var bibbase_data = {"data":"\"Loading..\"\n\n
\n\n \n\n \n\n \n \n\n \n\n \n \n\n \n\n \n
\n generated by\n \n \"bibbase.org\"\n\n \n
\n \n\n
\n\n \n\n\n
\n\n Excellent! Next you can\n create a new website with this list, or\n embed it in an existing web page by copying & pasting\n any of the following snippets.\n\n
\n JavaScript\n (easiest)\n
\n \n <script src=\"https://bibbase.org/show?bib=https://owncloud.gwdg.de/index.php/s/HJ84sq29P6031Ih/download&jsonp=1&jsonp=1\"></script>\n \n
\n\n PHP\n
\n \n <?php\n $contents = file_get_contents(\"https://bibbase.org/show?bib=https://owncloud.gwdg.de/index.php/s/HJ84sq29P6031Ih/download&jsonp=1\");\n print_r($contents);\n ?>\n \n
\n\n iFrame\n (not recommended)\n
\n \n <iframe src=\"https://bibbase.org/show?bib=https://owncloud.gwdg.de/index.php/s/HJ84sq29P6031Ih/download&jsonp=1\"></iframe>\n \n
\n\n

\n For more details see the documention.\n

\n
\n
\n\n
\n\n This is a preview! To use this list on your own web site\n or create a new web site from it,\n create a free account. The file will be added\n and you will be able to edit it in the File Manager.\n We will show you instructions once you've created your account.\n
\n\n
\n\n

To the site owner:

\n\n

Action required! Mendeley is changing its\n API. In order to keep using Mendeley with BibBase past April\n 14th, you need to:\n

    \n
  1. renew the authorization for BibBase on Mendeley, and
  2. \n
  3. update the BibBase URL\n in your page the same way you did when you initially set up\n this page.\n
  4. \n
\n

\n\n

\n \n \n Fix it now\n

\n
\n\n
\n\n\n
\n \n \n
\n
\n  \n 2023\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Determination of the Bonding Strength of Finger Joints Using a New Test Specimen Geometry.\n \n \n \n \n\n\n \n Stolze, H.; Gurnik, M.; Kegel, S.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Processes, 11(2): 445. February 2023.\n \n\n\n\n
\n\n\n\n \n \n \"DeterminationPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{stolze_determination_2023,\n\ttitle = {Determination of the {Bonding} {Strength} of {Finger} {Joints} {Using} a {New} {Test} {Specimen} {Geometry}},\n\tvolume = {11},\n\tissn = {2227-9717},\n\turl = {https://www.mdpi.com/2227-9717/11/2/445},\n\tdoi = {10.3390/pr11020445},\n\tabstract = {In this study, a specimen geometry for testing finger joints was developed using finite element simulation and proofed by experimental testing. Six different wood species and three adhesives were used for finger-jointing specimens. With the test specimen geometry, the bonding strength of the finger joints was determined without the usual self-locking of the joint. Under load, the test specimen geometry introduces maximum stress at the beginning of the bond line (adhesive zone). However, the test specimen geometry does not generate a symmetric stress state. The main difficulty here is the flank angle of the finger joint geometry. The wood species and adhesives significantly influenced the performance of the finger joints.},\n\tlanguage = {en},\n\tnumber = {2},\n\turldate = {2023-02-03},\n\tjournal = {Processes},\n\tauthor = {Stolze, Hannes and Gurnik, Michael and Kegel, Sebastian and Bollmus, Susanne and Militz, Holger},\n\tmonth = feb,\n\tyear = {2023},\n\tpages = {445},\n\tfile = {Stolze et al. - 2023 - Determination of the Bonding Strength of Finger Jo.pdf:/home/maicher/Zotero/storage/HISDKZQN/Stolze et al. - 2023 - Determination of the Bonding Strength of Finger Jo.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n In this study, a specimen geometry for testing finger joints was developed using finite element simulation and proofed by experimental testing. Six different wood species and three adhesives were used for finger-jointing specimens. With the test specimen geometry, the bonding strength of the finger joints was determined without the usual self-locking of the joint. Under load, the test specimen geometry introduces maximum stress at the beginning of the bond line (adhesive zone). However, the test specimen geometry does not generate a symmetric stress state. The main difficulty here is the flank angle of the finger joint geometry. The wood species and adhesives significantly influenced the performance of the finger joints.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Determination of the Bonding Strength of Finger Joints Using a New Test Specimen Geometry.\n \n \n \n\n\n \n Stolze, H.; Gurnik, M.; Kegel, S.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Process, 0(0). 2023.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{stolze_determination_2023-1,\n\ttitle = {Determination of the {Bonding} {Strength} of {Finger} {Joints} {Using} a {New} {Test} {Specimen} {Geometry}},\n\tvolume = {0},\n\tabstract = {In this study, a specimen geometry for testing finger joints was developed using finite element simulation and proofed by experimental testing. Six different wood species and three adhesives were used for finger-jointing specimens. With the test specimen geometry, the bonding strength of the finger joints was determined without the usual self-locking of the joint. Under load, the test specimen geometry introduces maximum stress at the beginning of the bond line (adhesive zone). However, the test specimen geometry does not generate a symmetric stress state. The main difficulty here is the flank angle of the finger joint geometry. The wood species and adhesives significantly influenced the performance of the finger joints.},\n\tlanguage = {en},\n\tnumber = {0},\n\tjournal = {Process},\n\tauthor = {Stolze, Hannes and Gurnik, Michael and Kegel, Sebastian and Bollmus, Susanne and Militz, Holger},\n\tyear = {2023},\n\tfile = {Stolze et al. - 2023 - Determination of the Bonding Strength of Finger Jo.pdf:/home/maicher/Zotero/storage/SRKKQCZA/Stolze et al. - 2023 - Determination of the Bonding Strength of Finger Jo.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n In this study, a specimen geometry for testing finger joints was developed using finite element simulation and proofed by experimental testing. Six different wood species and three adhesives were used for finger-jointing specimens. With the test specimen geometry, the bonding strength of the finger joints was determined without the usual self-locking of the joint. Under load, the test specimen geometry introduces maximum stress at the beginning of the bond line (adhesive zone). However, the test specimen geometry does not generate a symmetric stress state. The main difficulty here is the flank angle of the finger joint geometry. The wood species and adhesives significantly influenced the performance of the finger joints.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Laboratory Durability Testing of Preservative-Treated Wood Products.\n \n \n \n \n\n\n \n Brischke, C.; Sievert, M.; Schilling, M.; and Bollmus, S.\n\n\n \n\n\n\n Forests, 14(5): 1001. May 2023.\n \n\n\n\n
\n\n\n\n \n \n \"LaboratoryPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_laboratory_2023,\n\ttitle = {Laboratory {Durability} {Testing} of {Preservative}-{Treated} {Wood} {Products}},\n\tvolume = {14},\n\tissn = {1999-4907},\n\turl = {https://www.mdpi.com/1999-4907/14/5/1001},\n\tdoi = {10.3390/f14051001},\n\tabstract = {Recently, certain European standards have allowed for the classification of the biological durability of chemically modified wood and preservative-treated wood, including treated products, but necessary methods for representative sampling and testing are lacking. Instead of sampling from products that can contain areas of varying durability, this study aimed at testing full-size products. Sections of untreated and preservative-treated terrace decking and palisades were incubated with pure cultures of brown and white rot fungi. Instead of mass loss, the decayed cross-sectional area was determined. The spatial distribution of decay and wood moisture content was investigated. After 16 weeks of incubation, all untreated product specimens showed signs of decay independent of the test fungus. The treated specimens were less affected. The mean and the maximum decayed cross-sectional areas were well correlated, for both the total and the sapwood cross-sections. The wood moisture content after incubation was always favorable for fungal decay, but highest where the specimens were in direct contact with the malt agar. Different infestation pathways became evident: (1) from the sapwood mantle, (2) via radial checks, and (3) from the end-grain. The latter should be prevented in order to better mimic real outdoor exposure conditions.},\n\tlanguage = {en},\n\tnumber = {5},\n\turldate = {2023-05-17},\n\tjournal = {Forests},\n\tauthor = {Brischke, Christian and Sievert, Marten and Schilling, Max and Bollmus, Susanne},\n\tmonth = may,\n\tyear = {2023},\n\tpages = {1001},\n\tfile = {Brischke et al. - 2023 - Laboratory Durability Testing of Preservative-Trea.pdf:/home/maicher/Zotero/storage/I5EVDM5X/Brischke et al. - 2023 - Laboratory Durability Testing of Preservative-Trea.pdf:application/pdf},\n}\n
\n
\n\n\n
\n Recently, certain European standards have allowed for the classification of the biological durability of chemically modified wood and preservative-treated wood, including treated products, but necessary methods for representative sampling and testing are lacking. Instead of sampling from products that can contain areas of varying durability, this study aimed at testing full-size products. Sections of untreated and preservative-treated terrace decking and palisades were incubated with pure cultures of brown and white rot fungi. Instead of mass loss, the decayed cross-sectional area was determined. The spatial distribution of decay and wood moisture content was investigated. After 16 weeks of incubation, all untreated product specimens showed signs of decay independent of the test fungus. The treated specimens were less affected. The mean and the maximum decayed cross-sectional areas were well correlated, for both the total and the sapwood cross-sections. The wood moisture content after incubation was always favorable for fungal decay, but highest where the specimens were in direct contact with the malt agar. Different infestation pathways became evident: (1) from the sapwood mantle, (2) via radial checks, and (3) from the end-grain. The latter should be prevented in order to better mimic real outdoor exposure conditions.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2022\n \n \n (4)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Self-locking of finger joints - Influence of density and moisture content.\n \n \n \n\n\n \n Stolze, H.; Trautwein, J.; Mayer, A. K.; Theis, V.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In Hardwood Conference Proceedings, pages 317–323, Sopron, Hungary, 2022. University of Sopron Press\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{stolze_self-locking_2022,\n\taddress = {Sopron, Hungary},\n\ttitle = {Self-locking of finger joints - {Influence} of density and moisture content},\n\tisbn = {978-963-334-446-0},\n\tlanguage = {EN},\n\tbooktitle = {Hardwood {Conference} {Proceedings}},\n\tpublisher = {University of Sopron Press},\n\tauthor = {Stolze, Hannes and Trautwein, Jan-Frederik and Mayer, Aaron Kilan and Theis, Viorica and Bollmus, Susanne and Militz, Holger},\n\tyear = {2022},\n\tpages = {317--323},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Biological durability and moisture dynamics of Dawn redwood ( Metasequoia glyptostroboides ) and Port Orford cedar ( Chamaecyparis lawsoniana ).\n \n \n \n \n\n\n \n Brischke, C.; Bollmus, S.; Melcher, E.; and Stephan, I.\n\n\n \n\n\n\n Wood Material Science & Engineering,1–11. July 2022.\n \n\n\n\n
