., Barrow, M.P., (2008) Mass Spectrom. Rey, 28, pp. 121-134; Dzidic, I., Somerville, A.C., Raia, J.C., Hart, H.V., (1988) Anal. Chem, 60, pp. 1318-1323; Fan, T.-P., (1991) Energy Fuels, 5, pp. 371-375; Wong, D.C.L., van Compernolle, R., Nowlin, J.G., O'Neal, D.L., Johnson, G.M., (1996) Chemosvhere, 32, pp. 1669-1679; St. John, W.P., Rughani, J., Green, S.A., McGinnis, G.D., (1998) J. Chromatogr. A, 807, pp. 241-251; Hsu, C.S., Dechert, G.J., Robbins, W.K., Fukuda, E.K., (2000) Energy Fuels, 14, pp. 217-223; Herman, D.C., Fedorak, P.M., Costerton, J.W., (1993) Can. J. Microbiol, 39, pp. 576-580; Davis, J.B., (1967) Petroleum Microbiology, , Elsevier Publishing Co, Amsterdam; Herman, D.C., Fedorak, P.M., MacKinnon, M.D., Costerton, J.W., (1994) Can. J. Microbiol, 40, pp. 467-477; Brient, J.A., (1998) Abstr. Am. Chem. Soc, 215, pp. U119-U119; Turnbull, A., Slavcheva, E., Shone, B., (1998) Corrosion, 54, pp. 922-930; Slavcheva, E., Shone, B., Turnbull, A., (1999) Br. Corros. J, 34, pp. 125-131; Green, J.B., Stierwalt, B.K., Thomson, J.S., Treese, C.A., (1985) Anal. Chem, 57, pp. 2207-2211; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., (2001) Energy Fuels, 15, pp. 1505-1511; Headley, J.V., Peru, K.M., McMartin, D.W., Winkler, M., (2002) J. AOAC Int, 85, pp. 182-187; Rudzinski, W.E., Oehlers, L., Zhang, Y., (2002) Energy Fuels, 16, pp. 1178-1185; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., (2003) Anal. Chem, 75, pp. 860-866; Lo, C.C., Brownlee, B.G., Bunce, N.J., (2003) Anal. Chem, 75, pp. 6394-6400; Kim, S., Stanford, L.A., Rodgers, R.P., Marshall, A.G., Walters, C.C., Qian, K., Wenger, L.M., Mankiewicz, P., (2005) Org. Geochem, 36, pp. 1117-1134; Hemmingsen, P.V., Kim, S., Pettersen, H.E., Rodgers, R.P., Sjoblom, J., Marshall, A.G., (2006) Energy Fuels, 20, pp. 1980-1987; Lo, C.C., Brownlee, B.G., Bunce, N.J., (2006) Water Res, 40, pp. 655-664; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., (2007) Anal. Chem, 79, pp. 6222-6229; Rostad, C.E., Hostettler, F.D., (2007) Environ. Forensics, 8, pp. 129-137; Stanford, L.A., Kim, S., Klein, G.C., Smith, D.F., Rodgers, R.P., Marshall, A.G., (2007) Environ. Sci. Technol, 41, pp. 2696-2702; Teravainen, M.J., Pakarinen, J.M.H., Wickstrom, K., Vainiotalo, P., (2007) Energy Fuels, 21, pp. 266-273; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., (2004) J. Chromatosr. A, 1058, pp. 51-59; Wilm, M., Mann, M., (1996) Anal. Chem, 68, pp. 1-8; Cyr, T.D., Strausz, O.P., (1984) Org. Geochem, 7, pp. 127-140; Strausz, O.P., (1988) J. Am. Chem. Soc, 33, pp. 264-268; Brient, J.A., Wessner, P.J., Doyle, M.N., (1995) Kirk-Othmer Encyclopaedia of Chemical Technology, pp. 1017-1029. , 4th ed, Kroschwitz, J. I, Ed, John Wiley and Sons: New York; Lee, L.E.J., Haberstroh, K., Dixon, D.G., Bols, N.C., (2000) Proceedings of the 27th Annual Aquatic Toxicity Workshop, p. 91. , St. John's, Newfoundland, October 1-4; Rogers, V.V., Wickstrom, M., Liber, K., MacKinnon, M.D., (2002) Toxicol. Sci, 66, pp. 347-355; Leung, S.S., MacKinnon, M.D., Smith, R.E.H., (2003) Aquat. Toxicol, 62, pp. 11-26; Clemente, J.S., Fedorak, P.M., (2005) Chemosvhere, 60, pp. 585-600; Nero, V., Farwell, A., Lee, L.E.J., Van Meer, T., MacKinnon, M.D., Dixon, D.G., (2006) Ecotoxicol. Environ. Safe, 65, pp. 252-264; Holowenko, F.M., MacKinnon, M.D., Fedorak, P.M., (2002) Water Res, 36, pp. 2843-2855; Dokholyan, V.K., Magomedov, A.K., (1983) J. Ichthyol, 23, pp. 125-132; MacKinnon, M.D., Boerger, H., (1986) Water Pollut. Res. J. Can, 21, pp. 496-512; Rogers, V.V., Liber, K., MacKinnon, M.D., (2002) Chemosphere, 48, pp. 519-527; Providenti, M.A., Lee, H., Trevors, J.T., (1993) J. Ind. Microbiol, 12, pp. 379-395; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., (2006) Anal. Chem, 78, pp. 8354-8361; Amster, I.J., (1996) J. Mass Spectrom, 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev, 17, pp. 1-35; Barrow, M.P., Burkitt, W.I., Derrick, P.J., (2005) Analyst, 130, pp. 18-28; Wu, Z.G., Jernstrom, S., Hughey, C.A., Rodgers, R.P., Marshall, A.G., (2003) Energy Fuels, 17, pp. 946-953; Schaub, T.M., Hendrickson, C.L., Horning, S., Quinn, J.P., Senko, M.W., Marshall, A.G., (2008) Anal. Chem, 80, pp. 3985-3990; Han, J., Danell, R.M., Patel, J.R., Gumerov, D.R., Scarlett, C.O., Speir, J.P., Parker, C.E., Borchers, C.H., (2008) Metabolomics, 4, pp. 128-140; Armstrong, S.A., Headley, J.V., Peru, K.M., Germinda, J.J., (2008) J. Environ. Sci. Health A, 43, pp. 36-42; Palmblad, M., Hakansson, K., Hakansson, P., Feng, X., Cooper, H.J., Giannakopulos, A.E., Green, P.S., Derrick, P.J., (2000) Eur. J. Mass Svectrom, 6, pp. 267-275; Caravatti, P., Allemann, M., (1991) Ore. Mass Svectrom, 26, pp. 514-518; Pearson, K., (1901) Philos. Mag, 2, pp. 559-572; Hotelling, H., (1933) J. Educ. Psych, 24, pp. 417-520; Kendrick, E., (1963) Anal. Chem, 35, pp. 2146-2154; Hsu, C.S., Qian, K.N., Chen, Y.N.C., (1992) Anal. Chim. Acta, 264, pp. 79-89; Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K.N., (2001) Anal. Chem, 73, pp. 4676-4681; Wu, Z.G., Rodgers, R.P., Marshall, A.G., (2004) Anal. Chem, 76, pp. 2511-2516; van Krevelen, D.W., (1950) Fuel, 29, pp. 269-284; Kim, S., Kramer, R.W., Hatcher, P.G., (2003) Anal Chem, 75, pp. 5336-5344; Fu, J., Klein, G.C., Smith, D.F., Kim, S., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., (2006) Energy Fuels, 20, pp. 1235-1241; Stanford, L.A., Kim, S., Rodgers, R.P., Marshall, A.G., (2006) Energy Fuels, 20, pp. 1664-1673; Panda, S.K., Andersson, J.T., Schrader, W., (2007) Anal. Bioanal. Chem, 389, pp. 1329-1339; Purcell, J.M., Juyal, P., Kim, D.G., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., (2007) Energy Fuels, 21, pp. 2869-2874; Baugh, T.D., Wolf, N.O., Mediaas, H., Vindstad, J.E., Grande, K., (2004) Prevr. Am. Chem. Soc., Div. Pet. Chem, 49, pp. 274-276},\ncorrespondence_address1={Barrow, M. P.; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: M.P.Barrow@warwick.ac.uk},\nissn={08870624},\ncoden={ENFUE},\nlanguage={English},\nabbrev_source_title={Energy Fuels},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Fourier transform ion cyclotron resonance mass spectrometry has made a significant contribution to the characterization of naphthenic acids in petroleum samples. The characterization of naphthenic acids is of particular interest due to their believed involvement in corrosion and deposit formation, as well as their toxicity toward aquatic organisms. Analysis of a complex mixture, such as a petroleum sample, can present challenges in terms of data analysis and visualization. A variety of graphical methods for representing the data are evaluated, and the use of a heat map, a method primarily used within molecular biology, is highlighted. An Athabasca oil sands sample was characterized and compounds of the empirical formula CnH 2n+zOx, where x = 2-5, were observed. The range of oxygen content is of particular relevance in light of other research, which has shown that the total acid number of a petroleum sample is not a reliable method for evaluating the acid content, as not all of the acids are monoprotic. © 2009 American Chemical Society.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Mass spectrometric characterization of naphthenic acids in environmental samples: A review.\n \n \n \n \n\n\n \n Headley, J.; Peru, K.; and Barrow, M.\n\n\n \n\n\n\n Mass Spectrometry Reviews, 28(1): 121-134. 2009.\n cited By 116\n\n\n\n
\n\n\n\n \n \n \"MassPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Headley2009121,\nauthor={Headley, J.V. and Peru, K.M. and Barrow, M.P.},\ntitle={Mass spectrometric characterization of naphthenic acids in environmental samples: A review},\njournal={Mass Spectrometry Reviews},\nyear={2009},\nvolume={28},\nnumber={1},\npages={121-134},\ndoi={10.1002/mas.20185},\nnote={cited By 116},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-59149092891&doi=10.1002%2fmas.20185&partnerID=40&md5=16277e5cec832e61ed3c522ee9421f33},\naffiliation={Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Environment Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom},\nabstract={There is a growing need to develop mass spectrometric methods for the characterization of oil sands naphthenic acids (structural formulae described by CnH2n+zO2 where n is the number of carbon atoms and "z" is referred to as the "hydrogen deficiency" and is equal to zero, or is a negative, even integer) present in environmental samples. This interest stems from the need to better understand their contribution to the total acid number of oil sands acids; along with assessing their toxicity in aquatic environments. Negative-ion electrospray ionization has emerged as the analytical technique of choice. For infusion samples, matrix effects are particularly evident for quantification in the presence of salts and coelutants. However, such effects can be minimized for methods that employ chromatographic separation prior to mass spectrometry (MS) detection. There have been several advances for accurate identification of classes of naphthenic acid components that employ a range of MS hyphenated techniques. General trends measured for degradation of the NAs in the environment appear to be similar to those obtained with either low- or high-resolution MS. Future MS research will likely focus on (i) development of more reliable quantitative methods that use chromatography and internal standards, (ii) the utility of representative model naphthenic acids as surrogates for the complex NA mixtures, and (iii) development of congener-specific analysis of the principal toxic components. © 2008 Wiley Periodicals, Inc.},\nauthor_keywords={Characterization;  Environment;  Mass spectrometry;  Naphthenic acids;  Oil sands},\nkeywords={Chromatographic analysis;  Electrospray ionization;  High performance liquid chromatography;  High pressure liquid chromatography;  Hydrogen;  Liquid chromatography;  Mass spectrometers;  Mass spectrometry;  Oil sands;  Organic acids;  Principal component analysis;  Sand;  Spectrometers;  Spectrometry;  Spectrum analysis;  Standardization, Analytical techniques;  Aquatic environments;  Carbon atoms;  Characterization;  Chromatographic separations;  Environment;  Environmental samples;  General trends;  High resolutions;  Hyphenated techniques;  Internal standards;  Ion electrospray ionizations;  Matrix effects;  Naphthenic acids;  Quantitative methods;  Spectrometric methods;  Structural formulae;  Total acid numbers;  Toxic components, Acids, carboxylic acid;  naphthenic acid;  petroleum;  silicon dioxide;  unclassified drug, chemistry;  electrospray mass spectrometry;  environmental monitoring;  methodology;  review;  water pollutant, Carboxylic Acids;  Environmental Monitoring;  Petroleum;  Silicon Dioxide;  Spectrometry, Mass, Electrospray Ionization;  Water Pollutants, Chemical},\nchemicals_cas={petroleum, 8002-05-9; silicon dioxide, 10279-57-9, 14464-46-1, 14808-60-7, 15468-32-3, 60676-86-0, 7631-86-9; Carboxylic Acids; Petroleum; Silicon Dioxide, 7631-86-9; Water Pollutants, Chemical; naphthenic acid, 1338-24-5},\nreferences={Amster, I.J., Fourier transform mass spectrometry (1996) J Mass Spectrom, 31, pp. 1325-1337; Barrow, M.P., Burkitt, W.I., Derrick, P.J., Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology (2005) Analyst, 130, pp. 18-28; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Fourier transform ion cyclotron resonance mass spectrometry of principal components in oil sands naphthenic acids (2004) J Chromatogr A, 1058, pp. 51-59; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion (2003) Anal Chem, 75, pp. 860-866; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation (2006) Anal Chem, 78, pp. 8354-8361; Brient, J.A., Wessner, P.J., Doyle, M.N., Naphthenic acids (1995) Kirk-othmer encyclopaedia of chemical technology, pp. 1017-1029. , Kroschwitz JI, editor, New York: John Wiley and Sons. pp; Clemente, J.S., Fedorak, P.M., A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids (2005) Chemosphere, 60, pp. 585-600; Clemente, J.S., Prasad, N.G.N., MacKinnon, M.D., Fedorak, P.M., A statistical comparison of naphthenic acids characterized by gas chromatography-mass spectrometry (2003) Chemosphere, 50, pp. 1265-1274; Cyr, T.D., Strausz, O.P., Bound carboxylic acids in the Alberta oil sands (1984) Org Geochem, 7, pp. 127-140; Davis, J.B., (1967) Petroleum microbiology, , Amsterdam: Elsevier Publishing Company; de Campos, M.C.V., Oliveira, E.C., Sanches, P.J., Piatnicki, C.M.S., Caramao, E.B., Analysis of tert-butyldimethylsilyl derivatives in heavy gas oil from brazilian naphthenic acids by gas chromatography coupled to mass spectrometry with electron impact ionization (2006) J Chromatogr A, 1105, pp. 95-105; Dokholyan, V.K., Magomedov, A.K., Effects of sodium naphthenate on survival and some physiological-biochemical parameters of some fishes (1983) J Ichthyol, 23, pp. 125-132; Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., Alice, M.B., Molecular beams of macroions (1968) J Chem Phys, 49, pp. 2240-2249; Dutta, T.K., Harayama, S., Time-of-flight mass spectrometric analysis of high-molecular-weight alkanes in crude oil by silver nitrate chemical ionization after laser desorption (2001) Anal Chem, 73, pp. 864-869; Dzidic, I., Somerville, A.C., Raia, J.C., Hart, H.V., Determination of naphthenic acids in California crudes and refinery wastewaters by fluoride ion chemical ionization mass spectrometry (1988) Anal Chem, 60, pp. 1318-1323; Fan, T.