\n\n\n\n \n \n \"BiologicalPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_biological_2022,\n\ttitle = {Biological durability and moisture dynamics of {Dawn} redwood ( \\textit{{Metasequoia} glyptostroboides} ) and {Port} {Orford} cedar ( \\textit{{Chamaecyparis} lawsoniana} )},\n\tissn = {1748-0272, 1748-0280},\n\turl = {https://www.tandfonline.com/doi/full/10.1080/17480272.2022.2101941},\n\tdoi = {10.1080/17480272.2022.2101941},\n\tabstract = {Numerous non-native tree species are given attention with respect to the reforestation of calamity areas in Europe. Among them, several species may form durable wood which can be used for outdoor applications, but differences in wood durability are expected between original and European growth sites. This study aimed at examining the biological durability against wooddestroying fungi and water permeability of German-grown Dawn redwood (Metasequoia glyptostroboides) and Port Orford cedar (Chamaecyparis lawsoniana). The heartwood of both wood species was assigned to durability class 4 (DC 4, less durable) in soil contact and DC 1–4 (very to less durable) against wood-destroying basidiomycetes. However, according to the Meyer-Veltrup model, their material resistance dose was notably higher compared to the reference species Norway spruce (Picea abies), and the resulting service life of above ground structures should be a multiple of the reference.},\n\tlanguage = {en},\n\turldate = {2022-07-28},\n\tjournal = {Wood Material Science \\& Engineering},\n\tauthor = {Brischke, Christian and Bollmus, Susanne and Melcher, Eckhard and Stephan, Ina},\n\tmonth = jul,\n\tyear = {2022},\n\tpages = {1--11},\n\tfile = {Brischke et al. - 2022 - Biological durability and moisture dynamics of Daw.pdf:/home/maicher/Zotero/storage/JS7FYYK6/Brischke et al. - 2022 - Biological durability and moisture dynamics of Daw.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Numerous non-native tree species are given attention with respect to the reforestation of calamity areas in Europe. Among them, several species may form durable wood which can be used for outdoor applications, but differences in wood durability are expected between original and European growth sites. This study aimed at examining the biological durability against wooddestroying fungi and water permeability of German-grown Dawn redwood (Metasequoia glyptostroboides) and Port Orford cedar (Chamaecyparis lawsoniana). The heartwood of both wood species was assigned to durability class 4 (DC 4, less durable) in soil contact and DC 1–4 (very to less durable) against wood-destroying basidiomycetes. However, according to the Meyer-Veltrup model, their material resistance dose was notably higher compared to the reference species Norway spruce (Picea abies), and the resulting service life of above ground structures should be a multiple of the reference.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Growth Behaviour and Wood Degradation of Wood-Destroying Fungi in Chemically Modified Wood.\n \n \n \n\n\n \n Emmerich, L.; Bleckmann, M.; Strohbusch, S.; Brischke, C.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In Proceedings of 10th European Conference on Wood Modification, pages 249–256, Nancy, France, April 2022. University of Lorraine\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{emmerich_growth_2022,\n\taddress = {Nancy, France},\n\ttitle = {Growth {Behaviour} and {Wood} {Degradation} of {Wood}-{Destroying} {Fungi} in {Chemically} {Modified} {Wood}},\n\tisbn = {978-2-37111-000-7},\n\tlanguage = {EN},\n\tbooktitle = {Proceedings of 10th {European} {Conference} on {Wood} {Modification}},\n\tpublisher = {University of Lorraine},\n\tauthor = {Emmerich, L. and Bleckmann, M. and Strohbusch, S. and Brischke, C. and Bollmus, S. and Militz, H.},\n\tmonth = apr,\n\tyear = {2022},\n\tpages = {249--256},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Impact of different sterilization techniques and mass loss measurements on the durability of wood against wood-destroying fungi.\n \n \n \n \n\n\n \n Brischke, C.; von Boch-Galhau, N.; and Bollmus, S.\n\n\n \n\n\n\n European Journal of Wood and Wood Products, 80(1): 35–44. February 2022.\n \n\n\n\n
\n\n\n\n \n \n \"ImpactPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 1 download\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_impact_2022,\n\ttitle = {Impact of different sterilization techniques and mass loss measurements on the durability of wood against wood-destroying fungi},\n\tvolume = {80},\n\tissn = {0018-3768, 1436-736X},\n\turl = {https://link.springer.com/10.1007/s00107-021-01745-8},\n\tdoi = {10.1007/s00107-021-01745-8},\n\tabstract = {Abstract\n            \n              The biological durability of wood is frequently determined in laboratory tests with monocultures of different decay fungi under ideal conditions for fungal growth. To avoid contamination with mould and inhibition of fungal growth, wood specimens need to be sterilized using different methods. To determine the mass loss of wood blocks during incubation, the initial total dry mass is needed but should be determined without oven-drying to avoid the loss of volatile compounds of the tested wood. In this study the effect of different sterilization techniques in combination with different methods of determining the oven-dry weight on mass loss (ML\n              F\n              ) in agar plate wood block tests was investigated. No significant ML\n              F\n              differences were observed between sterilization through gamma radiation, steam, autoclaving, ethanol dipping and oven-drying. Solely, non-sterilized specimens showed reduced ML\n              F\n              , since the test fungus was inhibited by mould growth. Oven-drying of wood species that contain volatile and resistance-affecting compounds such as Scots pine (\n              Pinus sylvestris\n              ) led to reduced biological durability and should either be avoided or adapted to kiln-drying temperatures usually applied in practice.},\n\tlanguage = {en},\n\tnumber = {1},\n\turldate = {2022-02-09},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Brischke, Christian and von Boch-Galhau, Nicklas and Bollmus, Susanne},\n\tmonth = feb,\n\tyear = {2022},\n\tpages = {35--44},\n\tfile = {Springer Full Text PDF:/home/maicher/Zotero/storage/HRM23ZNC/Brischke et al. - 2021 - Impact of different sterilization techniques and m.pdf:application/pdf;Volltext:/home/maicher/Zotero/storage/3BF9FEQ4/Brischke et al. - 2022 - Impact of different sterilization techniques and m.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Abstract The biological durability of wood is frequently determined in laboratory tests with monocultures of different decay fungi under ideal conditions for fungal growth. To avoid contamination with mould and inhibition of fungal growth, wood specimens need to be sterilized using different methods. To determine the mass loss of wood blocks during incubation, the initial total dry mass is needed but should be determined without oven-drying to avoid the loss of volatile compounds of the tested wood. In this study the effect of different sterilization techniques in combination with different methods of determining the oven-dry weight on mass loss (ML F ) in agar plate wood block tests was investigated. No significant ML F differences were observed between sterilization through gamma radiation, steam, autoclaving, ethanol dipping and oven-drying. Solely, non-sterilized specimens showed reduced ML F , since the test fungus was inhibited by mould growth. Oven-drying of wood species that contain volatile and resistance-affecting compounds such as Scots pine ( Pinus sylvestris ) led to reduced biological durability and should either be avoided or adapted to kiln-drying temperatures usually applied in practice.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2021\n \n \n (3)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Growth behavior of wood-destroying fungi in chemically modified wood: wood degradation and translocation of nitrogen compounds.\n \n \n \n \n\n\n \n Emmerich, L.; Bleckmann, M.; Strohbusch, S.; Brischke, C.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Holzforschung, 0(0): 000010151520200252. February 2021.\n \n\n\n\n
\n\n\n\n \n \n \"GrowthPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 7 downloads\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@article{emmerich_growth_2021,\n\ttitle = {Growth behavior of wood-destroying fungi in chemically modified wood: wood degradation and translocation of nitrogen compounds},\n\tvolume = {0},\n\tissn = {1437-434X, 0018-3830},\n\tshorttitle = {Growth behavior of wood-destroying fungi in chemically modified wood},\n\turl = {https://www.degruyter.com/document/doi/10.1515/hf-2020-0252/html},\n\tdoi = {10.1515/hf-2020-0252},\n\tabstract = {Abstract\n            \n              Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (\n              Trametes versicolor\n              ), brown rot (\n              Coniophora puteana\n              ) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.},\n\tlanguage = {en},\n\tnumber = {0},\n\turldate = {2021-02-16},\n\tjournal = {Holzforschung},\n\tauthor = {Emmerich, Lukas and Bleckmann, Maja and Strohbusch, Sarah and Brischke, Christian and Bollmus, Susanne and Militz, Holger},\n\tmonth = feb,\n\tyear = {2021},\n\tkeywords = {DMDHEU, acetylation, chemical wood modification, durability, fungal growth, nitrogen analysis},\n\tpages = {000010151520200252},\n\tfile = {Emmerich et al. - 2021 - Growth behavior of wood-destroying fungi in chemic.pdf:/home/maicher/Zotero/storage/HAESN92C/Emmerich et al. - 2021 - Growth behavior of wood-destroying fungi in chemic.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot ( Trametes versicolor ), brown rot ( Coniophora puteana ) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Dynamic strength properties and structural integrity of wood modified with cyclic N -methylol and N -methyl compounds.\n \n \n \n \n\n\n \n Emmerich, L.; Brischke, C.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Holzforschung, 0(0): 000010151520210013. April 2021.\n \n\n\n\n
\n\n\n\n \n \n \"DynamicPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@article{emmerich_dynamic_2021,\n\ttitle = {Dynamic strength properties and structural integrity of wood modified with cyclic \\textit{{N}} -methylol and \\textit{{N}} -methyl compounds},\n\tvolume = {0},\n\tissn = {1437-434X, 0018-3830},\n\turl = {https://www.degruyter.com/document/doi/10.1515/hf-2021-0013/html},\n\tdoi = {10.1515/hf-2021-0013},\n\tabstract = {Cyclic N-methylol compounds have been used for cell wall impregnation modifications of wood. Besides an improved decay resistance and dimensional stability, the modifications resulted in a decrease of wood’s dynamic strength properties. However, the mechanisms behind a significant loss in dynamic strength are not fully understood yet. In this study, wood blocks were treated with the N-methylol compounds 1,3-dimethylol4,5-dihydroxyethyleneurea (DMDHEU) and methylated DMDHEU (mDMDHEU) and the N-methyl compound 1,3-dimethyl-4,5-dihydroxy-ethyleneurea (DMeDHEU). In order to study the factors that control the changes of wood performance under dynamic loads, single (impact bending strength, IBS) and multiple dynamic impact (resistance to impact milling, RIM) tests were applied. It became evident, that reductions in IBS and RIM increased with increasing solid content, formaldehyde content and catalyst concentration of the impregnation solutions, but were not affected by a cold-water leaching. Differences in structural integrity of wood modified with N-methylol and N-methyl compounds were more pronounced than those of IBS. Therefore, RIM appeared more sensitive to changes on cellular level, as a higher degree of co-condensation of the N-methylol compounds with cell wall polymers was expected in comparison with the N-methyl compound.},\n\tlanguage = {en},\n\tnumber = {0},\n\turldate = {2021-05-18},\n\tjournal = {Holzforschung},\n\tauthor = {Emmerich, Lukas and Brischke, Christian and Bollmus, Susanne and Militz, Holger},\n\tmonth = apr,\n\tyear = {2021},\n\tkeywords = {DMDHEU, resistance to impact milling, mDMDHEU, impact bending strength, DMeDHEU, structural integrity},\n\tpages = {000010151520210013},\n\tfile = {Emmerich et al. - 2021 - Dynamic strength properties and structural integri.pdf:/home/maicher/Zotero/storage/6BKYE94F/Emmerich et al. - 2021 - Dynamic strength properties and structural integri.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Cyclic N-methylol compounds have been used for cell wall impregnation modifications of wood. Besides an improved decay resistance and dimensional stability, the modifications resulted in a decrease of wood’s dynamic strength properties. However, the mechanisms behind a significant loss in dynamic strength are not fully understood yet. In this study, wood blocks were treated with the N-methylol compounds 1,3-dimethylol4,5-dihydroxyethyleneurea (DMDHEU) and methylated DMDHEU (mDMDHEU) and the N-methyl compound 1,3-dimethyl-4,5-dihydroxy-ethyleneurea (DMeDHEU). In order to study the factors that control the changes of wood performance under dynamic loads, single (impact bending strength, IBS) and multiple dynamic impact (resistance to impact milling, RIM) tests were applied. It became evident, that reductions in IBS and RIM increased with increasing solid content, formaldehyde content and catalyst concentration of the impregnation solutions, but were not affected by a cold-water leaching. Differences in structural integrity of wood modified with N-methylol and N-methyl compounds were more pronounced than those of IBS. Therefore, RIM appeared more sensitive to changes on cellular level, as a higher degree of co-condensation of the N-methylol compounds with cell wall polymers was expected in comparison with the N-methyl compound.