-P., Characterization of naphthenic acids in petroleum by fast atom bombardment mass spectrometry (1991) Energy Fuels, 5, pp. 371-375; Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., Electrospray ionization for mass spectrometry of large biomolecules (1989) Science, 246, pp. 64-71; Green, J.B., Stierwalt, B.K., Thomson, J.S., Treese, C.A., Rapid isolation of carboxylic acids from, petroleum using high-performance liquid chromatography (1985) Anal Chem, 57, pp. 2207-2211; Hao, C.Y., Headley, J.V., Peru, K.M., Frank, R., Yang, P., Solomon, K.R., Characterization and pattern recognition of oil-sand naphthenic acids using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (2005) J Chromatogr A, 1067, pp. 277-284; Headley, J.V., MeMartin, D., A review of the occurrence and fate of naphthenic acids in aquatic environments (2004) Environ Sci Health, A39 (8), pp. 1989-2010; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., Characterization of naphthenic acids from athabasca oil sands using electrospray ionization: The significant influence of solvents (2007) Anal Chem, 79, pp. 6222-6229; Headley, J.V., Peru, K.M., McMartin, D.W., Winkler, M., Determination of dissolved naphthenic acids in natural waters by using negative-ion electrospray mass spectrometry (2002) J AOAC Int, 85, pp. 182-187; Headley, J.V., Tanapat, S., Putz, G., Peru, K.M., Biodegradation kinetics of geometric isomers of model naphthenic acids in Athabasca River water (2002) Can Water Res J, 27, pp. 25-42; Hemmingsen, P.V., Kim, S., Pettersen, H.E., Rodgers, R.P., Sjoblom, J., Marshall, A.G., Structural characterization and interfacial behavior of acidic compounds extracted from a North Sea oil (2006) Energy Fuels, 20, pp. 1980-1987; Herman, D.C., Fedorak, P.M., MacKinnon, M.D., Costerton, J.W., Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings (1994) Can J Microbiol, 40, pp. 467-477; Holowenko, F.M., MacKinnon, M.D., Fedorak, P.M., Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry (2002) Water Res, 36, pp. 2843-2855; Hsu, C.S., Dechert, G.J., Robbins, W.K., Fukuda, E.K., Naphthenic acids in crude oils characterized by mass spectrometry (2000) Energy Fuels, 14, pp. 217-223; Hsu, C.S., McLean, M.A., Qian, K., Aczel, T., Blum, S.C., Olmstead, W.N., Kaplan, L.H., Schulz, W.W., On-line liquid chromatography/mass spectrometry for heavy hydrocarbon characterization (1991) Energy Fuels, 5, pp. 395-398; Hsu, C.S., Qian, K.N., Chen, Y.N.C., An innovative approach to data-analysis in hydrocarbon characterization by online liquid-chromatography mass-spectrometry (1992) Anal Chim. Acta, 264, pp. 79-89; Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K.N., Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra (2001) Anal Chem, 73, pp. 4676-4681; Janfada, A., Headley, J.V., Peru, K.M., Barbour, S.L., A laboratory evaluation of the sorption of oil sands naphthenic acids on organic rich soils (2006) J Environ Sci Health, Part A, 41, pp. 985-997; Kendrick, E., A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds (1963) Anal Chem, 35, pp. 2146-2154; Kim, S., Kramer, R.W., Hatcher, P.G., Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural, organic matter, the van Krevelen diagram (2003) Anal Chem, 75, pp. 5336-5344; Kim, S., Stanford, L.A., Rodgers, R.P., Marshall, A.G., Walters, C.C., Qian, K., Wenger, L.M., Mankiewicz, P., Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry (2005) Org Geochem, 36, pp. 1117-1134; Lai, J.W.S., Pinto, L.J., Kiehlmann, E., Bendell-Young, L.I., Moore, M.M., Factors that affect the degradation of naphthenic acids in oil sands wastewater by indigenous microbial communities (1996) Environ Toxicol Chem, 15, pp. 1482-1491; Laredo, G.C., Lopez, C.R., Alvarez, R.E., Castillo, J.J., Cano, J.L., Identification of naphthenic acids and other corrosivity-related characteristics in crude oil and vacuum gas oils from a Mexican refinery (2004) Energy Fuels, 18, pp. 1687-1694; Lo, C.C., Brownlee, B.G., Bunce, N.J., Electrospray-mass spectrometric analysis of reference carboxylic acids and athabasca oil sands naphthenic acids (2003) Anal Chem, 75, pp. 6394-6400; Lo, C.C., Brownlee, B.G., Bunce, N.J., Mass spectrometric and toxicological assays of Athabasca oil sands naphthenic acids (2006) Water Res, 40, pp. 655-664; MacKinnon, M.D., Boerger, H., Description of two treatment methods for detoxifying oil sands tailings pond water (1986) Water Poll Res J Can, 21, pp. 496-512; Electrospray mass spectrometry (1992) Mass spectrometry in the biological sciences: A tutorial, , Mann M, editor, Netherlands: Kluwer Academic Publishers; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry: A primer (1998) Mass Spectrom Rev, 17, pp. 1-35; Meija, J., Mathematical tools in analytical mass spectrometry (2006) Anal Bioanal Chem, 385, pp. 486-499; Meredith, W., Kelland, S.-J., Jones, D.M., Influence of biodegradation on crude oil acidity and carboxylic acid composition (2000) Org Geochem, 31, pp. 1059-1073; Merlin, M., Guigard, S.E., Fedorak, P.M., Detecting naphthenic acids in waters by gas chromatography-mass spectrometry (2007) J Chromatogr A, 1140, pp. 225-229; Providenti, M.A., Lee, H., Trevors, J.T., Selected factors limiting the microbial degradation of recalcitrant compounds (1993) J Ind Microbiol, 12, pp. 379-395; Qian, K., Edwards, K.E., Dechert, G.J., Jaffe, S.B., Green, L.A., Olmstead, W.N., Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry (2008) Anal. Chem, 80 (3), pp. 849-855; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field fourier transform ion cyclotron resonance mass spectrometry (2001) Energy Fuels, 15, pp. 1505-1511; Quagraine, E.K., Peterson, H.G., Headley, J.V., In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region-demonstrated field studies and plausible options: A review (2005) J Environ Sci Health Part A, 40, pp. 685-722; Rockhold, W., Toxicity of naphthenic acids and their metal salts (1955) AMA Arch Ind Health, 12, pp. 477-482; Rogers, V.V., Liber, K., MacKinnon, M.D., Isolation and characterization of naphthenic acids from Athabasca Oil Sands tailings pond water (2002) Chemosphere, 48, pp. 519-527; Rogers, V.V., Wickstrom, M., Liber, K., MacKinnon, M.D., Acute and subchronic mammalian toxicity of naphthenic acids from oil sands tailings (2002) Toxicol Sci, 66, pp. 347-355; Rostad, C.E., Hostettler, F.D., Profiling refined hydrocarbon fuels using polar components (2007) Environ Forensics, 8, pp. 129-137; Roussis, S.G., Exhaustive determination of hydrocarbon compound type distributions by high resolution mass spectrometry (1999) Rapid Commun Mass Spectrom, 13, pp. 1031-1051; Rudzinski, W.E., Oehlers, L., Zhang, Y., Tandem mass spectrometric characterization of commercial naphthenic acids and a Maya crude oil (2002) Energy Fuels, 16, pp. 1178-1185; Smith, B.E., Sutton, P.A., Lewis, C.A., Dunsmore, B., Fowler, G., Krane, J., Lutnaes, B.F., Rowland, S.J., Analysis of 'ARN' naphthenic acids by high temperature gas chromatoagraphy and high performance liquid chromatography (2007) J Sep Sci, 30, pp. 375-380; St. John, W.P., Rughani, J., Green, S.A., McGinnis, G.D., Analysis and characterization of naphthenic acids by gas chromatography-electron impact mass spectrometry of tert-butyldimethylsilyl derivatives (1998) J Chromatogr A, 807, pp. 241-251; Stanford, L.A., Kim, S., Rodgers, R.P., Marshall, A.G., Characterization of compositional changes in vacuum gas oil distillation cuts by electrospray ionization Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (2006) Energy Fuels, 20, pp. 1664-1673; Stanford, L.A., Kim, S., Klein, G.C., Smith, D.F., Rodgers, R.P., Marshall, A.G., Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (2007) Environ Sci Technol, 41, pp. 2696-2702; Strausz, O.P., Structural investigations of Alberta oil sand bitumens (1988) J Am Chem Soc, 33, pp. 264-268; Teravainen, M.J., Pakarinen, J.M.H., Wickstrom, K., Vainiotalo, P., Comparison of the composition of Russian and North Sea crude oils and their eight distillation fractions studied by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry: The effect of suppression (2007) Energy Fuels, 21, pp. 266-273; van Krevelen, D.W., Graphical-statistical method for the study of structure and reaction processes of coal (1950) Fuel, 29, pp. 269-284; Wong, D.C.L., van Compernolle, R., Nowlin, J.G., O'Neal, D.L., Johnson, G.M., Use of supercritical fluid extraction and fast ion bombardment mass spectrometry to identify toxic chemicals from a refinery effluent adsorbed onto granular activated carbon (1996) Chemosphere, 32, pp. 1669-1679; Wu, Z.G., Rodgers, R.P., Marshall, A.G., Two- and three-dimensional van Krevelen diagrams: A graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements (2004) Anal Chem, 76, pp. 2511-2516; Yamashita, M., Fenn, J.B., Electrospray ion source. Another variation on the free-jet theme (1984) J Phys Chem, 88, pp. 4451-4459; Yamashita, M., Fenn, J.B., Negative ion production with the electrospray source (1984) J Phys Chem, 88, pp. 4671-4675},\ncorrespondence_address1={Headley, J. V.; Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Environment Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada; email: john.headley@ec.gc.ca},\nissn={02777037},\ncoden={MSRVD},\npubmed_id={18677766},\nlanguage={English},\nabbrev_source_title={Mass Spectrom Rev},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n There is a growing need to develop mass spectrometric methods for the characterization of oil sands naphthenic acids (structural formulae described by CnH2n+zO2 where n is the number of carbon atoms and \"z\" is referred to as the \"hydrogen deficiency\" and is equal to zero, or is a negative, even integer) present in environmental samples. This interest stems from the need to better understand their contribution to the total acid number of oil sands acids; along with assessing their toxicity in aquatic environments. Negative-ion electrospray ionization has emerged as the analytical technique of choice. For infusion samples, matrix effects are particularly evident for quantification in the presence of salts and coelutants. However, such effects can be minimized for methods that employ chromatographic separation prior to mass spectrometry (MS) detection. There have been several advances for accurate identification of classes of naphthenic acid components that employ a range of MS hyphenated techniques. General trends measured for degradation of the NAs in the environment appear to be similar to those obtained with either low- or high-resolution MS. Future MS research will likely focus on (i) development of more reliable quantitative methods that use chromatography and internal standards, (ii) the utility of representative model naphthenic acids as surrogates for the complex NA mixtures, and (iii) development of congener-specific analysis of the principal toxic components. © 2008 Wiley Periodicals, Inc.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2008\n \n \n (1)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Electrospray ionisation source incorporating electrodynamic ion focusing and conveying.\n \n \n \n \n\n\n \n Colburn, A.; Barrow, M.; Gill, M.; Giannakopulos, A.; and Derrick, P.\n\n\n \n\n\n\n 2008.\n cited By 3\n\n\n\n
\n\n\n\n \n \n \"ElectrosprayPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@CONFERENCE{Colburn200851,\nauthor={Colburn, A.W. and Barrow, M.P. and Gill, M.C. and Giannakopulos, A.E. and Derrick, P.J.},\ntitle={Electrospray ionisation source incorporating electrodynamic ion focusing and conveying},\njournal={Physics Procedia},\nyear={2008},\nvolume={1},\nnumber={1},\npages={51-60},\ndoi={10.1016/j.phpro.2008.07.077},\nnote={cited By 3},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-54149115535&doi=10.1016%2fj.phpro.2008.07.077&partnerID=40&md5=c7640f9a462be5b4e90f94b2b46e8f8b},\naffiliation={Institute of Mass Spectrometry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom},\nabstract={The control and transmission of charged entities in the intermediate to high pressure regime is of primary importance in areas such as atmospheric pressure ionisation. In an electrospray ionisation source where small apertures separate differentially pumped vacuum regions in the inlet systems to mass spectrometers, a large proportion of the available ion current is lost to the surrounding electrode structures. A new electrospray ionisation source, incorporating electrodynamic focusing and conveying of charged entities in two vacuum regions is described. The new source design incorporates ion accumulation and pulsed extraction to allow application in techniques such as Fourier Transform Ion Cyclotron Resonance and orthogonal time-of-flight where a pulsed ion source in required. The design of the new source is described and preliminary experimental results using an orthogonal time-of-flight configuration are presented. © 2008 Elsevier B.V. All rights reserved.},\nauthor_keywords={Electrodynamic ion focusing;  Electrospray ionisation source;  Mass spectrometer},\nreferences={Yamashita, M., Fenn, J.B., Electrospray Ionization Mass Spectrometry Electrospray Ion Source. Another Variation on the Free-Jet Theme (1984) J. Phys. Chem, 88, p. 4451; Whitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B., Electrospray Interface for Liquid Chromatographs and Mass Spectrometers (1985) Anal. Chem, 57, p. 675; Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., Fenn, J.B., Electrospray Ionization for Mass Spectrometry of Large (1989) Biomolecules, Science, 246, p. 64; Hunt, S.M., Sheil, M.M., Belov, M., Derrick, P.J., Probing the Effects of Cone Potential in the Electrospray Ion Source: Consequences for the Determination of Molecular Weight Distributions of Synthetic Polymers (1998) Anal. Chem, 70, p. 1812; Cole, R.B., (1997) Electrospray Ionisation Mass Spectrometry: Fundamentals, Instrumentation & Applications, , Wiley, New York; Zhang, Y., Development of Electrospray Ionization of Biomolecules on a Magnetic Sector Mass Spectrometer (2002), Ph.D. thesis, University of Warwick, UK; Gerlich, D., Inhomogeneous Fields: A Versatile Tool for the Study of Processes with Slow Ions (1992) Advances in Chemical Physics Series, 82; Dynin, E.A., Kirchner, N.J., Ion Processing: Towards a Massively Parallel Mass Spectrometer (1995) 43rd ASMS Conference on Mass Spectrometry and Allied Topics, , Atlanta, Georgia; Shaffer, S.A., Tang, K., Anderson, G.A., Prior, D.C., Udseth, H.R., Smith, R.D., A Novel Ion Funnel for Focusing Ions at Elevated Pressure Using Electrospray Ionization Mass Spectrometry (1997) Rapid Commun. Mass Spectrom, 11, p. 1813; Shaffer, S.A., Prior, D.C., Anderson, G.A., Udseth, H.R., Smith, R.D., An Ion Funnel Interface for Improved Ion Focusing and Sensitivity Using Electrospray Ionization Mass Spectrometry (1998) Anal. Chem, 70, p. 4111; Paul, W., Steinwedel, H., A new mass spectrometer without magnetic field (1953) Z. Naturforch, 8 a, pp. 448-450; Kim, T., Tolmachev, A.V., Harkewicz, R., Prior, D.C., Anderson, G.A., Udseth, H.R., Smith, R.D., Design and Implementation of a New Electrodynamic Ion Funnel (2000) Anal. Chem, 72, p. 2247; Belov, M.E., Gorshkov, M.V., Udseth, H.R., Anderson, G.A., Smith, R.D., Zeptomole-Sensitivity Electrospray Ionisation - Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Proteins (2000) Anal. Chem, 72, p. 2271; Colburn, A.W., Giannakopulos, A.E., Derrick, P.J., The Ion Conveyor. An Ion Focusing and Conveying Device (2004) Eur. J. Mass Spectrom, 10, p. 149; D. A. Dahl, SIMION 3D Version 7.0, Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics, Atlanta, Georgia (1995) 717; Belov, M.E., Colburn, A.W., Derrick, P.J., Design and performance of an electrospray ion source for magnetic-sector mass spectrometers (1997) Rev. Sci. Instum, 69, p. 1275},\ncorrespondence_address1={Colburn, A. W.; Institute of Mass Spectrometry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; email: a.w.colburn@warwick.ac.uk},\nissn={18753884},\nlanguage={English},\nabbrev_source_title={Phys. Procedia},\ndocument_type={Conference Paper},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The control and transmission of charged entities in the intermediate to high pressure regime is of primary importance in areas such as atmospheric pressure ionisation. In an electrospray ionisation source where small apertures separate differentially pumped vacuum regions in the inlet systems to mass spectrometers, a large proportion of the available ion current is lost to the surrounding electrode structures. A new electrospray ionisation source, incorporating electrodynamic focusing and conveying of charged entities in two vacuum regions is described. The new source design incorporates ion accumulation and pulsed extraction to allow application in techniques such as Fourier Transform Ion Cyclotron Resonance and orthogonal time-of-flight where a pulsed ion source in required. The design of the new source is described and preliminary experimental results using an orthogonal time-of-flight configuration are presented. © 2008 Elsevier B.V. All rights reserved.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2007\n \n \n (1)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Characterization of naphthenic acids from athabasca oil sands using electrospray ionization: The significant influence of solvents.\n \n \n \n \n\n\n \n Headley, J.; Peru, K.; Barrow, M.; and Derrick, P.\n\n\n \n\n\n\n Analytical Chemistry, 79(16): 6222-6229. 2007.\n cited By 69\n\n\n\n