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Foil Storage for Conservation of Beetle-infested Spruce Logs – a Feasibility Study.\n \n \n \n\n\n \n Brischke, C.; Bollmus, S.; Braun, M.; and Emmerich, L.\n\n\n \n\n\n\n In Proceedings of the 17th annual meeting of the Northern European Network for Wood Science and Engineering (WSE 2021), pages 86–88, Kaunas, Lithuania, October 2021. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{brischke_foil_2021,\n\taddress = {Kaunas, Lithuania},\n\ttitle = {Foil {Storage} for {Conservation} of {Beetle}-infested {Spruce} {Logs} – a {Feasibility} {Study}},\n\tisbn = {978-609-02-1762-7},\n\tlanguage = {EN},\n\tbooktitle = {Proceedings of the 17th annual meeting of the {Northern} {European} {Network} for {Wood} {Science} and {Engineering} ({WSE} 2021)},\n\tauthor = {Brischke, Christian and Bollmus, Susanne and Braun, Marco and Emmerich, Lukas},\n\tmonth = oct,\n\tyear = {2021},\n\tpages = {86--88},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2020\n \n \n (8)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Folienlagerung von Käferholz.\n \n \n \n\n\n \n Brischke, C.; Bollmus, S.; Braun, M.; and Emmerich, L.\n\n\n \n\n\n\n Holz-Zentralblatt, 146(15): 296–297. 2020.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_folienlagerung_2020,\n\ttitle = {Folienlagerung von {Käferholz}},\n\tvolume = {146},\n\tlanguage = {Deutsch},\n\tnumber = {15},\n\tjournal = {Holz-Zentralblatt},\n\tauthor = {Brischke, Christian and Bollmus, Susanne and Braun, Marco and Emmerich, Lukas},\n\tyear = {2020},\n\tpages = {296--297},\n\tfile = {Brischke et al. - 2020 - Folienlagerung von Käferholz.pdf:/home/maicher/Zotero/storage/HMP6IZFP/Brischke et al. - 2020 - Folienlagerung von Käferholz.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Tensile and Impact Bending Properties of Chemically Modified Scots Pine.\n \n \n \n \n\n\n \n Bollmus, S.; Beeretz, C.; and Militz, H.\n\n\n \n\n\n\n Forests, 11(1): 84. January 2020.\n \n\n\n\n
\n\n\n\n \n \n \"TensilePaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 1 download\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{bollmus_tensile_2020,\n\ttitle = {Tensile and {Impact} {Bending} {Properties} of {Chemically} {Modified} {Scots} {Pine}},\n\tvolume = {11},\n\tissn = {1999-4907},\n\turl = {https://www.mdpi.com/1999-4907/11/1/84},\n\tdoi = {10.3390/f11010084},\n\tabstract = {This study deals with the influence of chemical modification on elasto-mechanical properties of Scots pine (Pinus sylvestris L.). The elasto-mechanical properties examined were impact bending strength, determined by impact bending test; tensile strength; and work to maximum load in traction, determined by tensile tests. The modification agents used were one melamine-formaldehyde resin (MF), one low molecular weight phenol-formaldehyde resin, one higher molecular weight phenol-formaldehyde resin, and a dimethylol dihydroxyethyleneurea (DMDHEU). Special attention was paid to the influence of the solution concentration (0.5\\%, 5\\%, and 20\\%). With an increase in the concentration of each modification agent, the elasto-mechanical properties decreased as compared to the control specimens. Especially impact bending strength decreased greatly by modifications with the 0.5\\% solutions of each agent (by 37\\% to 47\\%). Modification with DMDHEU resulted in the highest overall reduction of the elasto-mechanical properties examined (up to 81\\% in work to maximum load in traction at 20\\% solution concentration). The results indicate that embrittlement is not primarily related to the degree of modification depended on used solution concentration. It is therefore assumed that molecular size and the resulting ability to penetrate into the cell wall could be crucial. The results show that, in the application of chemically modified wood, impact and tensile loads should be avoided even after treatment with low concentrations.},\n\tlanguage = {en},\n\tnumber = {1},\n\turldate = {2020-06-02},\n\tjournal = {Forests},\n\tauthor = {Bollmus, Susanne and Beeretz, Cara and Militz, Holger},\n\tmonth = jan,\n\tyear = {2020},\n\tpages = {84},\n\tfile = {Bollmus et al. - 2020 - Tensile and Impact Bending Properties of Chemicall.pdf:/home/maicher/Zotero/storage/PU5JK2KG/Bollmus et al. - 2020 - Tensile and Impact Bending Properties of Chemicall.pdf:application/pdf;Volltext:/home/maicher/Zotero/storage/GQRXWNG6/Bollmus et al. - 2020 - Tensile and Impact Bending Properties of Chemicall.pdf:application/pdf;Volltext:/home/maicher/Zotero/storage/IHDI4XVW/Bollmus et al. - 2020 - Tensile and Impact Bending Properties of Chemicall.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n This study deals with the influence of chemical modification on elasto-mechanical properties of Scots pine (Pinus sylvestris L.). The elasto-mechanical properties examined were impact bending strength, determined by impact bending test; tensile strength; and work to maximum load in traction, determined by tensile tests. The modification agents used were one melamine-formaldehyde resin (MF), one low molecular weight phenol-formaldehyde resin, one higher molecular weight phenol-formaldehyde resin, and a dimethylol dihydroxyethyleneurea (DMDHEU). Special attention was paid to the influence of the solution concentration (0.5%, 5%, and 20%). With an increase in the concentration of each modification agent, the elasto-mechanical properties decreased as compared to the control specimens. Especially impact bending strength decreased greatly by modifications with the 0.5% solutions of each agent (by 37% to 47%). Modification with DMDHEU resulted in the highest overall reduction of the elasto-mechanical properties examined (up to 81% in work to maximum load in traction at 20% solution concentration). The results indicate that embrittlement is not primarily related to the degree of modification depended on used solution concentration. It is therefore assumed that molecular size and the resulting ability to penetrate into the cell wall could be crucial. The results show that, in the application of chemically modified wood, impact and tensile loads should be avoided even after treatment with low concentrations.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Effect of size and shape of specimens on the mass loss caused by Coniophora puteana in wood durability tests.\n \n \n \n \n\n\n \n Brischke, C.; Grünwald, L. K.; and Bollmus, S.\n\n\n \n\n\n\n European Journal of Wood and Wood Products, 78(4): 811–819. July 2020.\n \n\n\n\n
\n\n\n\n \n \n \"EffectPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 1 download\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_effect_2020,\n\ttitle = {Effect of size and shape of specimens on the mass loss caused by {Coniophora} puteana in wood durability tests},\n\tvolume = {78},\n\tissn = {1436-736X},\n\turl = {https://doi.org/10.1007/s00107-020-01559-0},\n\tdoi = {10.1007/s00107-020-01559-0},\n\tabstract = {The experimental basis for testing the biological durability of wood often includes incubation experiments with wood-destroying basidiomycetes. Numerous parameters can affect the mass loss by fungal decay (MLF) in laboratory durability tests and therefore being decisive for the resulting durability classification. Among others, the dimension of the wood specimen and the time of incubation impact on fungal decay. Hence, both parameters were examined within this study using 19 different specimen formats and four different incubation times. Specimens of larch heartwood (Larix decidua Mill.) were incubated with pure cultures of the brown rot fungus Coniophora puteana. Scots pine sapwood (Pinus sylvestris L.) was used as a reference. The wood specimens’ format turned out to significantly affect both mass loss by fungal decay (MLF) and resulting x-values when MLF of larch was compared with that of the reference Scots pine sapwood. Both measures were highest for specimen formats with moderate surface-volume ratios. MLF and x-values depended on specimen size and shape as well as on the time of incubation. Reducing the specimen volume generally led to higher MLF at a given incubation time, but prolonging incubation times led to higher x-values and thus to lower durability expressed as durability classes (DC). In summary, it appeared highly questionable that results of basidiomycete durability tests can be easily compared to each other when specimen format and/or incubation time deviate from the standard conditions.},\n\tlanguage = {en},\n\tnumber = {4},\n\turldate = {2021-01-20},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Brischke, Christian and Grünwald, Leopold K. and Bollmus, Susanne},\n\tmonth = jul,\n\tyear = {2020},\n\tpages = {811--819},\n\tfile = {Brischke et al. - 2020 - Effect of size and shape of specimens on the mass .pdf:/home/maicher/Zotero/storage/QTN5RUZG/Brischke et al. - 2020 - Effect of size and shape of specimens on the mass .pdf:application/pdf;Springer Full Text PDF:/home/maicher/Zotero/storage/K7T8ZHGW/Brischke et al. - 2020 - Effect of size and shape of specimens on the mass .pdf:application/pdf;Springer Full Text PDF:/home/maicher/Zotero/storage/3RSPW739/Brischke et al. - 2020 - Effect of size and shape of specimens on the mass .pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n The experimental basis for testing the biological durability of wood often includes incubation experiments with wood-destroying basidiomycetes. Numerous parameters can affect the mass loss by fungal decay (MLF) in laboratory durability tests and therefore being decisive for the resulting durability classification. Among others, the dimension of the wood specimen and the time of incubation impact on fungal decay. Hence, both parameters were examined within this study using 19 different specimen formats and four different incubation times. Specimens of larch heartwood (Larix decidua Mill.) were incubated with pure cultures of the brown rot fungus Coniophora puteana. Scots pine sapwood (Pinus sylvestris L.) was used as a reference. The wood specimens’ format turned out to significantly affect both mass loss by fungal decay (MLF) and resulting x-values when MLF of larch was compared with that of the reference Scots pine sapwood. Both measures were highest for specimen formats with moderate surface-volume ratios. MLF and x-values depended on specimen size and shape as well as on the time of incubation. Reducing the specimen volume generally led to higher MLF at a given incubation time, but prolonging incubation times led to higher x-values and thus to lower durability expressed as durability classes (DC). In summary, it appeared highly questionable that results of basidiomycete durability tests can be easily compared to each other when specimen format and/or incubation time deviate from the standard conditions.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Critical discussion of perpendicular to grain tension testing of structural timber – case study on the European hardwoods ash, beech and maple.\n \n \n \n \n\n\n \n Schlotzhauer, P.; Ehrmann, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Wood Material Science & Engineering, 15(5): 278–288. September 2020.\n Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/17480272.2019.1596157\n\n\n\n
\n\n\n\n \n \n \"CriticalPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 1 download\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@article{schlotzhauer_critical_2020,\n\ttitle = {Critical discussion of perpendicular to grain tension testing of structural timber – case study on the {European} hardwoods ash, beech and maple},\n\tvolume = {15},\n\tissn = {1748-0272},\n\turl = {https://doi.org/10.1080/17480272.2019.1596157},\n\tdoi = {10.1080/17480272.2019.1596157},\n\tabstract = {Knowledge about perpendicular to grain tension behavior of wood is essential, since in construction tension stresses perpendicular to grain cannot be avoided completely. Especially for hardwoods, the data basis is scarce. EN 338 design values are with 0.6 N/mm² characteristic strength set very low. The US-American National Design Specifications even set this value to zero and make local reinforcements mandatory. This paper compares strength and stiffness values attained with newly-designed, little, prismatic specimens and EN 408 structural timber specimens to evaluate the current European design values. Little specimen’s characteristic strength values range from 7.2 to 10.6 N/mm² and are assumed to be real material properties. EN 408 specimen values are with approximately 4.0 N/mm² lower. These lower values are mainly due to stress peaks introduced by the force introduction. Strength values attained for the medium-dense European hardwoods beech, ash and maple exceed EN 338 design values by a factor of six to seven. Adaptation of the EN 338 design value is not recommended, though. The abundance of influencing factors makes clear that the design value and the ensuing design code have to be synchronized carefully by tedious testing in order to make use of the perpendicular to grain tension strength potential of the selected hardwoods.},\n\tnumber = {5},\n\turldate = {2020-08-24},\n\tjournal = {Wood Material Science \\& Engineering},\n\tauthor = {Schlotzhauer, Philipp and Ehrmann, Alexander and Bollmus, Susanne and Militz, Holger},\n\tmonth = sep,\n\tyear = {2020},\n\tnote = {Publisher: Taylor \\& Francis\n\\_eprint: https://doi.org/10.1080/17480272.2019.1596157},\n\tkeywords = {strength, stiffness, design value, EN 338, Hardwoods, perpendicular to grain, tension, test set-up},\n\tpages = {278--288},\n\tfile = {Full Text PDF:/home/maicher/Zotero/storage/H385PSKF/Schlotzhauer et al. - 2020 - Critical discussion of perpendicular to grain tens.pdf:application/pdf;Snapshot:/home/maicher/Zotero/storage/2A9W9FZD/17480272.2019.html:text/html},\n}\n\n