\n\n\n\n \n \n \"CharacterizationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Headley20076222,\nauthor={Headley, J.V. and Peru, K.M. and Barrow, M.P. and Derrick, P.J.},\ntitle={Characterization of naphthenic acids from athabasca oil sands using electrospray ionization: The significant influence of solvents},\njournal={Analytical Chemistry},\nyear={2007},\nvolume={79},\nnumber={16},\npages={6222-6229},\ndoi={10.1021/ac070905w},\nnote={cited By 69},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-34548029760&doi=10.1021%2fac070905w&partnerID=40&md5=c35128f009391ab64a40236882430788},\naffiliation={Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Environment Canada, 11 Innovation Boulevard, Saskatoon, Sask. S7N 3H5, Canada; Institute of Mass Spectrometry, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={There is a need to develop routine and rugged methods for the characterization of oil sands naphthenic acids present in natural waters and contaminated soils. Mass spectra of naphthenic acids, obtained using a variant of electrospray ionization coupled with a Fourier transform ion cyclotron resonance mass spectrometer, are shown here to vary greatly, reflecting their dependence on solubilities of the acids in organic solvents. The solubilities of components in, for example, 1-octanol (similar solvent to fatty tissue) compared to polar solvents such as methanol or acetonitrile are used here as a surrogate to indicate the more bioavailable or toxic components of naphthenic acids in natural waters. Monocarboxylic compounds (CnH 2n+zO2) in the z = -4, -6, and -12 (2-, 3-, and 6-ring naphthenic acids, respectively) family in the carbon number range of 13-19 were prevalent in all solvent systems. The surrogate method is intended to serve as a guide in the isolation of principle toxic components, which in turn supports efforts to remediate oil sands contaminated soils and groundwater. © 2007 American Chemical Society.},\nkeywords={Athabasca oil sands;  Cyclotron resonance mass spectrometers;  Naphthenic acids;  Toxic components, Characterization;  Cyclotron resonance;  Derivatives;  Electrospray ionization;  Naphthalene;  Sandstone, Paraffins, acetonitrile;  carboxylic acid;  ground water;  methanol;  naphthenic acid;  octanol;  organic solvent;  petroleum;  solvent;  unclassified drug, article;  electrospray mass spectrometry;  ion cyclotron resonance mass spectrometry;  oil sand;  sand;  soil pollution;  solubility;  water contamination, Carboxylic Acids;  Petroleum;  Silicon Dioxide;  Soil Pollutants;  Solubility;  Solvents;  Spectrometry, Mass, Electrospray Ionization;  Water Pollutants, Chemical},\nchemicals_cas={acetonitrile, 75-05-8; methanol, 67-56-1; octanol, 111-87-5, 29063-28-3; petroleum, 8002-05-9; Carboxylic Acids; Petroleum; Silicon Dioxide, 7631-86-9; Soil Pollutants; Solvents; Water Pollutants, Chemical; naphthenic acid, 1338-24-5},\nreferences={Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., (2003) Anal. Chem, 75, pp. 860-866; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., (2004) J. Chromatogr., A, 1058, pp. 51-59; Dzidic, I., Somerville, A.C., Raia, J.C., Hart, H.V., (1988) Anal. Chem, 60, pp. 1318-1323; Fan, T.-P., (1991) Energy Fuels, 5, pp. 371-375; Wong, D.C.L., van Compernolle, R., Nowlin, J.G., O'Neal, D.L., Johnson, G.M., (1996) Chemosphere, 32, pp. 1669-1679; St. John, W.P., Rughani, J., Green, S.A., McGinnis, G.D., (1998) J. Chromatogr., A, 807, pp. 241-251; Hsu, C.S., Dechert, G.J., Robbins, W.K., Fukuda, E.K., (2000) Energy Fuels, 14, pp. 217-223; Herman, D.C., Fedorak, P.M., Costerton, J.W., (1993) Can. J. Microbiol, 39, pp. 576-580; Davis, J.B., (1967) Petroleum Microbiology, , Elsevier Publishing Co, Amsterdam; Herman, D.C., Fedorak, P.M., MacKinnon, M.D., Costerton, J.W., (1994) Can. J. Microbiol, 40, pp. 467-477; Seifert, W.K., Teeter, R.M., (1970) Anal. Chem, 42, pp. 750-758; Clemente, J.S., Prasad, N.G.N., MacKinnon, M.D., Fedorak, P.M., (2003) Chemosphere, 50, pp. 1265-1274; Meredith, W., Kelland, S.-J., Jones, D.M., (2000) Org. Geochem, 31, pp. 1059-1073; Headley, J.V., Tanapat, S., Putz, G., Peru, K.M., (2002) Can. Water Res. J, 27, pp. 25-42; Koike, L., Reboucas, L.M.C., Reis, F.A.M., Marsaioli, A.J., Richnow, H.H., Michaelis, W., (1992) Org. Geochem, 18, pp. 851-860; Green, J.B., Stierwalt, B.K., Thomson, J.S., Treese, C.A., (1985) Anal. Chem, 57, pp. 2207-2211; Dutta, T.K., Harayama, S., (2000) Environ. Sci. Technol, 34, pp. 1500-1505; Grzechulska, J., Hamerski, M., Morawski, A.W., (2000) Water Res, 34, pp. 1638-1644; Cyr, T.D., Strausz, O.P., (1984) Org. Geochem, 7, pp. 127-140; Strausz, O.P., (1988) J. Am. Chem. Soc, 33, pp. 264-268; Brient, J.A., Wessner, P.J., Doyle, M.N., (1995) Kirk-Othmer Encyclopaedia of Chemical Technology, pp. 1017-1029. , 4th ed, Kroschwitz, J. I, Ed, John Wiley and Sons: New York; Providenti, M.A., Lee, H., Trevors, J.T., (1993) J. Ind. Microbiol, 12, pp. 379-395; Holowenko, F.M., MacKinnon, M.D., Fedorak, P.M., (2002) Water Res, 36, pp. 2843-2855; Dokholyan, V.K., Magomedov, A.K., (1983) J. Ichthyol, 23, pp. 125-132; MacKinnon, M.D., Boerger, H., (1986) Water Pollut. Res. J. Can, 21, pp. 496-512; Rogers, V.V., Liber, K., MacKinnon, M.D., (2002) Chemosphere, 48, pp. 519-527; Rogers, V.V., Wickstrom, M., Liber, K., MacKinnon, M.D., (2002) Toxicol. Sci, 66, pp. 347-355; Rockhold, W., (1955) AMA Arch. Ind. Health, 12, pp. 477-482; Lai, J.W.S., Pinto, L.J., Kiehlmann, E., Bendell-Young, L.I., Moore, M.M., (1996) Environ. Toxicol. Chem, 15, pp. 1482-1491; Hsu, C.S., McLean, M.A., Qian, K., Aczel, T., Blum, S.C., Olmstead, W.N., Kaplan, L.H., Schulz, W.W., (1991) Energy Fuels, 5, pp. 395-398; Miyabayashi, K., Suzuki, K., Teranishi, T., Naito, Y., Tsujimoto, K., Miyake, M., (2000) Chem. Lett, pp. 172-173; Miyabayashi, K., Yasuhide, N., Miyake, M., Tsujimoto, K., (2000) Eur. J. Mass Spectrom, 6, pp. 251-258; Zhan, D., Fenn, J.B., (2000) Int. J. Mass Spectrom, 194, pp. 197-208; Amster, I.J., (1996) J. Mass Spectrom, 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev, 17, pp. 1-35; Barrow, M.P., Burkitt, W.I., Derrick, P.J., (2005) Analyst, 130, pp. 18-28; Dutta, T.K., Harayama, S., (2001) Anal. Chem, 73, pp. 864-869; Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., Alice, M.B., (1968) J. Chem. Phys, 49, pp. 2240-2249; Yamashita, M., Fenn, J.B., (1984) J. Phys. Chem, 88, pp. 4451-4459; Yamashita, M., Fenn, J.B., (1984) J. Phys. Chem, 88, pp. 4671-4675; Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., (1989) Science, 246, pp. 64-71; (1992) Electrospray Mass Spectrometry, , Mann, M, Ed, Kluwer Academic Publishers: Dordrecht, The Netherlands; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., (2001) Energy Fuels, 15, pp. 1505-1511; Brandal, O., Hanneseth, A.M., Hemmingsen, P.V., Sjoblom, J., Kim, S., Rodgers, R.P., Marshall, A.G., (2006) J. Dispersion Sci. Technol, 27, pp. 295-305; Hemmingsen, P.V., Kim, S., Pettersen, H.E., Rodgers, R.P., Sjoblom, J., Marshall, A.G., (2006) Energy Fuels, 20, pp. 1980-1987; Peschke, M., Verkerk, U.H., Kebarle, P., (2004) J. Am. Soc. Mass Spectrom, 15, pp. 1424-1434; Headley, J.V., Peru, K.M., McMartin, D.W., Winkler, M., (2002) J. AOAC Int, 85, pp. 182-187; Hunt, S.M., Sheil, M.M., Belov, M., Derrick, P.J., (1998) Anal. Chem, 70, pp. 1812-1822; Palmblad, M., Hakansson, K., Hakansson, P., Feng, X., Cooper, H.J., Giannakopulos, A.E., Green, P.S., Derrick, P.J., (2000) Eur. J. Mass Spectrom, 6, pp. 267-275; Caravatti, P., Allemann, M., (1991) Org. Mass Spectrom, 26, pp. 514-518; Janfada, A., Headley, J.V., Peru, K.M., Barbour, S.L., (2006) J. Environ. Sci. Health A, 41, pp. 985-997; Clemente, J.S., Yen, T.-W., Fedorak, P.M., (2003) J. Environ. Eng.-Sci, 2, pp. 177-189},\ncorrespondence_address1={Headley, J.V.; Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Environment Canada, 11 Innovation Boulevard, Saskatoon, Sask. S7N 3H5, Canada; email: John.Headley@ec.gc.ca},\nissn={00032700},\ncoden={ANCHA},\npubmed_id={17602673},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n There is a need to develop routine and rugged methods for the characterization of oil sands naphthenic acids present in natural waters and contaminated soils. Mass spectra of naphthenic acids, obtained using a variant of electrospray ionization coupled with a Fourier transform ion cyclotron resonance mass spectrometer, are shown here to vary greatly, reflecting their dependence on solubilities of the acids in organic solvents. The solubilities of components in, for example, 1-octanol (similar solvent to fatty tissue) compared to polar solvents such as methanol or acetonitrile are used here as a surrogate to indicate the more bioavailable or toxic components of naphthenic acids in natural waters. Monocarboxylic compounds (CnH 2n+zO2) in the z = -4, -6, and -12 (2-, 3-, and 6-ring naphthenic acids, respectively) family in the carbon number range of 13-19 were prevalent in all solvent systems. The surrogate method is intended to serve as a guide in the isolation of principle toxic components, which in turn supports efforts to remediate oil sands contaminated soils and groundwater. © 2007 American Chemical Society.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2005\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Reactions of nitric oxide on Rh6 + clusters: Abundant chemistry and evidence of structural isomers.\n \n \n \n \n\n\n \n Ford, M.; Anderson, M.; Barrow, M.; Woodruff, D.; Drewello, T.; Derrick, P.; and Mackenzie, S.\n\n\n \n\n\n\n Physical Chemistry Chemical Physics, 7(5): 975-980. 2005.\n cited By 69\n\n\n\n
\n\n\n\n \n \n \"ReactionsPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Ford2005975,\nauthor={Ford, M.S. and Anderson, M.L. and Barrow, M.P. and Woodruff, D.P. and Drewello, T. and Derrick, P.J. and Mackenzie, S.R.},\ntitle={Reactions of nitric oxide on Rh6 + clusters: Abundant chemistry and evidence of structural isomers},\njournal={Physical Chemistry Chemical Physics},\nyear={2005},\nvolume={7},\nnumber={5},\npages={975-980},\ndoi={10.1039/b415414b},\nnote={cited By 69},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-15244360339&doi=10.1039%2fb415414b&partnerID=40&md5=5b78c04899913c1e95910a9c27c6b6c4},\naffiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={We report the first results of a new instrument for the study of the reactions of naked metal cluster ions using techniques developed by Professor Bondybey to whom this issue is dedicated. Rh6 + ions have been produced using a laser vaporization source and injected into a 3 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer where they are exposed to a low pressure (&lt; 10-8 mbar) of nitric oxide, NO. This system exhibits abundant chemistry, the first stages of which we interpret as involving the dissociative chemisorption of multiple NO molecules, followed by the liberation of molecular nitrogen. This yields key intermediates such as [Rh6O2]+ and [Rh6O4] +. The formation of the latter, after adsorption of four NO molecules, marks a change in the chemistry observed with further NO molecules adsorbed (presumably molecularly) without further N2 evolution until saturation is apparently reached with the [Rh6O4(NO) 7]+ species. We analyse the data in terms of a simple 12-stage reaction mechanism, and we report the relative rate constants for each step. The trends in reactivity are assessed in terms of conceivable structures and the results are discussed where appropriate by comparison with extended surface studies of the same system. Particular attention is paid to the first step in the reaction (Rh6 + + NO → [Rh 6NO]+) which exhibits distinctly bi-exponential kinetics, an observation we interpret as evidence for two different structural isomers of the Rh6 + cluster with one reacting more than an order of magnitude faster than the other. © The Owner Societies 2005.},\nkeywords={nitric oxide;  rhodium, adsorption;  article;  catalyst;  chemical structure;  dissociation;  Fourier transformation;  ion cyclotron resonance mass spectrometry;  isomer;  neodymium laser;  pressure;  reaction analysis;  vaporization},\nchemicals_cas={nitric oxide, 10102-43-9; rhodium, 7440-16-6},\nreferences={Nieuwenhuys, B.E., (1999) Adv. Catal., 44, p. 259; Shelef, M., Graham, G.W., (1994) Catal. Rev. Sci. Eng., 36, p. 433; Taylor, K.C., (1993) Catal. Rev. Sci. Eng., 35, p. 457; Brown, W.A., King, D.A., (2000) J. Phys. Chem. B, 104, p. 2578; Chin, A.A., Bell, A.T., (1983) J. Phys. Chem., 87, p. 3700; Hecker, W.C., Bell, A.T., (1984) J. Catal., 85, p. 389; Johánek, V., Schauermann, S., Laurin, M., Gopinath, C.S., Libuda, J., Freund, H.-J., (2004) J. Phys. Chem. B, 108, p. 14244; Libuda, J., (2004) ChemPhysChem, 5, p. 625; Zhdanov, V.P., Kasemo, B., (1997) Surf. Sci. Reports, 29, p. 31; Loffreda, D., Delbecq, F., Simon, D., Sautet, P., (2001) J. Chem. Phys., 115, p. 8101; Ng, K.Y.S., Belton, D.N., Schmieg, S.J., Fisher, G.B., (1994) J. Catal., 146, p. 394; Belton, D.N., Dimaggio, C.L., Schmieg, S.J., Ng, K.Y.S., (1995) J. Catal., 157, p. 559; Rzeźnicka, I.I., Ma, Y., Cao, G., Matsushima, T., (2004) J. Phys. Chem. B, 108, p. 14232; Alford, J.M., Weiss, F.D., Laaksonen, R.T., Smalley, R.E., (1986) J. Phys. Chem., 90, p. 4480; Knickelbein, M.B., (1999) Anna. Rev. Phys. Chem., 50, p. 79; Armentrout, P., (2001) Annu. Rev. Phys. Chem., 52, p. 423; Parent, D.C., Andersen, S.L., (1992) Chem. Rev., 92, p. 1541; Elkind, J.L., Weiss, F.D., Alford, J.M., Laaksonen, R.T., Smalley, R.E., (1988) J. Chem. Phys., 88, p. 5215; Balteanu, I., Achatz, U., Balaj, O.P., Fox, B.S., Beyer, M., Bondybey, V.E., (2003) Int. J. Mass Spec., 229, p. 61; Berg, C., Schindler, T., Kantlehner, M., Niedner-Schatteburg, G., Bondybey, V.E., (2000) Chem. Phys., 262, p. 143; Berg, C., Beyer, M., Achatz, U., Joos, S., Niedner-Schatteburg, G., Bondybey, V.E., (1998) J. Chem. Phys., 108, p. 5398; Berg, C., Beyer, M., Schindler, T., Niedner-Schatteburg, G., Bondybey, V.E., (1996) J. Chem. Phys., 104, p. 7940; Fossan, K.O., Uggerud, E., (2004) Dalton Trans., p. 892; Vakhtin, A.B., Sugawara, K., (1998) Chem. Phys. Lett., 299, p. 553; Øiestad, Å.M.L., Uggerud, E., (2000) Chem. Phys., 262, p. 169; Sugawara, K., Sobott, F., Vakhtin, A.B., (2003) J. Chem. Phys., 118, p. 7808; Koszinowski, K., Schlangen, M., Schröder, D., Schwarz, H., (2004) Int. J. Mass. Spectrom., 237, p. 19; Hamrick, Y., Taylor, S., Lemire, G.W., Fu, Z.-W., Shui, J.-C., Morse, M.D., (1988) J. Chem. Phys., 88, p. 4095; Hamrick, Y.M., Morse, M.D., (1989) J. Phys. Chem., 93, p. 6494; Zakin, M.R., Brickman, R.O., Cox, D.M., Kaldor, A., (1988) J. Chem. Phys., 88, p. 3555; Beyer, M., Bondybey, V.E., (2001) J. Phys. Chem. A, 105, p. 951; Berg, C., Schindler, T., Niedner-Schatteburg, G., Bondybey, V.E., (1995) J. Chem. Phys., 102, p. 4870; Chien, C.