\n
\n\n\n
\n Knowledge about perpendicular to grain tension behavior of wood is essential, since in construction tension stresses perpendicular to grain cannot be avoided completely. Especially for hardwoods, the data basis is scarce. EN 338 design values are with 0.6 N/mm² characteristic strength set very low. The US-American National Design Specifications even set this value to zero and make local reinforcements mandatory. This paper compares strength and stiffness values attained with newly-designed, little, prismatic specimens and EN 408 structural timber specimens to evaluate the current European design values. Little specimen’s characteristic strength values range from 7.2 to 10.6 N/mm² and are assumed to be real material properties. EN 408 specimen values are with approximately 4.0 N/mm² lower. These lower values are mainly due to stress peaks introduced by the force introduction. Strength values attained for the medium-dense European hardwoods beech, ash and maple exceed EN 338 design values by a factor of six to seven. Adaptation of the EN 338 design value is not recommended, though. The abundance of influencing factors makes clear that the design value and the ensuing design code have to be synchronized carefully by tedious testing in order to make use of the perpendicular to grain tension strength potential of the selected hardwoods.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Development of procedures for sampling, testing, and classification to determine the biological durability of wood and wood products.\n \n \n \n\n\n \n Scheiding, W.; Jacobs, K.; Bollmus, S.; and Brischke, C.\n\n\n \n\n\n\n In Proceedings IRG Annual Meeting, pages 8, online, webinar, June 2020. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{scheiding_development_2020,\n\taddress = {online, webinar},\n\ttitle = {Development of procedures for sampling, testing, and classification to determine the biological durability of wood and wood products},\n\tdoi = {IRG 20-20676},\n\tabstract = {This paper informs about a research project, which deals with several shortcomings and a lack of clarity within EN 350:2016. The project started in January 2020, will run for 3 years, and is operated by the Institute of Wood Technology Dresden (IHD) and the University of Goettingen (UGOE).},\n\tlanguage = {en},\n\tbooktitle = {Proceedings {IRG} {Annual} {Meeting}},\n\tauthor = {Scheiding, Wolfram and Jacobs, Kordula and Bollmus, Susanne and Brischke, Christian},\n\tmonth = jun,\n\tyear = {2020},\n\tpages = {8},\n\tfile = {Scheiding et al. - Development of procedures for sampling, testing, a.pdf:/home/maicher/Zotero/storage/R9YUY9WS/Scheiding et al. - Development of procedures for sampling, testing, a.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n This paper informs about a research project, which deals with several shortcomings and a lack of clarity within EN 350:2016. The project started in January 2020, will run for 3 years, and is operated by the Institute of Wood Technology Dresden (IHD) and the University of Goettingen (UGOE).\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n The role of specimen format in wood durability testing.\n \n \n \n\n\n \n Brischke, C.; Grünwald, L. K; and Bollmus, S.\n\n\n \n\n\n\n In Proceedings IRG Annual Meeting, pages 13, online, webinar, June 2020. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{brischke_role_2020,\n\taddress = {online, webinar},\n\ttitle = {The role of specimen format in wood durability testing},\n\tdoi = {IRG/WP 20-20672},\n\tabstract = {The experimental basis for testing the biological durability of wood are often incubation experiments with wood-destroying basidiomycetes. Numerous parameters can affect the mass loss by fungal decay (MLF) in laboratory durability tests and therefore being decisive for the resulting durability classification. Among others, the dimension of the wood specimen and the time of incubation impact on fungal decay. Hence both parameters were examined within this study systematically using 19 different specimen formats and four different incubation times. Specimens made from Larch heartwood (Larix decidua Mill.) and incubated with pure cultures of the brown rot fungus Coniophora puteana. Scots pine sapwood (Pinus sylvestris L.) was used as a reference.},\n\tlanguage = {en},\n\tbooktitle = {Proceedings {IRG} {Annual} {Meeting}},\n\tauthor = {Brischke, Christian and Grünwald, Leopold K and Bollmus, Susanne},\n\tmonth = jun,\n\tyear = {2020},\n\tpages = {13},\n\tfile = {Brischke et al. - The role of specimen format in wood durability tes.pdf:/home/maicher/Zotero/storage/JX9RNBU8/Brischke et al. - The role of specimen format in wood durability tes.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n The experimental basis for testing the biological durability of wood are often incubation experiments with wood-destroying basidiomycetes. Numerous parameters can affect the mass loss by fungal decay (MLF) in laboratory durability tests and therefore being decisive for the resulting durability classification. Among others, the dimension of the wood specimen and the time of incubation impact on fungal decay. Hence both parameters were examined within this study systematically using 19 different specimen formats and four different incubation times. Specimens made from Larch heartwood (Larix decidua Mill.) and incubated with pure cultures of the brown rot fungus Coniophora puteana. Scots pine sapwood (Pinus sylvestris L.) was used as a reference.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Biological durability of sapling wood.\n \n \n \n\n\n \n Brischke, C.; Emmerich, L.; Nienaber, D. G B; and Bollmus, S.\n\n\n \n\n\n\n In Proceedings IRG Annual Meeting, pages 11, The International Research Group on Wood Protection, June 2020. online, webinar\n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{brischke_biological_2020,\n\taddress = {The International Research Group on Wood Protection},\n\ttitle = {Biological durability of sapling wood},\n\tdoi = {IRG/WP 20-10967},\n\tabstract = {Sapling-wood products from different wood species such as willow (Salix spp.) and Common hazel (Corylus avellana) are frequently used for gardening and outdoor decoration purposes. Remaining bark is suggested to provide additional biological durability. Even for temporary outdoor use it seemed questionable that durability of juvenile sapwood can provide acceptably long service lives of horticultural products. Therefore, sapling-wood from in total seven Europeangrown wood species was submitted to laboratory and field durability tests. In field tests, specimens with and without bark were tested in comparison and submitted to differently severe exposure situations, i.e. in ground contact, and above ground situations with and without water trapping. All materials under test were classified ‘not durable’ independently from any potential protective effect of remaining bark, which contradicted their suitability for outdoor applications if multiannual use is desired.},\n\tlanguage = {en},\n\tbooktitle = {Proceedings {IRG} {Annual} {Meeting}},\n\tpublisher = {online, webinar},\n\tauthor = {Brischke, Christian and Emmerich, Lukas and Nienaber, Dirk G B and Bollmus, Susanne},\n\tmonth = jun,\n\tyear = {2020},\n\tpages = {11},\n\tfile = {Brischke et al. - Biological durability of sapling wood.pdf:/home/maicher/Zotero/storage/LCR9RQAE/Brischke et al. - Biological durability of sapling wood.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Sapling-wood products from different wood species such as willow (Salix spp.) and Common hazel (Corylus avellana) are frequently used for gardening and outdoor decoration purposes. Remaining bark is suggested to provide additional biological durability. Even for temporary outdoor use it seemed questionable that durability of juvenile sapwood can provide acceptably long service lives of horticultural products. Therefore, sapling-wood from in total seven Europeangrown wood species was submitted to laboratory and field durability tests. In field tests, specimens with and without bark were tested in comparison and submitted to differently severe exposure situations, i.e. in ground contact, and above ground situations with and without water trapping. All materials under test were classified ‘not durable’ independently from any potential protective effect of remaining bark, which contradicted their suitability for outdoor applications if multiannual use is desired.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Impact of fungal decay on the bending properties of wood.\n \n \n \n\n\n \n Bollmus, S.; van Niekerk, P. B.; and Brischke, C.\n\n\n \n\n\n\n In Proceedings IRG Annual Meeting, pages 15, online, webinar, June 2020. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 2 downloads\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{bollmus_impact_2020,\n\taddress = {online, webinar},\n\ttitle = {Impact of fungal decay on the bending properties of wood},\n\tdoi = {IRG/WP 20-20671},\n\tabstract = {Wood used outdoors is generally prone to fungal degradation, and its impact on the structural integrity of wood is an immanent factor for service life planning with timber. Wood decayed to very small mass losses can suffer from a significant reduction in mechanical strength and elastic properties. Hence, the latter are preferred indicators to detect decay in wood durability studies. Numerous previous studies suggested, for instance, modulus of elasticity (MOE) measurements for decay detection since they outperform mass loss in terms of sensitivity. However, literature reports on the topic are not always consistent and partly contradictory. Therefore, this study aimed at 1.) comparing different methods for decay detection with respect to their sensitivity to decay and transferability to each other, and at 2.) quantifying the effect of white and brown rot decay on bending properties of wood.},\n\tlanguage = {en},\n\tbooktitle = {Proceedings {IRG} {Annual} {Meeting}},\n\tauthor = {Bollmus, Susanne and van Niekerk, Philip Bester and Brischke, Christian},\n\tmonth = jun,\n\tyear = {2020},\n\tpages = {15},\n\tfile = {Bollmus et al. - Impact of fungal decay on the bending properties o.pdf:/home/maicher/Zotero/storage/YY2EEG6C/Bollmus et al. - Impact of fungal decay on the bending properties o.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Wood used outdoors is generally prone to fungal degradation, and its impact on the structural integrity of wood is an immanent factor for service life planning with timber. Wood decayed to very small mass losses can suffer from a significant reduction in mechanical strength and elastic properties. Hence, the latter are preferred indicators to detect decay in wood durability studies. Numerous previous studies suggested, for instance, modulus of elasticity (MOE) measurements for decay detection since they outperform mass loss in terms of sensitivity. However, literature reports on the topic are not always consistent and partly contradictory. Therefore, this study aimed at 1.) comparing different methods for decay detection with respect to their sensitivity to decay and transferability to each other, and at 2.) quantifying the effect of white and brown rot decay on bending properties of wood.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2019\n \n \n (10)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea) – State of the art, recent research activities and future perspectives.\n \n \n \n \n\n\n \n Emmerich, L.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Wood Material Science & Engineering, 14(1): 3–18. 2019.\n \n\n\n\n
\n\n\n\n \n \n \"WoodPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{emmerich_wood_2019,\n\ttitle = {Wood modification with {DMDHEU} (1.3-dimethylol-4.5-dihydroxyethyleneurea) – {State} of the art, recent research activities and future perspectives},\n\tvolume = {14},\n\tissn = {1748-0272, 1748-0280},\n\turl = {https://www.tandfonline.com/doi/full/10.1080/17480272.2017.1417907},\n\tdoi = {10.1080/17480272.2017.1417907},\n\tlanguage = {en},\n\tnumber = {1},\n\turldate = {2018-11-26},\n\tjournal = {Wood Material Science \\& Engineering},\n\tauthor = {Emmerich, Lukas and Bollmus, Susanne and Militz, Holger},\n\tyear = {2019},\n\tpages = {3--18},\n\tfile = {Emmerich et al. - 2019 - Wood modification with DMDHEU (1.3-dimethylol-4.5-.pdf:/home/maicher/Zotero/storage/QN3F33YZ/Emmerich et al. - 2017 - Wood modification with DMDHEU (1.3-dimethylol-4.5-.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Dauerhaftigkeitsklassifizierung von schutzmittelbehandeltem und modifiziertem Holz.\n \n \n \n\n\n \n Bollmus, S.; Bächle, L.; Militz, H.; and Brischke, C.\n\n\n \n\n\n\n Holztechnologie, 60(5): 13–25. 2019.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{bollmus_dauerhaftigkeitsklassifizierung_2019,\n\ttitle = {Dauerhaftigkeitsklassifizierung von schutzmittelbehandeltem und modifiziertem {Holz}},\n\tvolume = {60},\n\tnumber = {5},\n\tjournal = {Holztechnologie},\n\tauthor = {Bollmus, Susanne and Bächle, Lea and Militz, Holger and Brischke, Christian},\n\tyear = {2019},\n\tpages = {13--25},\n\tfile = {Bollmus et al. - 2019 - Dauerhaftigkeitsklassifizierung von schutzmittelbe.pdf:/home/maicher/Zotero/storage/VEEY7K5T/Bollmus et al. - 2019 - Dauerhaftigkeitsklassifizierung von schutzmittelbe.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Study on the ability of wood-destroying fungi to grow through chemically modified wood.\n \n \n \n\n\n \n Emmerich, L.; Strohbusch, S.; Brischke, C.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In Proceedings IRG Annual Meeting, pages 18, Quebec City, Quebec, Canada, May 2019. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{emmerich_study_2019,\n\taddress = {Quebec City, Quebec, Canada},\n\ttitle = {Study on the ability of wood-destroying fungi to grow through chemically modified wood},\n\tdoi = {IRG/WP 19-40858},\n\tabstract = {Over the last decades, chemical wood modification technologies were developed to increase the resistance against attack by wood-destroying organisms without using biocides. Most of those technologies are based on an impregnation step initially. In most treated wood products, mainly by using solid wood in thicker dimensions as in posts, poles, sleepers, deckings etc. it is known that wood impregnation fluids are not distributed throughout the whole wood cross diameter, but just form a protected zone (‘shell-treatment’) of some millimetres or centimetres. The depth of the protected zone depends on wood species and treatment process. While ‘shell-treatments’ might be adequate to achieve a sufficient protection against fungal decay by treatment with biocides, the effect on how wood treated by chemical wood modification systems performs with regard to the resistance against wood-destroying organisms, is not yet known.},\n\tlanguage = {en},\n\tbooktitle = {Proceedings {IRG} {Annual} {Meeting}},\n\tauthor = {Emmerich, Lukas and Strohbusch, Sarah and Brischke, Christian and Bollmus, Susanne and Militz, Holger},\n\tmonth = may,\n\tyear = {2019},\n\tpages = {18},\n}\n\n
\n
\n\n\n
\n Over the last decades, chemical wood modification technologies were developed to increase the resistance against attack by wood-destroying organisms without using biocides. Most of those technologies are based on an impregnation step initially. In most treated wood products, mainly by using solid wood in thicker dimensions as in posts, poles, sleepers, deckings etc. it is known that wood impregnation fluids are not distributed throughout the whole wood cross diameter, but just form a protected zone (‘shell-treatment’) of some millimetres or centimetres. The depth of the protected zone depends on wood species and treatment process. While ‘shell-treatments’ might be adequate to achieve a sufficient protection against fungal decay by treatment with biocides, the effect on how wood treated by chemical wood modification systems performs with regard to the resistance against wood-destroying organisms, is not yet known.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Durability classification of preservative treated and modified wood.\n \n \n \n\n\n \n Bollmus, S.; Bächle, L.; Brischke, C.; and Militz, H.\n\n\n \n\n\n\n In Proceedings IRG Annual Meeting, pages 17, Quebec City, Quebec, Canada, May 2019. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{bollmus_durability_2019,\n\taddress = {Quebec City, Quebec, Canada},\n\ttitle = {Durability classification of preservative treated and modified wood},\n\tdoi = {IRG/WP/19-20659},\n\tlanguage = {eng},\n\tbooktitle = {Proceedings {IRG} {Annual} {Meeting}},\n\tauthor = {Bollmus, Susanne and Bächle, Lena and Brischke, Christian and Militz, Holger},\n\tmonth = may,\n\tyear = {2019},\n\tpages = {17},\n\tfile = {Bollmus et al. - 2019 - Durability classification of preservative treated .pdf:/home/maicher/Zotero/storage/PMS488YL/Bollmus et al. - 2019 - Durability classification of preservative treated .pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Analysis of Economic Feasibility of Ash and Maple Lamella Production for Glued Laminated Timber.\n \n \n \n \n\n\n \n Schlotzhauer, P.; Kovryga, A.; Emmerich, L.; Bollmus, S.; Van de Kuilen, J.; and Militz, H.\n\n\n \n\n\n\n Forests, 10(7): 529. July 2019.\n \n\n\n\n
\n\n\n\n \n \n \"AnalysisPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@article{schlotzhauer_analysis_2019,\n\ttitle = {Analysis of {Economic} {Feasibility} of {Ash} and {Maple} {Lamella} {Production} for {Glued} {Laminated} {Timber}},\n\tvolume = {10},\n\tcopyright = {http://creativecommons.org/licenses/by/3.0/},\n\turl = {https://www.mdpi.com/1999-4907/10/7/529},\n\tdoi = {10.3390/f10070529},\n\tabstract = {Background and Objectives: In the near future, in Europe a raised availability of hardwoods is expected. One possible sales market is the building sector, where medium dense European hardwoods could be used as load bearing elements. For the hardwood species beech, oak, and sweet chestnut technical building approvals already allow the production of hardwood glulam. For the species maple and ash this is not possible yet. This paper aims to evaluate the economic feasibility of glulam production from low dimension ash and maple timber from thinnings. Therefore, round wood qualities and the resulting lumber qualities are assessed and final as well as intermediate yields are calculated. Materials and Methods: 81 maple logs and 79 ash logs cut from trees from thinning operations in mixed (beech) forest stands were visually graded, cant sawn, and turned into strength-graded glulam lamellas. The volume yield of each production step was calculated. Results: The highest volume yield losses occur during milling of round wood (around 50\\%) and \\&ldquo;presorting and planning\\&rdquo; the dried lumber (56\\&ndash;60\\%). Strength grading is another key process in the production process. When grading according to DIN 4074-5 (2008), another 40\\&ndash;50\\% volume loss is reported, while combined visual and machine grading only produces 7\\&ndash;15\\% rejects. Conclusions: Yield raise potentials were identified especially in the production steps milling, presorting and planning and strength grading.},\n\tlanguage = {en},\n\tnumber = {7},\n\turldate = {2019-06-26},\n\tjournal = {Forests},\n\tauthor = {Schlotzhauer, Philipp and Kovryga, Andriy and Emmerich, Lukas and Bollmus, Susanne and Van de Kuilen, Jan-Willem and Militz, Holger},\n\tmonth = jul,\n\tyear = {2019},\n\tkeywords = {European hardwoods, glulam, low quality round wood, strength grading, volume yield},\n\tpages = {529},\n\tfile = {Full Text PDF:/home/maicher/Zotero/storage/A4HRNTQP/Schlotzhauer et al. - 2019 - Analysis of Economic Feasibility of Ash and Maple .pdf:application/pdf;Snapshot:/home/maicher/Zotero/storage/VH2KH8NV/529.html:text/html},\n}\n\n
\n
\n\n\n
\n Background and Objectives: In the near future, in Europe a raised availability of hardwoods is expected. One possible sales market is the building sector, where medium dense European hardwoods could be used as load bearing elements. For the hardwood species beech, oak, and sweet chestnut technical building approvals already allow the production of hardwood glulam. For the species maple and ash this is not possible yet. This paper aims to evaluate the economic feasibility of glulam production from low dimension ash and maple timber from thinnings. Therefore, round wood qualities and the resulting lumber qualities are assessed and final as well as intermediate yields are calculated. Materials and Methods: 81 maple logs and 79 ash logs cut from trees from thinning operations in mixed (beech) forest stands were visually graded, cant sawn, and turned into strength-graded glulam lamellas. The volume yield of each production step was calculated. Results: The highest volume yield losses occur during milling of round wood (around 50%) and “presorting and planning” the dried lumber (56–60%). Strength grading is another key process in the production process. When grading according to DIN 4074-5 (2008), another 40–50% volume loss is reported, while combined visual and machine grading only produces 7–15% rejects. Conclusions: Yield raise potentials were identified especially in the production steps milling, presorting and planning and strength grading.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Dauerhaftigkeitsklassifizierung von schutzmittelbehandeltem und modifiziertem Holz.\n \n \n \n\n\n \n Bollmus, S.; Bächle, L.; Militz, H.; and Brischke, C.\n\n\n \n\n\n\n In Deutsche Holzschutztagung, pages 269–293, Dresden, Germany, April 2019. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{bollmus_dauerhaftigkeitsklassifizierung_2019-1,\n\taddress = {Dresden, Germany},\n\ttitle = {Dauerhaftigkeitsklassifizierung von schutzmittelbehandeltem und modifiziertem {Holz}},\n\tlanguage = {deutsch},\n\tbooktitle = {Deutsche {Holzschutztagung}},\n\tauthor = {Bollmus, Susanne and Bächle, Lea and Militz, Holger and Brischke, Christian},\n\tmonth = apr,\n\tyear = {2019},\n\tpages = {269--293},\n\tfile = {Bollmus et al. - 2019 - Dauerhaftigkeitsklassifizierung von schutzmittelbe.PDF:/home/maicher/Zotero/storage/DCUHYZMC/Bollmus et al. - 2019 - Dauerhaftigkeitsklassifizierung von schutzmittelbe.PDF:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Untersuchung zum Vermögen holzzerstörender Pilze, chemisch modifiziertes Holz zu durchwachsen.\n \n \n \n\n\n \n Strohbusch, S.; Brischke, C.; Bollmus, S.; Emmerich, L.; and Militz, H.\n\n\n \n\n\n\n In Deutsche Holzschutztagung, pages 127–145, Dresden, Germany, April 2019. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{strohbusch_untersuchung_2019,\n\taddress = {Dresden, Germany},\n\ttitle = {Untersuchung zum {Vermögen} holzzerstörender {Pilze}, chemisch modifiziertes {Holz} zu durchwachsen},\n\tlanguage = {deutsch},\n\tbooktitle = {Deutsche {Holzschutztagung}},\n\tauthor = {Strohbusch, Sarah and Brischke, Christian and Bollmus, Susanne and Emmerich, Lukas and Militz, Holger},\n\tmonth = apr,\n\tyear = {2019},\n\tpages = {127--145},\n\tfile = {Strohbusch et al. - 2019 - Untersuchung zum Vermögen holzzerstörender Pilze, .pdf:/home/maicher/Zotero/storage/IVSEFR2T/Strohbusch et al. - 2019 - Untersuchung zum Vermögen holzzerstörender Pilze, .pdf:application/pdf;Untersuchung zum Vermögen holzzerstörender Pilze chemisch modifiziertes Holz zu durchwachsen.pdf:/home/maicher/Zotero/storage/B9ENX7YH/Untersuchung zum Vermögen holzzerstörender Pilze chemisch modifiziertes Holz zu durchwachsen.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Abrasion Resistance of Thermally and Chemically Modified Timber.\n \n \n \n \n\n\n \n Brischke, C.; Ziegeler, N.; and Bollmus, S.\n\n\n \n\n\n\n Drvna industrija, 70(1): 71–76. March 2019.\n \n\n\n\n
\n\n\n\n \n \n \"AbrasionPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_abrasion_2019,\n\ttitle = {Abrasion {Resistance} of {Thermally} and {Chemically} {Modified} {Timber}},\n\tvolume = {70},\n\tissn = {18471153, 00126772},\n\turl = {https://hrcak.srce.hr/218223},\n\tdoi = {10.5552/drvind.2019.1813},\n\tnumber = {1},\n\turldate = {2019-03-29},\n\tjournal = {Drvna industrija},\n\tauthor = {Brischke, Christian and Ziegeler, Neele and Bollmus, Susanne},\n\tmonth = mar,\n\tyear = {2019},\n\tpages = {71--76},\n\tfile = {Brischke et al. - 2019 - Abrasion Resistance of Thermally and Chemically Mo.pdf:/home/maicher/Zotero/storage/ARXI3WVM/Brischke et al. - 2019 - Abrasion Resistance of Thermally and Chemically Mo.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Biological Durability of Sapling-Wood Products Used for Gardening and Outdoor Decoration.\n \n \n \n \n\n\n \n Brischke, C.; Emmerich, L.; Nienaber, D. G.; and Bollmus, S.\n\n\n \n\n\n\n Forests, 10(12): 1152. December 2019.\n \n\n\n\n