-H., Blaisten-Barajas, E., Pederson, M.R., (2000) J. Chem. Phys., 112, p. 2301; Jinlong, Y., Toigo, F., Kelin, W., (1994) Phys. Rev. B, 50, p. 7915; Aguilera-Granja, F., Rodríguez-Lopéz, J.L., Michaelian, K., Berlanga-Ramiréz, E.O., Vega, A., (2002) Phys. Rev. B, 66, p. 224410. , and references therein; Ford, M.S., Mackenzie, S.R., in preparation; Ding, X., Li, Z., Yang, J., Hou, J.G., Zhu, Q., (2004) J. Chem. Phys., 120, p. 9594; Weis, P., Welz, O., Vollmer, E., Kappes, M.M., (2004) J. Chem. Phys., 120, p. 677; Weis, P., Bierweiler, T., Gilb, S., Kappes, M.M., (2002) Chem. Phys. Lett., 355, p. 355},\ncorrespondence_address1={Mackenzie, S.R.; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: S.R.Mackenzie@warwick.ac.uk},\nissn={14639076},\ncoden={PPCPF},\nlanguage={English},\nabbrev_source_title={Phys. Chem. Chem. Phys.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n We report the first results of a new instrument for the study of the reactions of naked metal cluster ions using techniques developed by Professor Bondybey to whom this issue is dedicated. Rh6 + ions have been produced using a laser vaporization source and injected into a 3 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer where they are exposed to a low pressure (< 10-8 mbar) of nitric oxide, NO. This system exhibits abundant chemistry, the first stages of which we interpret as involving the dissociative chemisorption of multiple NO molecules, followed by the liberation of molecular nitrogen. This yields key intermediates such as [Rh6O2]+ and [Rh6O4] +. The formation of the latter, after adsorption of four NO molecules, marks a change in the chemistry observed with further NO molecules adsorbed (presumably molecularly) without further N2 evolution until saturation is apparently reached with the [Rh6O4(NO) 7]+ species. We analyse the data in terms of a simple 12-stage reaction mechanism, and we report the relative rate constants for each step. The trends in reactivity are assessed in terms of conceivable structures and the results are discussed where appropriate by comparison with extended surface studies of the same system. Particular attention is paid to the first step in the reaction (Rh6 + + NO → [Rh 6NO]+) which exhibits distinctly bi-exponential kinetics, an observation we interpret as evidence for two different structural isomers of the Rh6 + cluster with one reacting more than an order of magnitude faster than the other. © The Owner Societies 2005.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n In-plume thermodynamics of the MALDI generation of fluorofullerene anions.\n \n \n \n \n\n\n \n Streletskii, A.; Ioffe, I.; Kotsiris, S.; Barrow, M.; Drewello, T.; Strauss, S.; and Boltalina, O.\n\n\n \n\n\n\n Journal of Physical Chemistry A, 109(4): 714-719. 2005.\n cited By 35\n\n\n\n
\n\n\n\n \n \n \"In-plumePaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Streletskii2005714,\nauthor={Streletskii, A.V. and Ioffe, I.N. and Kotsiris, S.G. and Barrow, M.P. and Drewello, T. and Strauss, S.H. and Boltalina, O.V.},\ntitle={In-plume thermodynamics of the MALDI generation of fluorofullerene anions},\njournal={Journal of Physical Chemistry A},\nyear={2005},\nvolume={109},\nnumber={4},\npages={714-719},\ndoi={10.1021/jp0462431},\nnote={cited By 35},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-13444292026&doi=10.1021%2fjp0462431&partnerID=40&md5=841bca0ae245192a1478922e2b0655d7},\naffiliation={Chemistry Department, Moscow State University, Moscow 119992, Russian Federation; Department of Chemistry, Warwick University, Coventry CV4 7AL, United Kingdom; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States},\nabstract={The mechanism of formation of fluorofullerene (FF) negative ions derived from the compounds C 60F 18, C 60F 36, and C 60F 48 was studied by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF) mass spectrometry (MS). A combined experimental/theoretical approach provides compelling evidence of nondissociative, thermodynamically controlled electron transfer from matrix-derived negative ions to the FF analyte as the main secondary-ionization process. Consistent with this thermochemical model, analyte parent molecular ion yield and degree of fragmentation for a particular MALDI experiment was found to depend on the nature of the matrix material (the five matrices investigated were sulfur, trans-2-[3-{4-tert-butylphenyl}-2-methyl-2-propenylidene]malononitrile, 9-nitroanthracene, 2,6-bis((furan-2-yl)methylene)cyclohexanone, and 2,6-bis((thiophen-2-yl)methylene)cyclohexanone). For mixtures of C 60F n compounds with different n values and therefore different electron affinitites, unwanted electron-transfer reactions, which can lead to the suppression of C 60F n- ions with low n values, were successfully blocked for the first time by judicious choice of the matrix. Therefore, reliable qualitative MS analysis of FF mixtures with wide ranges of composition is now possible.},\nkeywords={Fragmentation;  In-plume ionization;  Ion formation;  Molar absorbances, Composition;  Electron transitions;  Ionization;  Mass spectrometry;  Mixtures;  Negative ions;  Thermodynamics, Fullerenes},\nreferences={Abdul-Sada, A.K., Boltalina, O.V., Taylor, R., (1997) Eur. Mass Spectrom., 3, p. 461; Boltalina, O.V., Galeva, N.A., Markov, V.Y., Borschevskii, A.Y., Sorokin, I.D., Sidorov, L.N., Popovich, A., Zigon, D., (1997) Mendeleev Commun., p. 184; Barrow, M.P., Feng, X., Wallace, J.I., Boltalina, O.V., Taylor, R., Derrick, P.J., Drewello, T., (2000) Chem. Phys. Lett., 330, p. 267; Cozzolino, R., Belgacem, O., Drewello, T., Kaseberg, L., Herzschuh, R., Suslov, S., Boltalina, O.V., (1997) Eur. Mass Spectrom., 3, p. 407; Tuinman, A., Mukherjee, P., Hetich, R.L., Compton, R.N., (1992) J. Phys. Chem., 96, p. 7384; Vasil'ev, Y.V., Boltalina, O.V., Tuktarov, R.F., Mazunov, V.A., Sidorov, L.N., (1998) Int. J. Mass Spectrom. Ion Processes, 173, p. 113; Streletskiy, A.V., Goldt, I.V., Kuvycko, I.V., Ioffe, I.N., Sidorov, L.N., Drewello, T., Strauss, S.H., Boltalina, O.V., (2004) Rapid Commun. Mass Spectrom., 18, p. 360; Streletskiy, A.V., Kouvitchko, I.V., Esipov, S.E., Boltalina, O.V., (2001) Rapid Commun. Mass Spectrom., 16, p. 99; Macha, S.E.M., McCarley, T.D., Limbach, P.A., (1999) Anal. Chim. Acta, 397, p. 235; McCarley, T.D., McCarley, R.L., Limbach, P.A., (1998) Anal. Chem., 70, p. 4376; Jin, C., Hettich, R.L., Compton, R.N., Tuinman, A.A., Derecskei-Kovacs, A., Marynik, D.S., Dunlap, B.I., (1994) Phys. Rev. Lett., 73, p. 282; Papina, T.S., Kolesov, V.P., Lukyanova, V.A., Boltalina, O.V., Lukonin, A.Y., Sidorov, L.N., (2000) J. Phys. Chem. B, 104, p. 5403; Papina, T.S., Kolesov, V.P., Lukyanova, V.A., Boltalina, O.V., Galeva, N.A., Sidorov, L.N., (1999) J. Chem. Thermodyn., 31, p. 1321; Goldt, I.V., Boltalina, O.V., Sidorov, L.N., Kemnitz, E., Troyanov, S.I., (2002) Solid State Sci., 4, p. 1395; Boltalina, O.V., Borschevskii, A.Y., Sidorov, L.N., Street, J.M., Taylor, R., (1996) Chem. Commun., p. 529; Bagryantsev, V.F., Zapol'skii, A.S., Boltalina, O.V., Galeva, N.A., Sidorov, L.N., (2000) Zh. Neorg. Khim. (Russian J. Inorg. Chem.), 45, p. 1121; Laikov, D.N., (1997) Chem. Phys. Lett., 281, p. 151; Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865; Knochenmuss, R., (2004) Anal. Chem., 76, p. 3179; Frankevich, V.E., Zhang, J., Friess, S.D., Dashtiev, M., Zenobi, R., (2003) Anal. Chem., 75, p. 6063; Brink, C., Andersen, L.H., Hvelplund, P., Mathur, D., Volstad, J.D., (1995) Chem. Phys. Lett., 233, p. 52; Yoo, R.K., Ruscic, B., Berkowitz, J., (1992) J. Chem. Phys., 96, p. 911; Ohkubo, K., Taylor, R., Boltalina, O.V., Ogo, S., Fukuzumi, S., (2002) Chem. Commun., p. 1952; Oigli, G., Cesaro, S.N., Rau, J.V., Goldt, I.Y.V., Markov, V.Y., Goryunkov, A.A., Popov, A.A., Sidorov, L.N., (2003) Proceedings-electrochemical Society, 13, p. 453. , Fullerenes and Nanotubes; Guldi, D. M., Ed.; Electrochemical Society: Pennington, NJ; Liu, N.M.Y., Okino, F., Boltalina, O.V., Pavlovien, V.K., (1997) Synth. Metals, 86, p. 2289; Steger, H.M.U., Kamke, W., Ding, A., Fieber-Erdmann, M., Drewello, T., (1997) Chem. Phys. Lett., 276, p. 39; Ioffe, I.N., Goryunkov, A.A., Boltalina, O.V., Borschevsky, A.Y., Sidorov, L.N., (2004) Fullerenes, Nanotubes, Carbon Nanostruct., 12, p. 169; Tuinman, A.A., Lahamer, A.S., Compton, R.N., (2001) Int. J. Mass Spectrom., 205, p. 309; Boltalina, O.V., Street, J.M., Taylor, R., (1998) J. Chem. Soc., Perkin Trans. 2, p. 649; Hitchcock, P.B., Taylor, R., (2002) Chem. Commun., p. 2078; Troyanov, S.I., Troshin, P.A., Boltalina, O.V., Ioffe, I.N., Sidorov, L.N., Kemnitz, E., (2001) Angew. Chem., Int. Ed., 40, p. 2285; Neretin, I.S., Lyssenko, K.A., Antipin, M.Y., Slovokhotov, Y.L., Boltalina, O.V., Troshin, P.A., Lukonin, A.Y., Taylor, R., (2000) Angew. Chem., Int. Ed., 39, p. 3273; Borshcbevsky, A.Y., Ponomarcv, D.B., Alesnina, V.E., Boltalina, O.V., Astakhov, A.V., Alekseev, E.V., Sidorov, L.N., (2002) Proceedings-electrochemical Society, 12, p. 642. , The Exciting World of Nanocages and Nanotubes; Guldi, D. M., Ed.; Electrochemical Society: Pennington, NJ; Clipston, N.L., Brown, T., Vasil'ev, Y.V., Barrow, M.P., Herzschuh, R., Reuther, U., Hirsch, A., Drewello, T., (2000) J. Phys. Chem., 104, p. 9171; Knochenmuss, R., Zenobi, R., (2003) Chem. Rev., 103, p. 441; Brune, D., (1999) Rapid Commun. Mass Spectrom., 13, p. 384; Hearley, A., Johnson, B., McIndoe, J., Tuck, D., (2002) Inorg. Chim. Acta, 334, p. 105; Blondel, C., (1995) Phys. Scr., 58, p. 31; Hunsicker, S., Jones, R.O., Gantefor, G., (1995) J. Chem. Phys., 102, p. 5917; Nonami, H., Tanaka, K., Fukuyama, Y., Erra-Balsells, R., (1998) Rapid Commun. Mass Spectrom., 12, p. 285; Brown, T., Clipston, N.L., Simjee, N., Luftnann, H., Hungerbuhler, H., Drewello, T., (2001) Int. J. Mass Spectrom., 210, p. 249; Ulmer, L., Mattay, J., Torres-Garcia, H.G., Luftmann, H., (2000) Chem. Phys. Lett., 6, p. 49; Fati, D., Leeman, V., Vasil'ev, Y.V., Leyh, B., Hungerbuhler, H., Drewello, T., (2002) J. Am. Soc. Mass Spectrom., 13, p. 1448; Fati, D., Vasil'ev, Y.V., Wachter, N.K., Taylor, R., Drewello, T., (2003) Int. J. Mass Spectrom., 229, p. 3; Knochenmuss, R., (2003) Anal. Chem., 75, p. 2199},\ncorrespondence_address1={Drewello, T.; Department of Chemistry, Warwick University, Coventry CV4 7AL, United Kingdom; email: t.drewello@warwick.ac.uk},\nissn={10895639},\ncoden={JPCAF},\nlanguage={English},\nabbrev_source_title={J Phys Chem A},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The mechanism of formation of fluorofullerene (FF) negative ions derived from the compounds C 60F 18, C 60F 36, and C 60F 48 was studied by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF) mass spectrometry (MS). A combined experimental/theoretical approach provides compelling evidence of nondissociative, thermodynamically controlled electron transfer from matrix-derived negative ions to the FF analyte as the main secondary-ionization process. Consistent with this thermochemical model, analyte parent molecular ion yield and degree of fragmentation for a particular MALDI experiment was found to depend on the nature of the matrix material (the five matrices investigated were sulfur, trans-2-[3-4-tert-butylphenyl-2-methyl-2-propenylidene]malononitrile, 9-nitroanthracene, 2,6-bis((furan-2-yl)methylene)cyclohexanone, and 2,6-bis((thiophen-2-yl)methylene)cyclohexanone). For mixtures of C 60F n compounds with different n values and therefore different electron affinitites, unwanted electron-transfer reactions, which can lead to the suppression of C 60F n- ions with low n values, were successfully blocked for the first time by judicious choice of the matrix. Therefore, reliable qualitative MS analysis of FF mixtures with wide ranges of composition is now possible.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology.\n \n \n \n \n\n\n \n Barrow, M.; Burkitt, W.; and Derrick, P.\n\n\n \n\n\n\n Analyst, 130(1): 18-28. 2005.\n cited By 31\n\n\n\n
\n\n\n\n \n \n \"PrinciplesPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Barrow200518,\nauthor={Barrow, M.P. and Burkitt, W.I. and Derrick, P.J.},\ntitle={Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology},\njournal={Analyst},\nyear={2005},\nvolume={130},\nnumber={1},\npages={18-28},\ndoi={10.1039/b403880k},\nnote={cited By 31},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-12344282661&doi=10.1039%2fb403880k&partnerID=40&md5=f8d399c61eb47329d57db35aeec7dbae},\naffiliation={University of Warwick, Coventry, United Kingdom; Department of Chemistry, University of Warwick, Coventry, United Kingdom; Institute of Mass Spectrometry, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry has become increasingly significant within recent years. The inherently ultra-high resolution and mass accuracy allow unequivocal assignments of chemical formulae to be made and further structural elucidation can be conducted through the utilization of tandem mass spectrometry techniques. With the advent of electrospray ionization (ESI), FT-ICR mass spectrometry has become a powerful tool for the investigation of biological macromolecules, such as the study of non-covalent interactions of proteins. In this article, the basic principles are highlighted, some of the techniques employed are described and examples of applications are provided, with particular respect being paid to the field of characterization of biomolecules.},\nkeywords={analytic method;  covalent bond;  cyclotron;  ion cyclotron resonance mass spectrometry;  macromolecule;  petrochemical industry;  protein conformation;  protein protein interaction;  research;  review;  structure analysis;  tandem mass spectrometry, Animals;  Cyclotrons;  Fourier Analysis;  Ions;  Mass Spectrometry;  Protein Interaction Mapping;  Proteomics;  Spectrometry, Mass, Electrospray Ionization},\nchemicals_cas={Ions},\nreferences={De Hoffmann, E., Charette, J., Stroobant, V., (1996) Mass Spectrometry: Principles and Applications, , John Wiley and Sons Ltd., Chichester; Chapman, J.R., (1993) Practical Organic Mass Spectrometry: A Guide for Chemical and Biochemical Analysis, , John Wiley and Sons Ltd., Chichester; Jennings, K.R., Dolnikowski, G.G., (1990) Methods Enzymol., 193, pp. 37-61; Glish, G.L., Vachet, R.W., (2003) Nat. Rev. Drug Discovery, 2, pp. 140-150; Nielsen-Marsh, C.M., Ostrom, P.H., Gandhi, H., Shapiro, B., Cooper, A., Hauschka, P.V., Collins, M.J., (1998) Geology, 30, pp. 1099-1102; Valladas, H., Clottes, J., Geneste, J.-M., Garcia, M.A., Arnold, M., Cachier, H., Tisnérat-Laborde, N., (2001) Nature, 413, p. 479; Weckwerth, W., (2003) Annu. Rev. Plant Biol., 54, pp. 669-689; Ferguson, P.L., Smith, R.D., (2003) Annu. Rev. Biophys. Biomol., 32, pp. 399-424; Henry, C.M., (2003) Chem. Eng. News, 81, p. 39; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., (2003) Anal. Chem., 75, pp. 860-866; Turnbull, A., Slavcheva, E., Shone, B., (1998) Corrosion, 54, pp. 922-930; Wu, Z.G., Jernstrom, S., Hughey, C.A., Rodgers, R.P., Marshall, A.G., (2003) Energy Fuels, 17, pp. 946-953; Comisarow, M.B., Marshall, A.G., (1974) Chem. Phys. Lett., 25, pp. 282-283; Comisarow, M.B., Marshall, A.G., (1974) Can. J. Chem., 52, pp. 1997-1999; Comisarow, M.B., Marshall, A.G., (1974) Chem. Phys. Lett., 26, pp. 489-490; Jacoby, C.B., Holliman, C.L., Gross, M.L., (1992) Fourier Transform Mass Spectrometry: Features, Principles, Capabilities, and Limitations, , ed. M. L. Gross, Kluwer Academic Publishers, Netherlands, ch. 5; Marshall, A.G., Schweikhard, L., (1992) Int. J. Mass Spectrom. Ion Processes, 118-119, pp. 37-70; Amster, I.J., (1996) J. Mass Spectrom., 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev., 17, pp. 1-35; Caravatti, P., Allemann, M., (1991) Org. Mass Spectrom., 26, pp. 514-518; Marshall, A.G., Comisarow, M.B., (1975) Anal. Chem., 47, pp. 491A-504A; Marshall, A.G., Verdun, F.R., (1990) Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook, , Elsevier, Amsterdam, Oxford; Shi, S.D.H., Drader, J.J., Freitas, M.A., Hendrickson, C.L., Marshall, A.G., (2000) Int. J. Mass Spectrom., 196, pp. 591-598; Hübner, K., Klein, H., Lichtenberg, C., Marx, G., Werth, G., (1997) Europhys. Lett., 37, pp. 459-463; Dunbar, R.C., Chen, J.H., Hays, J.D., (1984) Int. J. Mass Spectrom. Ion Processes, 57, pp. 39-56; Dunbar, R.C., (1984) Int. J. Mass Spectrom. Ion Processes, 56, pp. 1-9; Dienes, T., Pastor, S.J., Schürch, S., Scott, J.R., Yao, J., Cui, S., Wilkins, C.L., (1996) Mass Spectrom. Rev., 15, pp. 163-211; Schweikhard, L., Guan, S., Marshall, A.G., (1992) Int. J. Mass Spectrom. Ion Processes, 120, pp. 71-83; Vartanian, V.H., Laude, D.A., (1998) Int. J. Mass Spectrom., 178, pp. 173-186; Jackson, G.S., Canterbury, J.D., Guan, S., Marshall, A.G., (1997) J. Am. Soc. Mass Spectrom., 8, pp. 283-293; Sharp, T.E., Eyler, J.R., Li, E., (1972) Int. J. Mass Spectrom. Ion Phys., 9, pp. 421-439; Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., Alice, M.B., (1968) J. Chem. Phys., 49, pp. 2240-2249; Yamashita, M., Fenn, J.B., (1984) J. Phys. Chem., 88, pp. 4451-4459; Yamashita, M., Fenn, J.B., (1984) J. Phys. Chem., 88, pp. 4671-4675; Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., (1989) Science, 246, pp. 64-71; Mann, M., (1992) Electrospray Mass Spectrometry, , ed. M. L. Gross, Kluwer Academic Publishers, Netherlands, ch. 8; Zhan, D., Fenn, J.B., (2000) Int. J. Mass Spectrom., 194, pp. 197-208; Feng, X., Clipston, N., Brown, T., Cooper, H., Reuther, U., Hirsch, A., Derrick, P.J., Drewello, T., (2000) Rapid Commun. Mass Spectrom., 14, pp. 368-370; Chen, S.-P., Comisarow, M.B., (1991) Rapid Commun. Mass Spectrom., 5, pp. 450-455; Chen, S.-P., Comisarow, M.B., (1992) Rapid Commun. Mass Spectrom., 6, pp. 1-3; Easterling, M.L., Mize, T.H., Amster, I.J., (1999) Anal. Chem., 71, pp. 624-632; Guan, S., Wahl, M.C., Marshall, A.G., (1993) Anal. Chem., 65, pp. 3647-3653; Perrung, A.J., Kouzes, R.T., (1995) Int. J. Mass Spectrom. Ion Processes, 145, pp. 139-153; Stults, J.T., (1997) Anal. Chem., 69, pp. 1815-1819; Laskin, J., Byrd, M., Futrell, J., (2000) Int. J. Mass Spectrom., 195-196, pp. 285-302; Palmblad, M., Hakansson, K., Hakansson, P., Feng, X., Cooper, H.J., Giannakopulos, A.E., Green, P.S., Derrick, P.J., (2000) Eur. J. Mass Spectrom., 6, pp. 267-275; Tsybin, Y.O., Witt, M., Baykut, G., Kjeldsen, F., Hakansson, P., (2003) Rapid Commun. Mass Spectrom., 17, pp. 1759-1768; Stace, A.J., (1998) J. Chem. Phys., 109, pp. 7214-7223; Derrick, P.J., Lloyd, P.M., Christie, J.R., (1995) Physical Chemistry of Ion Reactions, 13th International Mass Spectrometry Conference, 13, pp. 23-52. , ed. I. Cornides, G. Horváth and K. Vékey, John Wiley & Sons; Sheil, M.M., Guilhaus, M., Derrick, P.J., (1990) Org. Mass Spectrom., 25, pp. 671-680; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., (1998) J. Am. Chem. Soc., 120, pp. 3265-3266; Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W., (1999) J. Am. Chem. Soc., 121, pp. 2857-2862; Zubarev, R.A., (2003) Mass Spectrom. Rev., 22, pp. 57-77; McDonnell, L.A., Giannakopulos, A.E., Derrick, P.J., Tsybin, Y.O., Hakansson, P., (2002) Eur. J. Mass Spectrom., 8, pp. 181-189; Sze, T.-P.E., Chan, T.-W.D., (1999) Rapid Commun. Mass Spectrom., 13, pp. 398-406; Miyabayashi, K., Yasuhide, N., Miyake, M., Tsujimoto, K., (2000) Eur. J. Mass Spectrom., 6, pp. 251-258; Ganem, B., Li, Y.-T., Henion, J.D., (1991) J. Am. Chem. Soc., 113, pp. 6294-6296; Loo, J.A., (1997) Mass Spectrom. Rev., 16, pp. 1-23; Kelleher, N.L., Senko, M.W., Siegel, M.M., McLafferty, F.W., (1997) J. Am. Soc. Mass Spectrom., 8, pp. 380-383; Burkitt, W.I., Derrick, P.J., Lafitte, D., Bronstein, I., (2003) Biochem. Soc. Trans., 31, pp. 985-989; Taylor, P.K., Parks, B.A., Amster, I.J., (2001) J. Biol. Inorg. Chem., 6, pp. 201-206; Johnson, K.A., Amster, I.J., (2001) J. Am. Soc. Mass Spectrom., 12, pp. 819-825; Taylor, P.K., Amster, I.J., (2001) Int. J. Mass Spectrom., 210-211, pp. 651-663; Tarabykina, S., Kriajevska, M., Scott, D.J., Hill, T.J., Lafitte, D., Derrick, P.J., Dodson, G.G., Bronstein, I., (2000) FEBS Lett., 475, pp. 187-191; Tarabykina, S., Scott, D.J., Herzyk, P., Hill, T.J., Tame, J.R.H., Kriajevska, M., Lafitte, D., Bronstein, I.B., (2001) J. Biol. Chem., 276, pp. 24212-24222; Moroz, O.V., Dodson, G.G., Wilson, K.S., Lukanidin, E., Bronstein, I.B., (2003) Microsc. Res. Tech., 60, pp. 581-592; Fenn, J.B., (1993) J. Am. Soc. Mass Spectrom., 4, pp. 524-535; Dobo, A., Kaltashov, I., (2001) Anal. Chem., 73, pp. 4763-4773; Miranker, A., Robinson, C.V., Radford, S.E., Aplin, R.T., Dobson, C.M., (1993) Science, 262, pp. 896-900; Winger, B.E., Light-Wahl, K.J., Rockwood, A.L., Smith, R.D., (1992) J. Am. Chem. Soc., 114, pp. 5898-5900; Wang, F., Freitas, M.A., Marshall, A.G., Sykes, B.D., (1999) Int. J. Mass Spectrom., 192, pp. 319-325; Zhang, Z., Smith, D.L., (1993) Protein Sci., 2, pp. 522-531; Eyles, S.J., Speir, J.P., Kruppa, G.H., Gierasch, L.M., Kaltashov, I.A., (2000) J. Am. Chem. Soc., 122, pp. 495-500; Wang, F., Blanchard, J.S., Tang, X.-J., (1997) Biochemistry, 36, pp. 3755-3759; Nousiainen, M., Vainiotalo, P., Cooper, H.J., Hoxha, A., Derrick, P.J., Fati, D., Trayer, H.R., Trayer, I.P., (2002) Eur. J. Mass. Spectrom., 8, pp. 471-481; Derrick, P.J., (1975) Ion Lifetimes, 5, Ed., , A. Maccoll, Butterworths, London; Zubarev, R.A., Kelleher, N.L., McLafferty, F.W., (1997) J. Am. Chem. Soc., 120, pp. 3265-3266; Horn, D.M., Zubarev, R.A., McLafferty, F.W., (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 10313-10317; Shi, S.D.-H., Hemling, M.E., Carr, S.A., Horn, D.M., Lindh, I., McLafferty, F.W., (2000) Anal. Chem., 73, pp. 19-22; Kelleher, N.L., Zubarev, R.A., Bush, K., Furie, B., Furie, B.C., McLafferty, F.W., Walsh, C.T., (1999) Anal. Chem., 71, pp. 4250-4253; Håkansson, K., Cooper, H.J., Emmett, M.R., Costello, C.E., Marshall, A.G., Nilsson, C.L., (2001) Anal. Chem., 73, p. 4530; Mirgorodskaya, E., Roepstorff, P., Zubarev, R.A., (1999) Anal. Chem., 71, pp. 4431-4436; Horn, D.M., Ge, Y., McLafferty, F.W., (2000) Anal. Chem., 72, pp. 4778-4784; Dunbar, R.C., (2004) Mass Spectrom. Rev., 23, pp. 127-158; Kjeldsen, F., Haselmann, K.F., Budnik, B.A., Jensen, F., Zubarev, R.A., (2002) Chem. Phys. Lett., 356, pp. 201-206; Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W., (2000) Anal. Chem., 72, pp. 563-573; Sze, S.K., Ge, Y., Oh, H., McLafferty, F.W., (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 1774-1779; Hunter, C.L., Mauk, A.G., Douglas, D.J., (1997) Biochemistry, 36, pp. 1018-1025; Nousiainen, M., Derrick, P.J., Lafitte, D., Vainiotalo, P., (2003) Biophys. J., 85, pp. 491-500; Hanson, C.L., Fucini, P., Ilag, L.L., Nierhaus, K.H., Robinson, C.V., (2003) J. Biol. Chem., 278, pp. 1259-1267; Jurchen, J.C., Williams, E.R., (2003) J. Am. Chem. Soc., 125, pp. 2817-2826; Nousiainen, M., Vainiotalo, P., Feng, X., Derrick, P.J., (2001) Eur. J. Mass. Spectrom., 7, pp. 293-298; Tyers, M., Mann, M., (2003) Nature, 422, pp. 193-197; Aebersold, R., Mann, M., (2003) Nature, 422, pp. 198-207; Sali, A., Glaeser, R., Earnest, T., Baumeisters, W., (2003) Nature, 422, pp. 216-225},\ncorrespondence_address1={Barrow, M.P.; Institute of Mass Spectrometry, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: M.P.Barrow@warwick.ac.uk},\nissn={00032654},\ncoden={ANALA},\npubmed_id={15614347},\nlanguage={English},\nabbrev_source_title={Analyst},\ndocument_type={Review},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry has become increasingly significant within recent years. The inherently ultra-high resolution and mass accuracy allow unequivocal assignments of chemical formulae to be made and further structural elucidation can be conducted through the utilization of tandem mass spectrometry techniques. With the advent of electrospray ionization (ESI), FT-ICR mass spectrometry has become a powerful tool for the investigation of biological macromolecules, such as the study of non-covalent interactions of proteins. In this article, the basic principles are highlighted, some of the techniques employed are described and examples of applications are provided, with particular respect being paid to the field of characterization of biomolecules.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2004\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Fourier transform ion cyclotron resonance mass spectrometry of principal components in oilsands naphthenic acids.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Journal of Chromatography A, 1058(1-2): 51-59. 2004.\n cited By 79\n\n\n\n
\n\n\n\n \n \n \"FourierPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Naphthenic acids present formidable challenges for the petroleum industry and are a growing concern in the aquatic environment. For example, these acids are responsible for corrosion of refinery equipment, leading to the incurrence of additional costs to the consumer, and are toxic to aquatic wildlife, making disposal and remediation of contaminated waters and sediments a significant problem. The detection and characterization of naphthenic acids is therefore of considerable importance. Fourier transform ion cyclotron resonance mass spectrometry is presented as a technique with inherently ultra-high mass accuracy and resolution, affording unequivocal assignments. The suitability of the technique for environmental applications is demonstrated to characterize two different commercial mixtures of naphthenic acids and one oilsands tailings pond sample. © 2004 Elsevier B.V. All rights reserved.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Electrospray ionization fourier transform ion cyclotron resonance mass spectrometry of human α-1-acid glycoprotein.\n \n \n \n \n\n\n \n Nagy, K.; Vékey, K.; Imre, T.; Ludányi, K.; Barrow, M.; and Derrick, P.\n\n\n \n\n\n\n Analytical Chemistry, 76(17): 4998-5005. 2004.\n cited By 16\n\n\n\n
\n\n\n\n \n \n \"ElectrosprayPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Nagy20044998,\nauthor={Nagy, K. and Vékey, K. and Imre, T. and Ludányi, K. and Barrow, M.P. and Derrick, P.J.},\ntitle={Electrospray ionization fourier transform ion cyclotron resonance mass spectrometry of human α-1-acid glycoprotein},\njournal={Analytical Chemistry},\nyear={2004},\nvolume={76},\nnumber={17},\npages={4998-5005},\ndoi={10.1021/ac040019a},\nnote={cited By 16},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-4444287808&doi=10.1021%2fac040019a&partnerID=40&md5=d431652a937d992852051b57c9ff4baf},\naffiliation={Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1025 Pusztaszeri ut 59-67, Budapest, Hungary; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom},\nabstract={The ultrahigh resolution and sensitivity of electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry have for the first time been exploited for the characterization of highly sialylated glycoproteins, using human α-1-acid glycoprotein as the model compound. An alternative approach to the widely used high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization (MALDI) assays is described. This new method does not require any enzymatic or chemical digestion (removal of sialyl groups or deglycosylation), chemical derivatization (introduction of chromophore groups), or preliminary chromatographic separation (HPLC or electrophoresis). Following ESI and accumulation of ions in a hexapole ion guide, ions are injected into the ICR cell. A selected mass window from the overall ion population is isolated and axialized prior to detection. After acquisition and Fourier transform of the transient signal the resulted spectrum is evaluated in order to determine the charge state of the detected ions and the isotope pattern of the measured protein glycoform. The presence of ions from the same glycoform with different charge states was confirmed. The advantages and limitations of the technique are discussed. Future prospects and possible applications are indicated.},\nkeywords={Chemical derivatization;  Chemical digestion;  Electrospray ionization, Cyclotron resonance;  Desorption;  Fourier transforms;  Ionization;  Isotopes;  Mass spectrometry;  Mathematical models, Proteins, orosomucoid, article;  deglycosylation;  derivatization;  electrophoresis;  electrospray mass spectrometry;  Fourier transformation;  high performance liquid chromatography;  ion cyclotron resonance mass spectrometry;  matrix assisted laser desorption ionization time of flight mass spectrometry;  sialylation, Amino Acid Sequence;  Cyclotrons;  Humans;  Molecular Sequence Data;  N-Acetylneuraminic Acid;  Orosomucoid;  Spectrometry, Mass, Electrospray Ionization;  Spectroscopy, Fourier Transform Infrared},\nchemicals_cas={orosomucoid, 79921-18-9; N-Acetylneuraminic Acid, 131-48-6; Orosomucoid},\nreferences={Drews, J., (2000) Science, 287, pp. 1960-1964; Dell, A., Morris, H.R., (2001) Science, 291, pp. 2351-2356; Sei, K., Nakano, M., Kinoshita, M., Masuko, T., Kakehi, K., (2002) J. Chromatogr., A, 958, pp. 273-281; Amster, I.J., (1996) J. Mass Spectrom., 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., (2002) Int. J. Mass Spectrom., 215, pp. 59-75; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev., 17, pp. 1-35; Guan, S., Marshall, A.G., (1995) Int. J. Mass Spectrom. Ion Processes, 146-147, pp. 261-296; Viseux, N., Hronowski, X., Delaney, J., Domon, B., (2001) Anal. Chem., 73, pp. 4755-4762; Fournet, B., Montreuil, J., Strecker, G., Dorland, L., Haverkamp, J., Vliegenthart, J., Binette, J., Schmid, K., (1978) Biochemistry, 17, pp. 5206-5219; Schmid, K., Binette, J.P., Dorland, K., Vliegenthart, J., Fournet, B., Montreuil, J., (1979) Biochim. Biophys. Acta, 581, pp. 356-359; Yoshima, H., Matsumoto, A., Mizuochi, T., Kawasaki, T., Kobata, A., (1981) J. Biol. Chem., 256, pp. 8476-8484; Kakehi, K., Kinoshita, M., Kawakami, D., Tanaka, J., Sei, K., Endo, K., Oda, Y., Masuko, T., (2001) Anal. Chem., 73, pp. 2640-2647; Bonfichi, R., Sottani, C., Colombo, L., Coutant, J.E., Riva, E., Zanette, D., (1995) Rapid. Commun. Mass Spectrom., (SPEC. NO.), pp. 95-106; Kinoshita, M., Murakami, E., Oda, Y., Funakubo, T., Kawakami, D., Kakehi, K., Kawasaki, N., Hayakawa, T., (2000) J. Chromatogr., A, 866, pp. 261-271; Bigge, J.C., Patel, T.P., Bruce, J.A., Goulding, P.N., Charles, S.M., Parekh, R.B., (1995) Anal. Biochem., 230, pp. 229-238; Anumula, K.R., (2000) Glycobiology, 10, pp. 1138-1138; Anumula, K.R., Du, P., (1999) Anal. Biochem., 275, pp. 236-242; Hase, S., (1994) Methods Enzymol., 230, pp. 225-237; Jackson, P., (1994) Methods Enzymol., 230, pp. 250-265; Raju, T.S., (2000) Anal. Biochem., 283, pp. 125-132; Charlwood, J., Bryant, D., Skehel, J.M., Camilleri, P., (2001) Biomol. Eng., 18, pp. 229-240; Juhasz, P., Martin, S.A., (1997) Int. J. Mass Spectrom. Ion Processes, 169-170, pp. 217-230; Mechref, Y., Baker, A.G., Novotny, M.V., (1998) Carbohydr. Res., 