\n\n\n\n \n \n \"BiologicalPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@article{brischke_biological_2019,\n\ttitle = {Biological {Durability} of {Sapling}-{Wood} {Products} {Used} for {Gardening} and {Outdoor} {Decoration}},\n\tvolume = {10},\n\tissn = {1999-4907},\n\turl = {https://www.mdpi.com/1999-4907/10/12/1152},\n\tdoi = {10.3390/f10121152},\n\tabstract = {Sapling-wood products from different wood species such as willow (Salix spp. L.) and Common hazel (Corylus avellana L.) are frequently used for gardening and outdoor decoration purposes. Remaining bark is suggested to provide additional biological durability. Even for temporary outdoor use it seemed questionable that durability of juvenile sapwood can provide acceptably long service lives of horticultural products. Therefore, sapling-wood from seven European-grown wood species was submitted to laboratory and field durability tests. In field tests, specimens with and without bark were tested in comparison and submitted to differently severe exposure situations, i.e., in-ground contact, and above-ground situations with and without water trapping. All materials under test were classified ‘not durable’ independently from any potential protective effect of remaining bark, which contradicted their suitability for outdoor applications if multi-annual use is desired.},\n\tlanguage = {en},\n\tnumber = {12},\n\turldate = {2020-06-02},\n\tjournal = {Forests},\n\tauthor = {Brischke, Christian and Emmerich, Lukas and Nienaber, Dirk G.B. and Bollmus, Susanne},\n\tmonth = dec,\n\tyear = {2019},\n\tkeywords = {fungal decay, basidiomycetes, resistance, sapwood, juvenile wood, horticulture},\n\tpages = {1152},\n\tfile = {Brischke et al. - 2019 - Biological Durability of Sapling-Wood Products Use.pdf:/home/maicher/Zotero/storage/B75DUAGD/Brischke et al. - 2019 - Biological Durability of Sapling-Wood Products Use.pdf:application/pdf;Brischke et al. - 2019 - Biological Durability of Sapling-Wood Products Use.pdf:/home/maicher/Zotero/storage/DSANIDGK/Brischke et al. - 2019 - Biological Durability of Sapling-Wood Products Use.pdf:application/pdf;Volltext:/home/maicher/Zotero/storage/X3QSLSLI/Brischke et al. - 2019 - Biological Durability of Sapling-Wood Products Use.pdf:application/pdf;Volltext:/home/maicher/Zotero/storage/CFB7ASKF/Brischke et al. - 2019 - Biological Durability of Sapling-Wood Products Use.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Sapling-wood products from different wood species such as willow (Salix spp. L.) and Common hazel (Corylus avellana L.) are frequently used for gardening and outdoor decoration purposes. Remaining bark is suggested to provide additional biological durability. Even for temporary outdoor use it seemed questionable that durability of juvenile sapwood can provide acceptably long service lives of horticultural products. Therefore, sapling-wood from seven European-grown wood species was submitted to laboratory and field durability tests. In field tests, specimens with and without bark were tested in comparison and submitted to differently severe exposure situations, i.e., in-ground contact, and above-ground situations with and without water trapping. All materials under test were classified ‘not durable’ independently from any potential protective effect of remaining bark, which contradicted their suitability for outdoor applications if multi-annual use is desired.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Mechanisierte Schadholzaufarbeitung - Eine Arbeitsstudie zu Nadelholzbeständen in Nordrhein-Westfalen - Mechanical Processing of Damaged Timber - A Study on Coniferous Forsts in North Rhine- Westphalia.\n \n \n \n\n\n \n Benteler, N.\n\n\n \n\n\n\n Technical Report Fakultät für Forstwissenschaften und Waldökologie der Georg- August Universität Göttingen, Abteilung für Arbeitswissenschaft und Verfahrenstechnologie, Göttingen, 2019.\n Erstprüfer: Prof. Dr. Dirk Jaeger Zweitprüfer: Dr. Susanne Bollmus\n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@techreport{benteler_mechanisierte_2019,\n\taddress = {Göttingen},\n\ttype = {Bachelorarbeit},\n\ttitle = {Mechanisierte {Schadholzaufarbeitung} - {Eine} {Arbeitsstudie} zu {Nadelholzbeständen} in {Nordrhein}-{Westfalen} - {Mechanical} {Processing} of {Damaged} {Timber} - {A} {Study} on {Coniferous} {Forsts} in {North} {Rhine}- {Westphalia}},\n\tlanguage = {de},\n\tinstitution = {Fakultät für Forstwissenschaften und Waldökologie der Georg- August Universität Göttingen, Abteilung für Arbeitswissenschaft und Verfahrenstechnologie},\n\tauthor = {Benteler, Niklas},\n\tyear = {2019},\n\tnote = {Erstprüfer: Prof. Dr. Dirk Jaeger\nZweitprüfer: Dr. Susanne Bollmus},\n\tfile = {Benteler - 2019 - Mechanisierte Schadholzaufarbeitung - Eine Arbeits.pdf:/home/maicher/Zotero/storage/YCBNZKVV/Benteler - 2019 - Mechanisierte Schadholzaufarbeitung - Eine Arbeits.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2018\n \n \n (6)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Comparison of three systems for automatic grain angle determination on European hardwood for construction use.\n \n \n \n \n\n\n \n Schlotzhauer, P.; Wilhelms, F.; Lux, C.; and Bollmus, S.\n\n\n \n\n\n\n European Journal of Wood and Wood Products. January 2018.\n \n\n\n\n
\n\n\n\n \n \n \"ComparisonPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{schlotzhauer_comparison_2018,\n\ttitle = {Comparison of three systems for automatic grain angle determination on {European} hardwood for construction use},\n\tissn = {0018-3768, 1436-736X},\n\turl = {http://link.springer.com/10.1007/s00107-018-1286-z},\n\tdoi = {10.1007/s00107-018-1286-z},\n\tlanguage = {en},\n\turldate = {2018-01-24},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Schlotzhauer, Philipp and Wilhelms, Fritz and Lux, Christian and Bollmus, Susanne},\n\tmonth = jan,\n\tyear = {2018},\n\tfile = {Schlotzhauer (2018) Comparison of three systems for automatic grain angle determination on European hardwood for construction use.pdf:/home/maicher/Zotero/storage/KSNR8RV3/Schlotzhauer (2018) Comparison of three systems for automatic grain angle determination on European hardwood for construction use.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Strength grading of hardwood structural timber.\n \n \n \n\n\n \n Schlotzhauer, P.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In 8th Hardwood Conference, volume 8, pages 166–167, Sopron, Hungary, 2018. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{schlotzhauer_strength_2018,\n\taddress = {Sopron, Hungary},\n\ttitle = {Strength grading of hardwood structural timber},\n\tvolume = {8},\n\tlanguage = {English},\n\tbooktitle = {8th {Hardwood} {Conference}},\n\tauthor = {Schlotzhauer, Philipp and Bollmus, Susanne, Bollmus and Militz, Holger},\n\tyear = {2018},\n\tpages = {166--167},\n\tfile = {Schlotzhauer - Strength grading of hardwood structural timber.pdf:/home/maicher/Zotero/storage/TNTFCPC7/Schlotzhauer - Strength grading of hardwood structural timber.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Visual and machine strength grading characteristics of six European hardwoods.\n \n \n \n\n\n \n Schlotzhauer, P.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Holztechnologie, 61(6): 5–14. 2018.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{schlotzhauer_visual_2018,\n\ttitle = {Visual and machine strength grading characteristics of six {European} hardwoods},\n\tvolume = {61},\n\tlanguage = {English},\n\tnumber = {6},\n\tjournal = {Holztechnologie},\n\tauthor = {Schlotzhauer, Philipp and Bollmus, Susanne and Militz, Holger},\n\tyear = {2018},\n\tpages = {5--14},\n\tfile = {Schlotzhauer et al. - 2018 - Visual and machine strength grading characteristic.pdf:/home/maicher/Zotero/storage/QHWICRKZ/Schlotzhauer et al. - 2018 - Visual and machine strength grading characteristic.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n The influence of curing conditions on properties of melamine modified wood.\n \n \n \n \n\n\n \n Behr, G.; Gellerich, A.; Bollmus, S.; Brinker, S.; and Militz, H.\n\n\n \n\n\n\n European Journal of Wood and Wood Products, 76(4): 1263–1272. July 2018.\n \n\n\n\n
\n\n\n\n \n \n \"ThePaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{behr_influence_2018,\n\ttitle = {The influence of curing conditions on properties of melamine modified wood},\n\tvolume = {76},\n\tissn = {0018-3768, 1436-736X},\n\turl = {http://link.springer.com/10.1007/s00107-018-1290-3},\n\tdoi = {10.1007/s00107-018-1290-3},\n\tlanguage = {en},\n\tnumber = {4},\n\turldate = {2019-01-07},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Behr, Georg and Gellerich, Antje and Bollmus, Susanne and Brinker, Sascha and Militz, Holger},\n\tmonth = jul,\n\tyear = {2018},\n\tpages = {1263--1272},\n\tfile = {Behr et al. - 2018 - The influence of curing conditions on properties o.pdf:/home/maicher/Zotero/storage/HI3NBMJ4/Behr et al. - 2018 - The influence of curing conditions on properties o.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n The influence of curing conditions on the properties of European beech (Fagus sylvatica) modified with melamine resin assessed by light microscopy and SEM-EDX.\n \n \n \n \n\n\n \n Behr, G.; Bollmus, S.; Gellerich, A.; and Militz, H.\n\n\n \n\n\n\n International Wood Products Journal, 9(1): 22–27. 2018.\n \n\n\n\n
\n\n\n\n \n \n \"ThePaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{behr_influence_2018-1,\n\ttitle = {The influence of curing conditions on the properties of {European} beech ({Fagus} sylvatica) modified with melamine resin assessed by light microscopy and {SEM}-{EDX}},\n\tvolume = {9},\n\tissn = {2042-6445, 2042-6453},\n\turl = {https://www.tandfonline.com/doi/full/10.1080/20426445.2017.1416738},\n\tdoi = {10.1080/20426445.2017.1416738},\n\tlanguage = {en},\n\tnumber = {1},\n\turldate = {2018-01-05},\n\tjournal = {International Wood Products Journal},\n\tauthor = {Behr, Georg and Bollmus, Susanne and Gellerich, Antje and Militz, Holger},\n\tyear = {2018},\n\tpages = {22--27},\n\tfile = {Behr (2018) The influence of curing conditions on the properties of beech modified with melamine resin assessed by light microscopy and SEM-EDX.pdf:/home/maicher/Zotero/storage/A9UYR9A2/Behr (2018) The influence of curing conditions on the properties of beech modified with melamine resin assessed by light microscopy and SEM-EDX.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Vergleichende Untersuchung der Dauerhaftigkeit einheimischer Spross- und Splinthölzer - Comparative study of the durability of native shoot- and sapwoods.\n \n \n \n\n\n \n Nienaber, D.\n\n\n \n\n\n\n Technical Report Georg-August-Universität Göttingen, Fakultät für Forstwissenschaften und Waldökologie, Abteilung Holzbiologie und Holzprodukte, Göttingen, Germany, 2018.\n Erstprüfer: Dr. Christian Brischke Zweitprüferin: Dr. Susanne Bollmus\n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@techreport{nienaber_vergleichende_2018,\n\taddress = {Göttingen, Germany},\n\ttype = {Bachelorarbeit},\n\ttitle = {Vergleichende {Untersuchung} der {Dauerhaftigkeit} einheimischer {Spross}- und {Splinthölzer} - {Comparative} study of the durability of native shoot- and sapwoods},\n\tlanguage = {de},\n\tinstitution = {Georg-August-Universität Göttingen, Fakultät für Forstwissenschaften und Waldökologie, Abteilung Holzbiologie und Holzprodukte},\n\tauthor = {Nienaber, Dirk},\n\tyear = {2018},\n\tnote = {Erstprüfer: Dr. Christian Brischke\nZweitprüferin: Dr. Susanne Bollmus},\n\tfile = {Nienaber - 2018 - Vergleichende Untersuchung der Dauerhaftigkeit ein.pdf:/home/maicher/Zotero/storage/EG2MDDUX/Nienaber - 2018 - Vergleichende Untersuchung der Dauerhaftigkeit ein.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2017\n \n \n (7)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Entwicklung der Preisrelationen von Stammholzsortimenten der Hauptwirtschaftsbaumarten anhand der Holzerlöse im Staatswald des Landes / Development of the price relations of trunk wood assortments of the economically most important tree species based on wood proceeds generated by the state forest of the state Hessen.\n \n \n \n\n\n \n von Groß, V.\n\n\n \n\n\n\n Technical Report Georg-August-Universität Göttingen, Fakultät für Forstwissenschaften und Waldökologie, Abteilung für Forstökonomie und Forsteinrichtung, Göttingen, Germany, 2017.\n Prüfer: Prof. Dr. Bernhard Möhring Dr. Susanne Bollmus\n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@techreport{von_gros_entwicklung_2017,\n\taddress = {Göttingen, Germany},\n\ttype = {Bachelorarbeit},\n\ttitle = {Entwicklung der {Preisrelationen} von {Stammholzsortimenten} der {Hauptwirtschaftsbaumarten} anhand der {Holzerlöse} im {Staatswald} des {Landes} / {Development} of the price relations of trunk wood assortments of the economically most important tree species based on wood proceeds generated by the state forest of the state {Hessen}},\n\tlanguage = {de},\n\tinstitution = {Georg-August-Universität Göttingen, Fakultät für Forstwissenschaften und Waldökologie, Abteilung für Forstökonomie und Forsteinrichtung},\n\tauthor = {von Groß, Volker},\n\tyear = {2017},\n\tnote = {Prüfer: Prof. Dr. Bernhard Möhring\nDr. Susanne Bollmus},\n\tfile = {von Groß - 2017 - Entwicklung der Preisrelationen von Stammholzsorti.pdf:/home/maicher/Zotero/storage/M8LADB5P/von Groß - 2017 - Entwicklung der Preisrelationen von Stammholzsorti.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Effect of size and geometry on strength values and MOE of selected hardwood species.\n \n \n \n \n\n\n \n Schlotzhauer, P.; Nelis, P. A.; Bollmus, S.; Gellerich, A.; Militz, H.; and Seim, W.\n\n\n \n\n\n\n Wood Material Science & Engineering, 12(3): 149–157. May 2017.\n \n\n\n\n