313, pp. 145-155; Treuheit, M.J., Costello, C.E., Halsall, H.B., (1992) Biochem. J., 283, pp. 105-112; Delaney, J., Vouros, P., (2001) Rapid Commun. Mass Spectrom., 15, pp. 325-334; Hunter, A.P., Games, D.E., (1995) Rapid Commun. Mass Spectrom., 9, pp. 42-56; Fournier, T., Medjoubi-N, N., Porquet, D., (2000) Biochim. Biophys. Acta, 1482, pp. 157-171; Schmid, K., Nimberg, R.B., Kimura, A., Yamaguchi, H., Binette, J.P., (1977) Biochim. Biophys. Acta, 492, pp. 291-302; Ryden, I., Pahlsson, P., Lundblad, A., Skogh, T., (2002) Clin. Chim. Acta, 317, pp. 221-229; Palmblad, M., Hakansson, K., Hakansson, P., Feng, X.D., Cooper, H.J., Giannakopulos, A.E., Green, P.S., Derrick, P.J., (2000) Eur. J. Mass Spectrom., 6, pp. 267-275; Zahn, D., Fenn, J.B., (2000) Int. J. Mass Spectrom. Ion Processes, 194, pp. 197-208; Kebarle, P., (2000) J. Mass Spectrom., 35, pp. 804-817; Kebarle, P., Peschke, M., (2000) Anal. Chim. Acta, 406, pp. 11-35; Scigelova, M., Green, P.S., Giannakopulos, A.E., Rodger, A., Crout, D.H.G., Derrick, P.J., (2001) Eur. J. Mass Spectrom., 7, pp. 29-34; Salpin, J.Y., Tortajada, J., (2002) J. Mass Spectrom., 37, pp. 379-388; Karlsson, K.E., (1998) J. Chromatogr., A, 794, pp. 359-366; Cai, Y., Concha, M.C., Murray, J.S., Cole, R.B., (2002) J. Am. Soc. Mass Spectrom., 13 (12), pp. 1360-1369; Zhu, J., Cole, R.B., (2000) J. Am. Soc. Mass Spectrom., 11 (11), pp. 932-941; Iavarone, A.T., Williams, E.R., (2002) Int. J. Mass Spectrom., 219, pp. 63-72; Schweikhard, L., Guan, S., Marshall, A.G., (1992) Int. J. Mass Spectrom. Ion Processes, 120, pp. 71-83; Jackson, G.S., Hendrickson, C.L., Reinhold, B.B., Marshall, A.G., (1997) Int. J. Mass Spectrom. Ion Processes, 165-166, pp. 327-338; Schmid, K., (1989) Genetics Biochemistry, Physiological Functions and Pharmacology, pp. 7-22. , Tillement, J. P., Ed.; Alain R. Liss, Inc.: New York; Yuasa, I., Umetsu, K., Vogt, U., Nakamura, H., Nanba, E., Tamaki, N., Irizawa, Y., (1997) Hum. Genet., 99, pp. 393-398; Nakamura, H., Yuasa, I., Umetsu, K., Nakagawa, M., Nanba, E., Kimura, K., (2000) Biochem. Biophys. Res. Commun., 276, pp. 779-784; Hoffmann, E., (1996) J. Mass Spectrom., 31, pp. 129-137; Hakansson, K., Cooper, H.J., Emmett, M.R., Costello, C.E., Marshall, A.G., Nilsson, C.L., (2001) Anal. Chem., 73, pp. 4530-4536},\ncorrespondence_address1={Derrick, P.J.; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; email: P.J.Derrick@warwick.ac.uk},\nissn={00032700},\ncoden={ANCHA},\npubmed_id={15373434},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The ultrahigh resolution and sensitivity of electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry have for the first time been exploited for the characterization of highly sialylated glycoproteins, using human α-1-acid glycoprotein as the model compound. An alternative approach to the widely used high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization (MALDI) assays is described. This new method does not require any enzymatic or chemical digestion (removal of sialyl groups or deglycosylation), chemical derivatization (introduction of chromophore groups), or preliminary chromatographic separation (HPLC or electrophoresis). Following ESI and accumulation of ions in a hexapole ion guide, ions are injected into the ICR cell. A selected mass window from the overall ion population is isolated and axialized prior to detection. After acquisition and Fourier transform of the transient signal the resulted spectrum is evaluated in order to determine the charge state of the detected ions and the isotope pattern of the measured protein glycoform. The presence of ions from the same glycoform with different charge states was confirmed. The advantages and limitations of the technique are discussed. Future prospects and possible applications are indicated.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Extraribosomal cyclic tetradepsipeptides beauverolides: Profiling and modeling the fragmentation pathways.\n \n \n \n \n\n\n \n Jegorov, A.; Paizs, B.; Kuzma, M.; Zabka, M.; Landa, Z.; Sulc, M.; Barrow, M.; and Havlicek, V.\n\n\n \n\n\n\n Journal of Mass Spectrometry, 39(8): 949-960. 2004.\n cited By 18\n\n\n\n
\n\n\n\n \n \n \"ExtraribosomalPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Jegorov2004949,\nauthor={Jegorov, A. and Paizs, B. and Kuzma, M. and Zabka, M. and Landa, Z. and Sulc, M. and Barrow, M.P. and Havlicek, V.},\ntitle={Extraribosomal cyclic tetradepsipeptides beauverolides: Profiling and modeling the fragmentation pathways},\njournal={Journal of Mass Spectrometry},\nyear={2004},\nvolume={39},\nnumber={8},\npages={949-960},\ndoi={10.1002/jms.674},\nnote={cited By 18},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-4444250959&doi=10.1002%2fjms.674&partnerID=40&md5=8260e0b39ac4dd56b1f63018edd36067},\naffiliation={IVAX-Pharmaceuticals a.s., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; Department of Molecular Biophysics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Institute of Microbiology, Acad. of Sci. of the Czech Republic, Videnska 1083, CZ-142 20 Prague 4, Czech Republic; University of Southern Bohemia, Faculty of Agriculture, Studentska 13, CZ-370 05 Ceske Budejovice, Czech Republic; Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom},\nabstract={Profiling of cyclic tetradepsipeptides beauverolides was tested as a chemotaxonomic tool for fungal strain identification/discrimination. Two new tetradepsipeptides, beauverolides Q and R, were characterized by tandem mass spectrometry. Specific elimination of 113 atomic mass units from both protonated and sodiated molecules of beauverolides is ubiquitous for all 12 most dominant congeners evaluated in this profiling study. Reconstruction of the total ion chromatogram, according to this neutral fragment release, was used for data filtering and selectivity enhancement. Selective ring opening and fragment ion formation of beauverolide I are discussed in detail utilizing high-level theoretical modeling of the fragmentation pathways. Copyright © 2004 John Wiley & Sons, Ltd.},\nauthor_keywords={Beauveria;  Beauverolide;  Cyclodepsipeptide;  Fungus;  Paecilomyces;  Peptide fragmentation pathways;  Spore},\nkeywords={Beauverolides;  Fungal strain;  Tetradepsipeptides, Fungi;  Ions;  Liquid chromatography;  Mass spectrometers;  Mass spectrometry;  Molecules, Polypeptides, beauverolide;  cyclodepsipeptide;  DNA fragment;  unclassified drug, article;  Beauveria;  chemical structure;  controlled study;  device;  electrospray mass spectrometry;  fungal strain;  gene expression profiling;  gene sequence;  high performance liquid chromatography;  ion cyclotron resonance mass spectrometry;  ion pair chromatography;  liquid chromatography;  nonhuman;  positive ion electrospray;  priority journal;  proton transport;  tandem mass spectrometry, Biological Markers;  Chromatography, High Pressure Liquid;  Depsipeptides;  Fungi;  Peptides;  Peptides, Cyclic;  Protons;  Ribosomes;  Species Specificity;  Spectrometry, Mass, Electrospray Ionization, Beauveria;  Fungi;  Paecilomyces},\nchemicals_cas={Biological Markers; Depsipeptides; Peptides; Peptides, Cyclic; Protons; beauverolides, 62995-90-8},\ntradenames={BioAPEX II, Bruker, United States},\nmanufacturers={Analytica of Branford, United States; Bruker, United States; Finnigan, United States},\nreferences={Velkov, T., Lawen, A., Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors - Cyclosporin synthetase as a complex example (2003) Biotechnol. Annu. Rev., 9, p. 151; Marahiel, M.A., Protein templates for the biosynthesis of peptide antibiotics (1997) Chem. Biol., 4, p. 561; Traber, R., (1997) Biosynthesis of Cyclosporins: Biotechnology of Antibiotics, p. 279. , Strohl WR (ed). Marcel Dekker: New York; Jegorov, A., Matha, V., Sedmera, P., Havlicek, V., Stuchlik, J., Seidel, P., Simek, P., New Natural Cyclosporins from Tolypocladium Terricola (1995) Phytochemistry, 38, p. 403; Havlicek, V., Jegorov, A., Sedmera, P., Ryska, M., Sequencing of Cyclosporins by Fast Atom Bombardment and Linked-Scan Mass Spectrometry (1993) Org. Mass Spectrom., 28, p. 1440; Havlicek, V., Jegorov, A., Sedmera, P., Wagner-Redeker, W., Ryska, M., Distinguishing Isobaric Amino Acids in Sequence Analysis of Cyclosporins by Fast Atom Bombardment and Linked-Scan Mass Spectrometry (1995) J. Mass Spectrom., 30, p. 940; Buchta, M., Jegorov, A., Cvak, L., Havlicek, V., Budesinsky, M., Sedmera, P., A Cyclosporin from mycelium sterilae (1998) Phytochemistry, 38, p. 1195; Sakamoto, K., Tsujii, E., Miyauhi, M., Nakanishi, T., Yamashita, M., Shigematsu, N., Tada, T., Okuhara, M., FR901459, a novel immunosuppressant isolated from Stachybotrys chartarum No. 19392. Taxonomy of the producing organism, fermentation, isolation, physico-chemical properties and biological activities (1993) J. Antibiot., 46, p. 1788; Traber, R., Dreyfuss, M.M., Occurrence of cyclosporins and cyclosporin-like peptolides in fungi (1996) J. Ind. Microbiol., 17, p. 397; Lawen, A., Traber, R., Geyl, D., In vitro biosynthesis of [Thr2, LeU5, D-Hiv8, Leu10]-cyclosporin, a cyclosporin-related peptolide, with immunosuppressive activity by a multienzyme polypeptide (1991) J. Biol. Chem., 266, p. 15567; Jegorov, A., Sedmera, P., Matha, V., Simek, P., Zahradnickova, H., Landa, Z., Eyal, J., Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus (1994) Phytochemistry, 37, p. 1301; Kadlec, Z., Simek, P., Heydova, A., Jegorov, A., Matha, V., Landa, Z., Eyal, J., Chemotaxonomic discrimination among the fungal genera tolypocladium, beauveria and paecilomyces (1994) Biochem. Syst. Ecol., 22, p. 803; Jegorov, A., Kadlec, Z., Novak, M., Matha, V., Sedmera, P., Triska, J., Zahradnickova, H., Are the depsipepeptides of Beauveria brongniartii involved in the entomopathogenic process? (1990) Proceeding of International Conference on Biopesticides, Theory and Practice, p. 71. , Jegorov A, Matha V. (eds). CSVTS: Ceske Budejovice; Mochizuki, K., Ohmori, K., Tamura, H., Shizuri, Y., Nishiyama, S., Mioshi, E., Yamamura, S., The structures of bioactive cyclodepsipeptides, beauveriolide-I and beauveriolide-II, metabolites of entomopathogenic fungi beauveria sp (1993) Bull. Chem. Soc. Jpn., 66, p. 3041; Namatame, I., Tomoda, H., Shuyi, S., Yamaguchi, Y., Masuma, R., Ômura, S., Beauveriolides, specific inhibitors of lipid droplet formation in mouse macrophages, produced by Beauveria sp. FO-6979 (1999) J. Antibiot., 52, p. 1; Namatame, I., Tomoda, H., Tabata, N., Shuyi, S., Ômura, S., Structure elucidation of fungal beauveriolide III, a novel inhibitor of lipid droplet formation in mouse macrophages (1999) J. Antibiot., 52, p. 7; Namatame, I., Tomoda, H., Ishibashi, S., Ômura, S., Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages (2004) Proc. Nal. Acad. Sci. USA, 101, p. 737; Matsuda, D., Namatame, I., Tomoda, H., Kobayashi, S., Zocher, R., Kleinkauf, H., Ômura, S., New beauveriolides produced by amino acid-supplemented fermentation of Beauveria sp. FO-6979 (2004) J. Antibiot., 57, p. 1; Deshpande, M.V., Mycopesticide production by fermentation: Potential and challenges (1999) Crit. Rev. Microbiol., 25, p. 229; Hajek, A.E., Soper, R.S., Roberts, D.W., Anderson, T.E., Biever, K.D., Ferro, D.N., LeBrun, R.A., Storch, R.H., Foliar applications of Beauveria bassiana (Balsamo) Vuillemin for control of the colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae): An overview of pilot test results from the northern United States (1987) Can. Entomol., 119, p. 959; Milner, R.J., Prospects for biopesticides for aphid control (1997) Entomophaga, 42, p. 227; Osborne, L.S., Landa, Z., Biological-control of whiteflies with entomopathogenic fungi (1992) Florida Entomol., 75, p. 456; Puterka, G.J., Fungal pathogens for arthropod pest-control in orchard systems - Mycoinsecticidal approach for pear psylla control (1999) Biocontrol, 44, p. 183; Vilcinskas, A., Jegorov, A., Landa, Z., Götz, P., Matha, V., Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth, Galleria mellonella (1999) Comp. Biochem. Physiol. C, 1222, p. 83; Sachs, S.W., Baum, J., Mies, C., Beauvaria bassiana keratitis (1985) Br. J. Ophthalmol., 69, p. 548; Ishibashi, Y., Kaufman, H.E., Ichinoe, M., Kagawa, S., The pathogenicity of Beauveria bassiana in the rabbit cornea (1987) Mykosen, 30, p. 115; Gonzales-Cabo, J.F., Serrano, J.E., Barcena Asensio, M.C., Mycotic pulmonary disease by Beauveria bassiana in a captive tortoise (1995) Mycoses, 38, p. 167; Mishra, S.K., Ajello, L., Ahearn, D.G., Burge, H.A., Kurup, V.P., Pierson, D.L., Price, D.L., Switzer, K.F., Environmental mycology and its importance to public health (1992) J. Med. Vet. Mycol., (SUPPL. 1), p. 287; Fromtling, R.A., Kosanke, S.D., Jensen, J.M., Bulner, G.S., Fatal Beauveria bassiana infection in a captive American alligator (1979) J. Am. Vet. Med. Assoc., p. 934; Ponikau, J.U., Sherris, D.A., Kern, E.B., Homburger, H.A., Frigas, E., Gaffey, T.A., Roberts, G.D., The diagnosis and incidence of allergic fungal sinusitis (1999) Mayo Clin. Proc., 74, p. 877; Domer, J.E., Murphy, J.W., Deepe Jr., G.S., Franco, M., Immunomodulation in the mycoses (1992) J. Med. Vet. Mycol., (SUPPL. 1), p. 157; Eyal, J., Mabud, A., Fischbein, K.L., Walter, J.F., Osborne, L.S., Landa, Z., Assessment of beauveria-bassiana NOV EO-1 strain, which produces a red pigment for microbial control (1994) Appl. Biochem. Biotechnol., 44, p. 65; Landa, Z., Osborne, L.S., Lopez, F., Eyal, J., A bioassay for determining pathogenicity of entomogenous fungi on whiteflies (1994) Biol. Control, 4, p. 341; Jegorov, A., Paizs, B., Zabka, M., Kuzma, M., Giannakopulos, A.E., Derrick, P.J., Havlicek, V., Profiling of cyclic hexadepsipeptides roseotoxins synthesized in vitro and in vivo: A combined tandem mass spectrometry and quantum chemical study (2003) Eur. J. Mass Spectrom., 9, p. 105; Kuzma, M., Jegorov, A., Kacer, P., Havlicek, V., Sequencing of new beauverolides by high performance liquid chromatography and mass spectrometry (2001) J. Mass Spectrom., 36, p. 1108; Paizs, B., Suhai, S., Hargittai, B., Hruby, V.J., Somogyi, Á., Ab initio and MS/MS studies on protonated peptides containing basic and acidic amino acid residues. I. Solvated proton vs. salt-bridged structures and the cleavage of the terminal amide bond of protonated RD-NHB2B (2002) Int. J. Mass Spectrom., 219, p. 203; Wyttenbach, T., Paizs, B., Barran, P., Breci, L., Liu, D., Suhai, S., Wysocki, V.H., Bowers, M.T., The effect of the initial water of hydration on the energetics, structures, and H/D-exchange mechanism of a family of pentapeptides: An experimental and theoretical study (2003) J. Am. Chem. Soc., 125, p. 13768; Paizs, B., Suhai, S., A comparative study of BSSE correction methods at DFT and MP2 levels of theory (1998) J. Comput. Chem., 19, p. 575; Paizs, B., Salvador, P., Császár, A.G., Duran, M., Suhai, S., Intermolecular bond lengths: Extrapolation to the basis set limit on uncorrected and BSSE-corrected potential energy hypersurfaces (2001) J. Comput. Chem., 22, p. 196; Salvador, P., Paizs, B., Duran, M., Suhai, S., On the effect of the BSSE on intermolecular potential energy surfaces. Comparison of a priori and a posteriori BSSE correction schemes (2001) J. Comput. Chem., 22, p. 765; Baer, T., Hase, W.L., (1996) Unimolecular Reaction Dynamics, , Oxford University Press: Oxford; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian 98, , Revision A.9, Gaussian, Inc., Pittsburgh PA; Gillespie, A.T., Claydon, N., The use of entomogenous fungi for pest-control and the role of toxins in pathogenesis (1989) Pestic. Sci., 27, p. 2003; Mugnai, L., Brige, P.D., Evans, H.C., A chemotaxonomic evaluation of the genus beauveria (1989) Mycol. Res., 92, p. 199; Paizs, B., Suhai, S., Fragmentation pathways of protonated peptides Mass Spectrom. Rev., , in press; Dongre, A.R., Jones, J.L., Somogyi, A., Wysocki, V.H., Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model (1996) J. Am. Chem. Soc., 118, p. 8365; Harrison, A.G., Yalcin, T., Proton mobility in protonated amino acids and peptides (1997) Int. J. Mass Spectrom. Ion Processes, 165-166, p. 339; Csonka, I.P., Paizs, B., Lendvay, G., Suhai, S., Proton mobility in protonated peptides: A joint molecular orbital and RRKM study (2000) Rapid Commun. Mass Spectrom., 14, p. 417; Paizs, B., Csonka, I.P., Lendvay, G., Suhai, S., Proton mobility in protonated glycylglycine and N-formylglycylglycinamide: A combined quantum chemical and RRKNI study (2001) Rapid Commun. Mass Spectrom., 15, p. 637; Paizs, B., Suhai, S., (2001) Rapid Commun. Mass Spectrom., 15, p. 2307; Paizs, B., Suhai, S., Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. I. Cis-trans isomerization around protonated amide bonds (2002) Rapid Commun. Mass Spectrom., 16, p. 375; Paizs, B., Lendvay, G., Vekey, K., Suhai, S., Formation of b(2)(+) ions from protonated peptides: An ab initio study (1999) Rapid Commun. Mass Spectrom., 13, p. 525; Paizs, B., Suhai, S., Harrison, A.G., Experimental and theoretical investigation of the main fragmentation pathways of protonated H-Gly-Gly-Sar-OH and H-Gly-Sar-Sar-OH (2003) J. Am. Soc. Mass Spectrom., 14, p. 1454; Paizs, B., Suhai, S., Towards understanding the tandem mass spectra of protonated oligopeptides. 