\n\n\n\n \n \n \"EffectPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{schlotzhauer_effect_2017,\n\ttitle = {Effect of size and geometry on strength values and {MOE} of selected hardwood species},\n\tvolume = {12},\n\tissn = {1748-0272, 1748-0280},\n\turl = {https://www.tandfonline.com/doi/full/10.1080/17480272.2015.1073175},\n\tdoi = {10.1080/17480272.2015.1073175},\n\tlanguage = {en},\n\tnumber = {3},\n\turldate = {2017-04-18},\n\tjournal = {Wood Material Science \\& Engineering},\n\tauthor = {Schlotzhauer, P. and Nelis, P. A. and Bollmus, S. and Gellerich, A. and Militz, H. and Seim, W.},\n\tmonth = may,\n\tyear = {2017},\n\tpages = {149--157},\n\tfile = {Schlotzhauer (2017) Effect of size and geometry on strength values and MOE of selected hardwood species.pdf:/home/maicher/Zotero/storage/XM9JRXMX/Schlotzhauer (2017) Effect of size and geometry on strength values and MOE of selected hardwood species.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Wood modification with DMDHEU – State of the art, recent research activities and future perspectives.\n \n \n \n\n\n \n Emmerich, L.; Bollmus, S.; and Militz, H\n\n\n \n\n\n\n In Building with bio-based materials: Best practice and performance specification. COST Action FP1303, 2017. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{emmerich_wood_2017,\n\ttitle = {Wood modification with {DMDHEU} – {State} of the art, recent research activities and future perspectives},\n\tbooktitle = {Building with bio-based materials: {Best} practice and performance specification. {COST} {Action} {FP1303}},\n\tauthor = {Emmerich, L. and Bollmus, S. and Militz, H},\n\tyear = {2017},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Wood modification with N-methylol compounds – Effects of modification agent and process conditions.\n \n \n \n\n\n \n Emmerich, L.; Bollmus, S.; and Militz, H\n\n\n \n\n\n\n In Wood modification research & applications, Kuchl, Austria, 2017. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{emmerich_wood_2017-1,\n\taddress = {Kuchl, Austria},\n\ttitle = {Wood modification with {N}-methylol compounds – {Effects} of modification agent and process conditions},\n\tbooktitle = {Wood modification research \\& applications},\n\tauthor = {Emmerich, L. and Bollmus, S. and Militz, H},\n\tyear = {2017},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Improvement of mechanical properties of thermally modified hardwood through melamine treatment.\n \n \n \n \n\n\n \n Behr, G.; Bollmus, S.; Gellerich, A.; and Militz, H.\n\n\n \n\n\n\n Wood Material Science & Engineering,1–9. April 2017.\n \n\n\n\n
\n\n\n\n \n \n \"ImprovementPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{behr_improvement_2017,\n\ttitle = {Improvement of mechanical properties of thermally modified hardwood through melamine treatment},\n\tissn = {1748-0272, 1748-0280},\n\turl = {https://www.tandfonline.com/doi/full/10.1080/17480272.2017.1313313},\n\tdoi = {10.1080/17480272.2017.1313313},\n\tlanguage = {en},\n\turldate = {2017-04-20},\n\tjournal = {Wood Material Science \\& Engineering},\n\tauthor = {Behr, G. and Bollmus, S. and Gellerich, A. and Militz, H.},\n\tmonth = apr,\n\tyear = {2017},\n\tpages = {1--9},\n\tfile = {Behr (2017) Improvement of mechanical properties of thermally modified hardwood through melamine treatment.pdf:/home/maicher/Zotero/storage/6RXDXUW5/Behr (2017) Improvement of mechanical properties of thermally modified hardwood through melamine treatment.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Selection of most aggressive test fungi for modified wood Practical laboratory experience.\n \n \n \n \n\n\n \n Gellerich, A.; and Bollmus, S.\n\n\n \n\n\n\n Holztechnologie, 58(2): 12–17. 2017.\n \n\n\n\n
\n\n\n\n \n \n \"SelectionPaper\n  \n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{gellerich_selection_2017,\n\ttitle = {Selection of most aggressive test fungi for modified wood {Practical} laboratory experience},\n\tvolume = {58},\n\turl = {http://www.holztechnologie.de/index.php?id=1263&MP=1263-1265},\n\tnumber = {2},\n\tjournal = {Holztechnologie},\n\tauthor = {Gellerich, A. and Bollmus, S.},\n\tyear = {2017},\n\tpages = {12--17},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Methodenvergleich zur Bestimmung des Abriebwiderstandes unterschiedlich modifizierter Hölzer - Comparative tests to determine the abrasion resistance of differently modified timber.\n \n \n \n\n\n \n Ziegeler, N.\n\n\n \n\n\n\n Technical Report Georg-August-Universität Göttingen, Fakultät Forstwissenschaften und Waldökologie, Göttingen, 2017.\n Erstprüfer: PD Dr. habil. Christian Brischke Zweitprüferin: Dr. Susanne Bollmus\n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@techreport{ziegeler_methodenvergleich_2017,\n\taddress = {Göttingen},\n\ttype = {Bachelorarbeit},\n\ttitle = {Methodenvergleich zur {Bestimmung} des {Abriebwiderstandes} unterschiedlich modifizierter {Hölzer} - {Comparative} tests to determine the abrasion resistance of differently modified timber},\n\tlanguage = {de},\n\tinstitution = {Georg-August-Universität Göttingen, Fakultät Forstwissenschaften und Waldökologie},\n\tauthor = {Ziegeler, Neele},\n\tyear = {2017},\n\tnote = {Erstprüfer: PD Dr. habil. Christian Brischke\nZweitprüferin: Dr. Susanne Bollmus},\n\tfile = {Ziegeler - 2017 - Methodenvergleich zur Bestimmung des Abriebwiderst.pdf:/home/maicher/Zotero/storage/X9N2DYW7/Ziegeler - 2017 - Methodenvergleich zur Bestimmung des Abriebwiderst.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2016\n \n \n (6)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Statistical analysis of durability tests - Part 1: Principles of distribution fitting and application on laboratory tests.\n \n \n \n\n\n \n De Windt, I.; Van den Bulcke, J.; Brischke, C.; Welzbacher, C. R.; Gellerich, A.; Bollmus, S.; and Humar, M.\n\n\n \n\n\n\n In June 2016. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@inproceedings{de_windt_statistical_2016,\n\ttitle = {Statistical analysis of durability tests - {Part} 1: {Principles} of distribution fitting and application on laboratory tests},\n\tdoi = {IRG/WP 13-20504},\n\tabstract = {Service life prediction is an important topic in wood research, especially with regard to the Construction Products Regulation (CPR). Both laboratory tests as well as in-service performance testing are therefore essential in combination with proper monitoring and analysis tools. A crucial concept is variability in testing and analysis, especially for a biological material such as wood. The larger the sample size the more representative this is for the entire population, yet the number of specimens is often limited by a financial upper limit. Therefore it is essential to use the sub-optimal amount of data and assess as accurately as possible the characteristic under study. In this paper we focus on the use of probability density functions (pdf), also known as distributions. The principles and guidelines for pdf fitting will be explored as well as the use of confidence intervals. The theoretical concepts will be applied on mass loss data. Intra- and interspecies variability but also inter-laboratory variability is illustrated. Therefore the analysis of test results of a round-robin as described in Brischke and co-workers (2013) will be illustrated as well as the analysis of lab tests performed at Woodlab-UGent according to CEN/TS 15083-1 (2005). A validation procedure, as part of a future updated standard, can be useful to erase inter-laboratory differences. Furthermore, the use of a reference wood species can also be an option as a benchmark to compare other species rather than using ‘absolute’ testing resulting in a ranking based on median values. In Part 2 of this paper we will then further use the concepts of pdf fitting for time-to-failure analysis of field test data.},\n\tauthor = {De Windt, I. and Van den Bulcke, J. and Brischke, C. and Welzbacher, C. R. and Gellerich, A. and Bollmus, S. and Humar, M.},\n\tmonth = jun,\n\tyear = {2016},\n\tkeywords = {Basidiomycetes testing, material resistance, probability density function, round robin, statistics},\n\tfile = {IRG 13-20504:/home/maicher/Zotero/storage/GDFSHDTF/IRG 13-20504.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Service life prediction is an important topic in wood research, especially with regard to the Construction Products Regulation (CPR). Both laboratory tests as well as in-service performance testing are therefore essential in combination with proper monitoring and analysis tools. A crucial concept is variability in testing and analysis, especially for a biological material such as wood. The larger the sample size the more representative this is for the entire population, yet the number of specimens is often limited by a financial upper limit. Therefore it is essential to use the sub-optimal amount of data and assess as accurately as possible the characteristic under study. In this paper we focus on the use of probability density functions (pdf), also known as distributions. The principles and guidelines for pdf fitting will be explored as well as the use of confidence intervals. The theoretical concepts will be applied on mass loss data. Intra- and interspecies variability but also inter-laboratory variability is illustrated. Therefore the analysis of test results of a round-robin as described in Brischke and co-workers (2013) will be illustrated as well as the analysis of lab tests performed at Woodlab-UGent according to CEN/TS 15083-1 (2005). A validation procedure, as part of a future updated standard, can be useful to erase inter-laboratory differences. Furthermore, the use of a reference wood species can also be an option as a benchmark to compare other species rather than using ‘absolute’ testing resulting in a ranking based on median values. In Part 2 of this paper we will then further use the concepts of pdf fitting for time-to-failure analysis of field test data.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Resistance of WPC against wood destroying fungi.\n \n \n \n\n\n \n Gellerich, A.; Bollmus, S.; and Krause, A.\n\n\n \n\n\n\n In June 2016. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@inproceedings{gellerich_resistance_2016,\n\ttitle = {Resistance of {WPC} against wood destroying fungi},\n\tdoi = {IRG/WP 13-40627},\n\tabstract = {The investigation of biological durability is a fundamental topic to assess the performance of Wood Plastic Composites (WPC) particularly for outdoor applications. In the last years, different test setups based on existing standards on the field of wood as well as the field of plastics were used for WPC. But the test methodologies give different information about the durability of the tested material. The objective of this study was to investigate the resistance of WPC against wood destroying basidiomycetes adapted to prEN 15534-1 (2012) which was adjusted to test WPC. Additionally to the mass loss, MOE and MOR of the tested material before and after water storage as well as after fungal test were evaluated. The tested material showed very low mass losses and no significantly decrease in MOR and MOE caused by fungal decay. Rather the MOE and MOR are strongly decreased caused by water uptake. The mechanical evaluation after water storage and decay testing may provide additional important information, which might strongly affect the long-term behavior and durability of the material in outside application.},\n\tauthor = {Gellerich, A. and Bollmus, S. and Krause, A.},\n\tmonth = jun,\n\tyear = {2016},\n\tkeywords = {durability test, MOE, moisture, MOR, WPC},\n\tfile = {IRG 13-40627:/home/maicher/Zotero/storage/HA48AUD9/IRG 13-40627.