1: Mechanism of amide bond cleavage (2004) J. Am. Soc. Mass Spectrom., 15, p. 103; Yalcin, T., Khouw, C., Csizmadia, I.G., Peterson, M.R., Harrison, A.G., Why are b ions stable species in peptide spectra? (1995) J. Am. Soc. Mass Spectrom., 6, p. 1165; Paizs, B., Szlavik, Z., Lendvay, D., Vekey, K., Suhai, S., Formation of a(2)(+) ions of protonated peptides: An ab initio study (2000) Rapid Commun. Mass Spectrom., 14, p. 746; Yalcin, T., Csizmadia, I.G., Peterson, M.B., Harrison, A.G., The structure and fragmentation of B-n (n = 3) ions in peptide spectra (1996) J. Am. Soc. Mass Spectrom., 7, p. 233},\ncorrespondence_address1={Havlicek, V.; Institute of Microbiology, Acad. of Sci. of the Czech Republic, Videnska 1083, CZ-142 20 Prague 4, Czech Republic; email: vlhavlic@biomed.cas.cz},\nissn={10765174},\ncoden={JMSPF},\npubmed_id={15329847},\nlanguage={English},\nabbrev_source_title={J. Mass Spectrom.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Profiling of cyclic tetradepsipeptides beauverolides was tested as a chemotaxonomic tool for fungal strain identification/discrimination. Two new tetradepsipeptides, beauverolides Q and R, were characterized by tandem mass spectrometry. Specific elimination of 113 atomic mass units from both protonated and sodiated molecules of beauverolides is ubiquitous for all 12 most dominant congeners evaluated in this profiling study. Reconstruction of the total ion chromatogram, according to this neutral fragment release, was used for data filtering and selectivity enhancement. Selective ring opening and fragment ion formation of beauverolide I are discussed in detail utilizing high-level theoretical modeling of the fragmentation pathways. Copyright © 2004 John Wiley & Sons, Ltd.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2003\n \n \n (1)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion.\n \n \n \n \n\n\n \n Barrow, M.; McDonnell, L.; Feng, X.; Walker, J.; and Derrick, P.\n\n\n \n\n\n\n Analytical Chemistry, 75(4): 860-866. 2003.\n cited By 137\n\n\n\n
\n\n\n\n \n \n \"DeterminationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Barrow2003860,\nauthor={Barrow, M.P. and McDonnell, L.A. and Feng, X. and Walker, J. and Derrick, P.J.},\ntitle={Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion},\njournal={Analytical Chemistry},\nyear={2003},\nvolume={75},\nnumber={4},\npages={860-866},\ndoi={10.1021/ac020388b},\nnote={cited By 137},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037440571&doi=10.1021%2fac020388b&partnerID=40&md5=5cf81cfdb77fbeb2eef252165f9d1429},\naffiliation={Institute of Mass Spectrometry, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Service Analyse, ATOFINA Ctr. de Rech. Rhone-Alpes, Rue Henri Moissan, 69493 Pierre-Bénite Cedex, France},\nabstract={Recent research has shown that the corrosivity of naphthenic acids is related to their molecular mass and that the "total acid number" (TAN), traditionally used as an indicator of the naphthenic acid content of an oil, is not as reliable as first believed. The presence of naphthenic acids in crude oils leads to the corrosion of oil refinery equipment, with the oil industry incurring costs that will ultimately be passed on to the consumer. With regard to these concerns, mass spectrometry has been increasingly applied to the investigation of the naphthenic acid content of crude oils. To ascertain the nature of the species present, however, it is necessary to utilize an ionization technique that does not result in fragmentation, ensuring the detection only of molecular species which provide useful information about the sample constitution. In the following investigation, negative ion mode nanospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been applied to the analysis of crude oil samples, providing insight into the different acidic species that were present. Use of the negative ion mode to allow the selective observation of the naphthenic acids and the inherent high mass accuracy and ultrahigh resolution of FTICR mass spectrometry ensure that this technique is very well suited to the characterization of naphthenic acids within a crude oil sample. Determination of the nature of the naphthenic acids present provides vital information, such as the acids' sizes and composition, which may be used in the battle against corrosion and also used to fingerprint samples from different oil fields.},\nkeywords={Cyclotron resonance;  Fourier transforms;  Ionization;  Mass spectrometry;  Negative ions, Molecular species, Crude petroleum, carboxylic acid derivative;  naphthenic acid derivative;  petroleum;  unclassified drug, accuracy;  analytic method;  article;  chemical analysis;  chemical composition;  corrosion;  cyclotron;  ion cyclotron resonance mass spectrometry;  ionization;  mass spectrometry;  molecular weight;  oil industry},\nchemicals_cas={petroleum, 8002-05-9},\nreferences={Dzidic, I., Somerville, A.C., Raia, J.C., Hart, H.V., (1988) Anal. Chem., 60, pp. 1318-1323; Fan, T.-P., (1991) Energy & Fuels, 5, pp. 371-375; Wong, D.C.L., Van Compernolle, R., Nowlin, J.G., O'Neal, D.L., Johnson, G.M., (1996) Chemosphere, 32, pp. 1669-1679; St. John, W.P., Rughani, J., Green, S.A., McGinnis, G.D., (1998) J. Chromatogr., A., 807, pp. 241-251; Hsu, C.S., Dechert, G.J., Robbins, W.K., Fukuda, E.K., (2000) Energy Fuels, 14, pp. 217-223; Turnbull, A., Slavcheva, E., Shone, B., (1998) Corrosion, 54, pp. 922-930; Slavcheva, E., Shone, B., Turnbull, A., (1999) Br. Corr. J., 34, pp. 125-131; Meredith, W., Kelland, S.-J., Jones, D.M., (2000) Org. Geochem., 31, pp. 1059-1073; Tomczyk, N.A., Winans, R.E., Shinn, J.H., Robinson, R.C., (2001) Energy Fuels, 15, pp. 1498-1504; Brown, R.A., (1951) Anal. Chem., 23, pp. 430-437; Clerc, R.J., Hood, A., O'Neal M.J., Jr., (1955) Anal. Chem., 27, pp. 868-875; Gallegos, E.J., Green, J.W., Lindeman, L.P., LeTourneau, R.L., Teeter, R.M., (1967) Anal. Chem., 39, pp. 1833-1838; Aczel, T., Allan, D.E., Harding, J.H., Knipp, E.A., (1970) Anal. Chem., 42, pp. 341-347; Schmidt, C.E., Sprecher, R.F., Batts, B.D., (1987) Anal. Chem., 59, pp. 2027-2033; Guan, S., Marshall, A.G., Scheppele, S.E., (1996) Anal. Chem., 68, pp. 46-71; Rodgers, R.P., White, F.M., Hendrickson, C.L., Marshall, A.G., Andersen, K.V., (1998) Anal. Chem., 70, pp. 4743-4750; Rodgers, R., Blumer, E.N., Freitas, M.A., Marshall, A.G., (2000) Environ. Sci. Technol., 34, pp. 1671-1678; Qian, K., Hsu, C.S., (1992) Anal. Chem., 64, pp. 7-2333; Bennett, B., Larter, S.R., (2000) Anal. Chem., 72, pp. 1039-1044; Jones, D.M., Watson, J.S., Meredith, W., Chen, M., Bennett, B., (2001) Anal. Chem., 73, pp. 703-707; Green, J.B., Stierwalt, B.K., Thomson, J.S., Treese, C.A., (1985) Anal. Chem., 57, pp. 2207-2211; Miyabayashi, K., Suzuki, K., Teranishi, T., Naito, Y., Tsujimoto, K., Miyake, M., (2000) Chem. Lett., pp. 172-173; Miyabayashi, K., Yasuhide, N., Miyake, M., Tsujimoto, K., (2000) Eur. J. Mass Spectrom., 6, pp. 251-258; Zhan, D., Fenn, J.B., (2000) Int. J. Mass Spectrom., 194, pp. 197-208; Szulejko, J.E., Solouki, T., (2002) Anal. Chem., 74, pp. 3434-3442; Kujawinski, E.B., Freitas, M.A., Zang, X., Hatcher, P.G., Green-Church, K.B., Jones, R.B., (2002) Org. Geochem., 33, pp. 171-180; Dutta, T.K., Harayama, S., (2001) Anal. Chem., 73, pp. 864-869; Roussis, S.G., Proulx, R., (2002) Anal. Chem., 74, pp. 1408-1414; Yamashita, M., Fenn, J.B., (1984) J. Phys. Chem., 88, pp. 4451-4459; Yamashita, M., Fenn, J.B., (1984) J. Phys. Chem., 88, pp. 4671-4675; Wilm, M., Mann, M., (1996) Anal. Chem., 68, pp. 1-8; Amster, I.J., (1996) J. Mass Spectrom., 31, pp. 1325-1337; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., (1998) Mass Spectrom. Rev., 17, pp. 1-35; Marshall, A.G., Schweikhard, L., (1992) Int. J. Mass Spectrom. Ion Processes, 118-119, pp. 37-70; Dienes, T., Pastor, S.J., Schürch, S., Scott, J.R., Yao, J., Cui, S., Wilkins, C.L., (1996) Mass Spectrom. Rev., 15, pp. 163-211; Chen, S.-P., Comisarow, M.B., (1991) Rapid Commun. Mass Spectrom., 5, pp. 450-455; Chen, S.-P., Comisarow, M.B., (1992) Rapid Commun. Mass Spectrom., 6, pp. 1-3; Guan, S., Wahl, M.C., Marshall, A.G., (1993) Anal. Chem., 65, pp. 3647-3653; Perrung, A.J., Kouzes, R.T., (1995) Int. J. Mass Spectrom. Ion Processes, 145, pp. 139-153; Naito, Y., Inoue, M., (1996) Int. J. Mass Spectrom. Ion Processes, 157-158, pp. 85-96; Stults, J.T., (1997) Anal. Chem., 69, pp. 1815-1819; Easterling, M.L., Mize, T.H., Amster, I., (1999) J. Anal. Chem., 71, pp. 624-632; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., (2001) Energy Fuels, 15, pp. 1505-1511; Palmblad, M., Hakansson, K., Hakansson, P., Feng, X., Cooper, H.J., Giannakopulos, A.E., Green, P.S., Derrick, P.J., (2000) Eur. J. Mass Spectrom., 6, pp. 267-275; Caravatti, P., Allemann, M., (1991) Org. Mass Spectrom., 26, pp. 514-518; O'Connor, P.B., McLafferty, F.W., (1995) J. Am. Chem. Soc., 117, pp. 12826-12831; Sze, T.-P.E., Chan, T.-W.D., (1999) Rapid Commun. Mass Spectrom., 13, pp. 398-406},\ncorrespondence_address1={Derrick, P.J.; Institute of Mass Spectrometry, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; email: P.J.Derrick@warwick.ac.uk},\nissn={00032700},\ncoden={ANCHA},\nlanguage={English},\nabbrev_source_title={Anal. Chem.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n Recent research has shown that the corrosivity of naphthenic acids is related to their molecular mass and that the \"total acid number\" (TAN), traditionally used as an indicator of the naphthenic acid content of an oil, is not as reliable as first believed. The presence of naphthenic acids in crude oils leads to the corrosion of oil refinery equipment, with the oil industry incurring costs that will ultimately be passed on to the consumer. With regard to these concerns, mass spectrometry has been increasingly applied to the investigation of the naphthenic acid content of crude oils. To ascertain the nature of the species present, however, it is necessary to utilize an ionization technique that does not result in fragmentation, ensuring the detection only of molecular species which provide useful information about the sample constitution. In the following investigation, negative ion mode nanospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been applied to the analysis of crude oil samples, providing insight into the different acidic species that were present. Use of the negative ion mode to allow the selective observation of the naphthenic acids and the inherent high mass accuracy and ultrahigh resolution of FTICR mass spectrometry ensure that this technique is very well suited to the characterization of naphthenic acids within a crude oil sample. Determination of the nature of the naphthenic acids present provides vital information, such as the acids' sizes and composition, which may be used in the battle against corrosion and also used to fingerprint samples from different oil fields.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2000\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Significant interferences in the post source decay spectra of ion-gated fullerene and coalesced carbon cluster ions.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n International Journal of Mass Spectrometry, 203(1-3): 111-125. 2000.\n cited By 11\n\n\n\n
\n\n\n\n \n \n \"SignificantPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n\n\n\n
\n
\n
\n\n\n
\n Post source decay experiments have been performed with fullerene radical cations and large carbon cluster radical cations, produced from laser desorption/ionization and studied by applying reflectron time-of-flight mass spectrometry. Utilising the wide-spread technique of continuous ion extraction, in conjunction with a deflecting electrode (ion gate) for the selection of ions, the experimental method is carefully evaluated in light of the observation of interfering, artefact signals which have been established as resulting from delayed ionization of fullerenes. © 2000 Elsevier Science B.V.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Characterization of fullerenes and fullerene derivatives by nanospray.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Chemical Physics Letters, 330(3-4): 267-274. 2000.\n cited By 44\n\n\n\n
\n\n\n\n \n \n \"CharacterizationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
\n
\n\n\n
\n Nanospray has been shown to be a viable ionization method for analysis of fullerenes and fullerene derivatives by mass spectrometry. The sample quantities required have been comparable to those used for matrix-assisted laser desorption/ionization, which is currently considered to be amongst the most sensitive techniques. No modification of the fullerene sample solution was required. Neither protonation nor deprotonation were ever observed during nanospray of fullerenes, leading to the conclusion that an alternative to the traditionally accepted ionization mechanism is required. The spectra were free of fragmentation, allowing the molecular ion to be identified beyond doubt. © 2000 Elsevier Science B.V.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Laser-induced formation, fragmentation, coalescence, and delayed ionization of the C 59N heterofullerene.\n \n \n \n \n\n\n \n Clipston, N.; Brown, T.; Vasil'ev, Y.; Barrow, M.; Herzschuh, R.; Reuther, U.; Hirsch, A.; and Drewello, T.\n\n\n \n\n\n\n Journal of Physical Chemistry A, 104(40): 9171-9179. 2000.\n cited By 27\n\n\n\n
\n\n\n\n \n \n \"Laser-inducedPaper\n  \n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Clipston20009171,\nauthor={Clipston, N.L. and Brown, T. and Vasil'ev, Y.Y. and Barrow, M.P. and Herzschuh, R. and Reuther, U. and Hirsch, A. and Drewello, T.},\ntitle={Laser-induced formation, fragmentation, coalescence, and delayed ionization of the C 59N heterofullerene},\njournal={Journal of Physical Chemistry A},\nyear={2000},\nvolume={104},\nnumber={40},\npages={9171-9179},\nnote={cited By 27},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034300408&partnerID=40&md5=288bd20d7cb871ab322eaa236beedee5},\naffiliation={Department of Chemistry, University of Wanvick, Coventry CV4 7AL, United Kingdom; Fachbereich Chemie, Universität Leipzig, Linnéstrasse 3, D-04103 Leipzig, Germany; Institut für Organische Chemie, Universität Erlangen, Henkestrasse 42, D-91054 Erlangen, Germany},\nabstract={The formation of the nitrogen heterofullerene, C 59N, following the ablation of a variety of fullerene derivatives, all of which possess organic ligands bound to the carbon cage through a nitrogen atom, has been investigated utilizing laser desorption/ionization mass spectrometry. Investigating the formation of cationic and anionic C 59N +/-, this approach is found to be a new and very efficient way to implement the initially exohedral nitrogen atom into the carbon cage. The laser-induced heterofullerene formation is discussed in terms of the structure and the charge state dependency of the target material. In further experiments, the coalescence reactivity, leading toward the formation of larger clusters has been examined following laser ablation of thin films of the (CsgNJa dimer. Coalescence leads to two major reaction products, consisting of larger C n-1N + clusters which retain the nitrogen atom networked into a larger carbon cage and pure C n + (n = even) carbon clusters. The C n-1N + cluster formation is accompanied by abundant metastable transitions caused by the loss of CN and the resulting implications for the coalescence mechanism are discussed. Finally, evidence is presented for the delayed electron emission of C 59N·. The observation of delayed ionization of heterofullerenes is unprecedented, revealing a similar resistance toward fragmentation as in the case of their all-carbon fullerene analogues. © 2000 American Chemical Society.},\nkeywords={Coalescence;  Dimers;  Electron emission;  Electronic density of states;  Fullerenes;  Ionization of gases;  Laser ablation;  Molecular structure;  Negative ions;  Positive ions;  Secondary ion mass spectrometry;  Thin films, Delayed ionization;  Fragmentation;  Heterofullerene;  Ionization mass spectrometry;  Laser desorption, Nitrogen compounds},\nreferences={Guo, T., Jin, C., Smalley, R.E., (1991) J. Phys. Chem., 95, pp. 4948-4950; Ying, Z.C., Hettich, R.L., Compton, R.N., Haufler, R.E., (1996) J. Phys. B: At. Mol. Opt. Phys., 29, pp. 4935-4942; Kimura, T., Sugai, T., Shinohara, H., (1996) Chem. Phys. Lett., 256, pp. 269-273; Pellarin, M., Ray, C., Mélinon, P., Lermé, J., Vialle, J.L., Kéghélian, P., Perez, A., Broyer, M., (1997) Chem. Phys. Lett., 277, pp. 96-104; Yu, R., Zhan, M., Cheng, D., Yang, S., Liu, Z., Zheng, L., (1995) J. Phys. Chem., 99, pp. 1818-1819; Muhr, H.-J., Nesper, R., Schnyder, B., Kotz, R., (1996) Chem. Phys. Lett., 249, pp. 399-405; Möschel, C., Jansen, M.Z., (1999) Anorg. Allg. Chem., 625, pp. 175-177; Branz, W., Billas, I.M.L., Malinowski, N., Tast, F., Heinebrodt, M., Martin, T.P., (1998) J. Chem. Phys., 109, p. 3425; Poblet, J.M., Mufioz, J., Winkler, K., Cancilla, M., Hayashi, A., Lebrilla, C.B., Balch, A.L., (1999) Chem. Commun., pp. 493-494; Kimura, T., Sugai, T., Shinohara, H., (1999) Int. J. Mass Spectrom., 188, pp. 225-232; Hummelen, J.C., Knight, B., Pavlovich, J., Gonzalez, R., Wudl, F., (1995) Science, 269, p. 1554; Nuber, B., Hirsch, A., (1996) Chem. Commun., p. 1421; Lamparth, I., Nuber, B., Schick, G., Skiebe, A., Grosser, T., Hirsch, A., (1995) Angew. Chem., Int. Ed. Engl., 34, p. 2257; Yeretzian, C., Hansen, K., Diederich, F., Whetten, R.L., (1992) Nature, 359, p. 44; Beck, R.D., Weis, P., Bräuchle, G., Kappes, M.M., (1994) J. Chem. Phys., 100, p. 262; Beck, R.D., Stoermer, C., Schulz, C., Michel, R., Weis, P., Bräuchle, G., Kappes, M.M., (1994) J. Chem. Phys., 101, p. 3243; Beck, R.D., Weis, P., Hirsch, A., Lamparth, I., (1994) J. Phys. Chem., 98, p. 9683; Mitzner, R., Winter, B., Kusch, C., Campbell, E.E.B., Hertel, I.V.Z., (1996) Phys. D, 37, p. 89; Campbell, E.E.B., Ulmer, G., Hertel, I.V., (1991) Phys. Rev. Lett., 67, p. 1986; Wurz, P., Lykke, K.R., (1991) J. Chem. Phys., 95, p. 7008; Deng, R., Echt, O.J., (1998) Phys. Chem. A, 102, pp. 2533-2539; Beck, R.D., Weis, P., Rockenberger, J., Kappes, M.M., (1996) Surf. Rev. Lett., 3, p. 771; Mandrus, D., Kele, M., Hettich, R.L., Guiochon, G., Sales, B.C., Boatner, L.A., (1997) J. Phys. Chem. B, 101, p. 123; Mitchell, D.W., Smith, R.D., (1995) Phys. Rev. E, 52, p. 4366; Feng, X., Clipston, N., Brown, T., Cooper, H., Reuther, U., Hirsch, A., Derrick, P.J., Drewello, T., (2000) Rapid Commun. Mass Spectrom., 14, pp. 368-370; Vasil'ev, Y., (2000), In preparation; Pradeep, T., Vijayakrishnan, V., Santra, A.K., Rao, C.N.R., (1991) J. Phys. Chem., 95, pp. 10564-10565; Christian, J.F., Wan, Z., Anderson, S.L., (1992) J. Phys. Chem., 96, pp. 10597-10600; Tobe, Y., Nakanishi, H., Sonoda, M., Wakabayashi, T., Achiba, Y., (1999) Chem. Commun., pp. 1625-1626; Ong, P.P., Zhu, L., Zhao, L., Zhang, J., Wang, S., Li, Y., Cai, R., Huang, Z., (1997) Int. J. Mass Spectrom., 163, pp. 19-28; Barrow, M.P., Tower, N.J., Taylor, R., Drewello, T., (1998) Chem. Phys. Lett., 293, pp. 302-308; Al-Jafari, M.S., Barrow, M.P., Taylor, R., Drewello, T., (1999) Int. J. Mass Spectrom., 184, pp. L1-L4; Harvey, D.J., Hunter, A.P., Bateman, R.H., Brown, J., Critchley, G., (1999) Int. J. Mass Spectrom., 188, pp. 131-146; Barrow, M.P., Drewello, T., Int. J. Mass Spectrom, , In press},\ncorrespondence_address1={Clipston, N.L.; Department of Chemistry, University of Wanvick, Coventry CV4 7AL, United Kingdom},\nissn={10895639},\nlanguage={English},\nabbrev_source_title={J. Phys. Chem. A},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n The formation of the nitrogen heterofullerene, C 59N, following the ablation of a variety of fullerene derivatives, all of which possess organic ligands bound to the carbon cage through a nitrogen atom, has been investigated utilizing laser desorption/ionization mass spectrometry. Investigating the formation of cationic and anionic C 59N +/-, this approach is found to be a new and very efficient way to implement the initially exohedral nitrogen atom into the carbon cage. The laser-induced heterofullerene formation is discussed in terms of the structure and the charge state dependency of the target material. In further experiments, the coalescence reactivity, leading toward the formation of larger clusters has been examined following laser ablation of thin films of the (CsgNJa dimer. Coalescence leads to two major reaction products, consisting of larger C n-1N + clusters which retain the nitrogen atom networked into a larger carbon cage and pure C n + (n = even) carbon clusters. The C n-1N + cluster formation is accompanied by abundant metastable transitions caused by the loss of CN and the resulting implications for the coalescence mechanism are discussed. Finally, evidence is presented for the delayed electron emission of C 59N·. The observation of delayed ionization of heterofullerenes is unprecedented, revealing a similar resistance toward fragmentation as in the case of their all-carbon fullerene analogues. © 2000 American Chemical Society.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 1999\n \n \n (2)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Laser-induced gas-phase synthesis of dimeric C70 oxides.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n International Journal of Mass Spectrometry, 184(2-3): L1-L4. 1999.\n cited By 15\n\n\n\n
\n\n\n\n \n \n \"Laser-inducedPaper\n  \n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
\n
\n\n\n
\n The greater lability of C70 oxides towards oxygen release has been advanced recently to explain the failure to synthesise C140O from C70O; by contrast the analogous reactions with C60 oxides result in the formation of fullerene oxide aggregates. The present report provides the first experimental evidence for the existence of oxides of the type (C70)2On, resulting from gas-phase aggregation reactions when using matrix-assisted laser desorption/ionization to study synthetic, high performance liquid chromatography-purified C70 oxides, (Int J Mass Spectrom 184 (1999) L1-L4) © 1999 Elsevier Science B.V.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Penta(cyclopentadienyl)-η 5-cyclopentadienylmanganesetricarbonyl: Structure and laser-induced conversion to fullerenes.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Journal of Organometallic Chemistry, 572(1): 135-139. 1999.\n cited By 12\n\n\n\n
\n\n\n\n \n \n \"Penta(cyclopentadienyl)-ηPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
\n
\n\n\n
\n The title compound [Cp5CpMn(CO)3], 1, has been characterized by X-ray crystallography and shown by laser-induced desorption/ionization (LDI) to undergo dissociative coalescence to fullerene C60 and other carbon clusters. © 1999 Elsevier Science S.A.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 1998\n \n \n (2)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n C60 degrades to C120O.\n \n \n \n \n\n\n \n Taylor, R.; Barrow, M.; and Drewello, T.\n\n\n \n\n\n\n Chemical Communications, (22): 2497-2498. 1998.\n cited By 74\n\n\n\n
\n\n\n\n \n \n \"C60Paper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n\n\n\n
\n
@ARTICLE{Taylor19982497,\nauthor={Taylor, R. and Barrow, M.P. and Drewello, T.},\ntitle={C60 degrades to C120O},\njournal={Chemical Communications},\nyear={1998},\nnumber={22},\npages={2497-2498},\ndoi={10.1039/a806726k},\nnote={cited By 74},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032556464&doi=10.1039%2fa806726k&partnerID=40&md5=88b8bd6865ef5ee152bec4e9fa0a2f76},\naffiliation={Chemistry Laboratory, CPES School, Sussex University, Brighton BN1 9QJ, United Kingdom; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom},\nabstract={At ambient temperature and in the solid state C60 degrades to C120O which is present in up to ca. 1% concentration in each of thirteen differently sourced samples examined; traces of C120O2 have also been detected.},\nkeywords={fullerene, article;  degradation;  environmental temperature},\nreferences={Taylor, R., Hare, J.P., Abdul-Sada, A.K., Kroto, H.W., (1990) J. Chem. Soc., Chem. Commun., p. 1423; Taylor, R., (1992) Interdisciplinary Science Reviews, 17, p. 161; Taylor, R., (1998) Molecular Nanostructures, p. 136. , eds. H. Kuzmany, J. Fink, M. Nehring and S. Roth, World Scientific; Taylor, R., Pénicaud, A., Tower, N.J., Chem. Phys. Lett., , in press; Lebedkin, S., Ballenweg, S., Cross, J., Taylor, R., Krätschmer, W., (1995) Tetrahedron Lett., p. 4571; Gromov, A., Lebedkin, S., Ballenweg, S., Avent, A.G., Taylor, R., Krätschmer, W., (1997) Chem. Commun., p. 209; Krause, M., Dunsch, L., Siefert, G., Fowler, P.W., Gromov, A., Krätschmer, W., Gutierez, R., Frauenheim, T., (1998) J. Chem. Soc., Faraday Trans., 94, p. 2287; Smith, A.B., Toyuyama, H., Strongin, R.M., Furst, G.T., Romanov, W.J., Chait, B.T., Mirza, U.A., Haller, I., (1995) J. Am. Chem. Soc., 117, p. 9359; Balch, A.L., Costa, D.A., Fawcett, W.R., Winkler, K., (1996) J. Phys. Chem., 100, p. 4823; Creegan, K.M., Robbins, J.L., Robbins, W.K., Millar, J.M., Sherwood, R.D., Tindall, P.J., Cox, D.M., Smith, A.B., (1992) J. Am. Chem. Soc., 114, p. 1103; McElvany, S.W., Callahan, J.H., Ross, M.M., Lamb, L.D., Huffman, D.R., (1993) Science, 260, p. 1632; Juha, L., Hamplová, V., Kodymoná, J., Spalek, O., (1994) J. Chem. Soc., Chem. Commun., p. 2437; Elemes, Y., Silverman, S.K., Sheu, C., Kao, M., Foote, C.S., Alvarez, M.N., Whetten, R., (1992) Angew. Chem. Intl. Ed. Engl., 31, p. 351; Hamano, T., Mashino, T., Hiroba, M., (1995) J. Chem. Soc., Chem. Commun., p. 1537; Murray, R.W., Iyanar, K., (1997) Tetrahedron Lett., 38, p. 335; Heymann, D., Chibante, L.P.F., (1993) Recl. Trav. Chim. Pays-Bas, 112, p. 531; (1993) Chem. Phys. Lett., 207, p. 339; Malhotra, R., Kumar, S., Satyam, A., (1994) J. Chem. Soc., Chem. Commun., p. 1339; Deng, J., Mou, C., Han, C., (1995) J. Phys. Chem., 99, p. 14907; Deng, J., Ju, D., Her, G., Mou, C., Chen, C., Lin, Y., Han, C., (1993) J. Phys. Chem., 97, p. 11575; Nogami, T., Tsuda, M., Ishida, T., Kurono, S., Ohashi, M., (1993) Fullerene Sci. Technol., 1, p. 275; Balch, A.L., Costa, D.A., Noll, B.C., Olmstead, M.M., (1995) J. Am. Chem. Soc., 117, p. 8926; Kalsbeck, W.A., Thorp, H.H., (1991) J. Electroanal. Chem., 314, p. 363; Fowler, P.W., Mitchell, D., Taylor, R., Seifert, G., (1997) J. Chem. Soc., Perkin Trans. 2, p. 1901; Daly, T.K., Buseck, P.R., Williams, P., Lewis, C.F., (1993) Science, 259, p. 1599; Heymann, D., Chibante, L.P.F., Wolbach, W.S., Brooks, R.R., Smalley, R.E., (1994) Science, 265, p. 645; Boltalina, O.V., Street, J.M., Taylor, R., (1998) Chem. Commun., p. 1827; Darwish, A.D., Birkett, P.R., Langley, G.J., Kroto, H.W., Taylor, R., Walton, D.R.M., (1997) Fullerene Sci. Technol., 5, p. 1667},\ncorrespondence_address1={Taylor, R.; Chemistry Laboratory, CPES School, Sussex University, Brighton BN1 9QJ, United Kingdom; email: R.Taylor@sussex.ac.uk},\npublisher={Royal Society of Chemistry},\nissn={13597345},\ncoden={CHCOF},\nlanguage={English},\nabbrev_source_title={Chem. Commun.},\ndocument_type={Article},\nsource={Scopus},\n}\n\n
\n
\n\n\n
\n At ambient temperature and in the solid state C60 degrades to C120O which is present in up to ca. 1% concentration in each of thirteen differently sourced samples examined; traces of C120O2 have also been detected.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Matrix-assisted laser-induced gas-phase aggregation of C60 oxides.\n \n \n \n \n\n\n \n \n\n\n \n\n\n\n Chemical Physics Letters, 293(3-4): 302-308. 1998.\n cited By 39\n\n\n\n
\n\n\n\n \n \n \"Matrix-assistedPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
\n
\n\n\n
\n Matrix-assisted laser desorption/ionisation of C60 oxides, in conjunction with reflectron time-of-flight mass spectrometry, leads to an unprecedented gas-phase aggregation resulting in the formation of C120On -·. products. The analysis of the product distribution obtained for oxides of varying oxygen content strongly suggests that the structures of these species are closely related to oxo-bridged isolated fullerene cages rather than to species featuring a fused giant fullerene core.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n undefined\n \n \n (2)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n .\n \n \n \n\n\n \n \n\n\n \n\n\n\n . .\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n  \n \n 9 downloads\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n .\n \n \n \n\n\n \n \n\n\n \n\n\n\n . .\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n  \n \n 9 downloads\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n\n\n\n
\n\n\n \n\n \n \n \n \n\n
\n"}; document.write(bibbase_data.data);