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n The investigation of biological durability is a fundamental topic to assess the performance of Wood Plastic Composites (WPC) particularly for outdoor applications. In the last years, different test setups based on existing standards on the field of wood as well as the field of plastics were used for WPC. But the test methodologies give different information about the durability of the tested material. The objective of this study was to investigate the resistance of WPC against wood destroying basidiomycetes adapted to prEN 15534-1 (2012) which was adjusted to test WPC. Additionally to the mass loss, MOE and MOR of the tested material before and after water storage as well as after fungal test were evaluated. The tested material showed very low mass losses and no significantly decrease in MOR and MOE caused by fungal decay. Rather the MOE and MOR are strongly decreased caused by water uptake. The mechanical evaluation after water storage and decay testing may provide additional important information, which might strongly affect the long-term behavior and durability of the material in outside application.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Determination of the natural durability of solid wood against wood-destroying fungi – a European round-robin test.\n \n \n \n\n\n \n Brischke, C.; Welzbacher, C. R.; Gellerich, A.; Bollmus, S.; Humar, M.; Plaschkies, K.; Scheiding, W.; Alfredsen, G.; Van Acker, J.; and De Windt, I.\n\n\n \n\n\n\n In June 2016. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@inproceedings{brischke_determination_2016,\n\ttitle = {Determination of the natural durability of solid wood against wood-destroying fungi – a {European} round-robin test},\n\tdoi = {IRG/WP 13-20511},\n\tabstract = {In Europe the durability of wood against wood-destroying basidiomycetes is tested according to CEN/TS 15083-1 (2005). Hitherto existing experience with this standard is quite heterogeneous and results from previous round-robin tests have stayed unreported or have been reported incompletely. In particular the need for natural pre-weathering of the test specimens to allow potential detoxification of the material is discussed in-depth. Six European research institutions teamed up and established a new round-robin trial. The durability of Scots pine sap- and heartwood (Pinus sylvestris L.), European beech (Fagus sylvatica L.), English oak (Quercus robur L.) and Black locust (Robinia pseudoacacia L.) against Coniophora puteana and Trametes versicolor have been evaluated without any pre-treatment, with pre-leaching (EN 84) and with 6 months natural weathering of the specimens. The durability classification revealed significant differences between test laboratories (up to four durability classes). Furthermore durability was depending on the pre-treatment and the respective statistical measures used. Natural pre-weathering led to an aligned durability classification between some test laboratories, but with some exceptions. A general conclusion about the impact of a pre-treatment on the durability classification was not achieved, wherefore it was neither urgently recommended nor disapproved.},\n\tauthor = {Brischke, C. and Welzbacher, C. R. and Gellerich, A. and Bollmus, S. and Humar, M. and Plaschkies, K. and Scheiding, W. and Alfredsen, G. and Van Acker, J. and De Windt, I.},\n\tmonth = jun,\n\tyear = {2016},\n\tkeywords = {WHITE ROT, durability class, laboratory decay test, Leaching, natural pre-weathering, brown rot},\n\tfile = {IRG 13-20511:/home/maicher/Zotero/storage/EAA7NTAF/IRG 13-20511.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n In Europe the durability of wood against wood-destroying basidiomycetes is tested according to CEN/TS 15083-1 (2005). Hitherto existing experience with this standard is quite heterogeneous and results from previous round-robin tests have stayed unreported or have been reported incompletely. In particular the need for natural pre-weathering of the test specimens to allow potential detoxification of the material is discussed in-depth. Six European research institutions teamed up and established a new round-robin trial. The durability of Scots pine sap- and heartwood (Pinus sylvestris L.), European beech (Fagus sylvatica L.), English oak (Quercus robur L.) and Black locust (Robinia pseudoacacia L.) against Coniophora puteana and Trametes versicolor have been evaluated without any pre-treatment, with pre-leaching (EN 84) and with 6 months natural weathering of the specimens. The durability classification revealed significant differences between test laboratories (up to four durability classes). Furthermore durability was depending on the pre-treatment and the respective statistical measures used. Natural pre-weathering led to an aligned durability classification between some test laboratories, but with some exceptions. A general conclusion about the impact of a pre-treatment on the durability classification was not achieved, wherefore it was neither urgently recommended nor disapproved.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Machine grain angle determination on spruce, beech and oak lumber for construction use.\n \n \n \n\n\n \n Schlotzhauer, P.; Wilhelms, F.; Lux, C.; and Bollmus, S.\n\n\n \n\n\n\n In Vienna, 2016. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{schlotzhauer_machine_2016,\n\taddress = {Vienna},\n\ttitle = {Machine grain angle determination on spruce, beech and oak lumber for construction use},\n\tauthor = {Schlotzhauer, Philipp and Wilhelms, Fritz and Lux, Christian and Bollmus, Susanne},\n\tyear = {2016},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Untersuchungen zur Schnittholzausbeute von Ahorn- und Eschenlangholzabschnitten zur Bereitstellung von Rohlamellen für die Produktion von Brettschichtholz.\n \n \n \n\n\n \n Emmerich, L.\n\n\n \n\n\n\n Technical Report Georg-August-Universität Göttingen, Fakultät für Forstwissenschaften und Waldökologie, Abteilung Holzbiologie und Holzprodukte, Göttingen, 2016.\n Prüfer: Prof. Dr. Holger Militz Betreuung: Dr. Susanne Bollmus M.Sc. Philipp Schlotzhauer\n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@techreport{emmerich_untersuchungen_2016,\n\taddress = {Göttingen},\n\ttype = {Projektarbeit},\n\ttitle = {Untersuchungen zur {Schnittholzausbeute} von {Ahorn}- und {Eschenlangholzabschnitten} zur {Bereitstellung} von {Rohlamellen} für die {Produktion} von {Brettschichtholz}},\n\tlanguage = {de},\n\tinstitution = {Georg-August-Universität Göttingen, Fakultät für Forstwissenschaften und Waldökologie, Abteilung Holzbiologie und Holzprodukte},\n\tauthor = {Emmerich, Lukas},\n\tyear = {2016},\n\tnote = {Prüfer: Prof. Dr. Holger Militz\nBetreuung: Dr. Susanne Bollmus\n                   M.Sc. Philipp Schlotzhauer},\n\tfile = {Emmerich - 2016 - Untersuchungen zur Schnittholzausbeute von Ahorn- .pdf:/home/maicher/Zotero/storage/K2ZN89NW/Emmerich - 2016 - Untersuchungen zur Schnittholzausbeute von Ahorn- .pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Fire Behaviour of Furfurylated Wood and Applicability of Phosphate-Based Fire Retardant on Furfurylation.\n \n \n \n\n\n \n Kim, I.\n\n\n \n\n\n\n Technical Report Georg-August University Goettingen, Göttingen, Germany, 2016.\n 1. Examiner: Prof. Dr. Holger Militz 2. Examiner: Dr. Susanne Bollmus\n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@techreport{kim_fire_2016,\n\taddress = {Göttingen, Germany},\n\ttype = {Master thesis},\n\ttitle = {Fire {Behaviour} of {Furfurylated} {Wood} and {Applicability} of {Phosphate}-{Based} {Fire} {Retardant} on {Furfurylation}},\n\tlanguage = {en},\n\tinstitution = {Georg-August University Goettingen},\n\tauthor = {Kim, Injeong},\n\tyear = {2016},\n\tnote = {1. Examiner: Prof. Dr. Holger Militz\n2. Examiner: Dr. Susanne Bollmus},\n\tfile = {Kim - 2016 - Fire Behaviour of Furfurylated Wood and Applicabil.pdf:/home/maicher/Zotero/storage/CCD3H3AL/Kim - 2016 - Fire Behaviour of Furfurylated Wood and Applicabil.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2014\n \n \n (7)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Bestimmung der natürlichen Dauerhaftigkeit von Holz.\n \n \n \n\n\n \n Bollmus, S.; Gellerich, A.; Brischke, C.; and Melcher, E.\n\n\n \n\n\n\n Holztechnologie, (2): 30–36. 2014.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{bollmus_bestimmung_2014,\n\ttitle = {Bestimmung der natürlichen {Dauerhaftigkeit} von {Holz}},\n\tshorttitle = {Bestimmung der natürlichen {Dauerhaftigkeit} von {Holz}},\n\tnumber = {2},\n\tjournal = {Holztechnologie},\n\tauthor = {Bollmus, S. and Gellerich, A. and Brischke, C. and Melcher, E.},\n\tyear = {2014},\n\tpages = {30--36},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Mögliche Alternativen zur Kreosotbehandlung von Bahnschwellen.\n \n \n \n\n\n \n Gellerich, A.; and Bollmus, S.\n\n\n \n\n\n\n In 2014. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{gellerich_mogliche_2014,\n\ttitle = {Mögliche {Alternativen} zur {Kreosotbehandlung} von {Bahnschwellen}},\n\tshorttitle = {Mögliche {Alternativen} zur {Kreosotbehandlung} von {Bahnschwellen}},\n\tauthor = {Gellerich, A. and Bollmus, S.},\n\tyear = {2014},\n\tfile = {Deutsche Holzschutztagung 2014:/home/maicher/Zotero/storage/QUB7FQ72/Deutsche Holzschutztagung 2014.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Determining the N-Fixation - a reliable method to verify the curing quality of wood modification with melamine resin?.\n \n \n \n\n\n \n Behr, G.; Gellerich, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In Nunes, L.; Jones, D.; Hill, C. A. S.; and Militz, H., editor(s), March 2014. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{nunes_determining_2014,\n\ttitle = {Determining the {N}-{Fixation} - a reliable method to verify the curing quality of wood modification with melamine resin?},\n\tshorttitle = {Determining the {N}-{Fixation} - a reliable method to verify the curing quality of wood modification with melamine resin?},\n\tauthor = {Behr, G. and Gellerich, A. and Bollmus, S. and Militz, H.},\n\teditor = {Nunes, L. and Jones, D. and Hill, C. A. S. and Militz, H.},\n\tmonth = mar,\n\tyear = {2014},\n\tfile = {7_28_p211_poster-behretal:/home/maicher/Zotero/storage/KHENBEE9/7_28_p211_poster-behretal.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Machine grain angle determination on six European hardwoods.\n \n \n \n\n\n \n Schlotzhauer, P.; Emmerich, L.; Militz, H.; and Bollmus, S.\n\n\n \n\n\n\n In Németh, R.; Teischinger, A.; and Schmitt, U., editor(s), pages 45–46, 2014. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{nemeth_machine_2014,\n\ttitle = {Machine grain angle determination on six {European} hardwoods},\n\tshorttitle = {Machine grain angle determination on six {European} hardwoods},\n\tauthor = {Schlotzhauer, P. and Emmerich, L. and Militz, H. and Bollmus, S.},\n\teditor = {Németh, R. and Teischinger, A. and Schmitt, U.},\n\tyear = {2014},\n\tpages = {45--46},\n\tfile = {Proceedings_Eco-efficient Resource Wood_2014_Sopron_Vienna_final:/home/maicher/Zotero/storage/MITT2ZZF/Proceedings_Eco-efficient Resource Wood_2014_Sopron_Vienna_final.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Wood natural durability testing under laboratory conditions: results from a round-robin test.\n \n \n \n \n\n\n \n Brischke, C.; Welzbacher, C. R.; Gellerich, A.; Bollmus, S.; Humar, M.; Plaschkies, K.; Scheiding, W.; Alfredsen, G.; Van Acker, J.; and De Windt, I.\n\n\n \n\n\n\n European Journal of Wood and Wood Products, 72(1): 129–133. 2014.\n \n\n\n\n
\n\n\n\n \n \n \"WoodPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_wood_2014,\n\ttitle = {Wood natural durability testing under laboratory conditions: results from a round-robin test},\n\tvolume = {72},\n\tissn = {0018-3768},\n\tshorttitle = {Wood natural durability testing under laboratory conditions: results from a round-robin test},\n\turl = {://WOS:000329640000017},\n\tdoi = {10.1007/s00107-013-0764-6},\n\tabstract = {In Europe, the durability of wood against wood-destroying basidiomycetes is tested according to CEN/TS 15083-1 (Durability of wood and wood-based products-determination of the natural durability of solid wood against wood-destroying fungi, test methods-part 1: basidiomycetes, 2005). Existing experience with this standard is quite heterogeneous wherefore six research institutions teamed up and established a new round-robin trial. Fagus sylvatica, Quercus robur, Robinia pseudoacacia as well as sap- and heartwood of Pinus sylvestris, were tested against Coniophora puteana and Trametes versicolor without any pre-treatment, with pre-leaching (EN 84) and with 6 months natural weathering of the specimens. Durability classification revealed differences between test laboratories and depended on pre-treatment and respective statistical measures applied.},\n\tlanguage = {English},\n\tnumber = {1},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Brischke, C. and Welzbacher, C. R. and Gellerich, A. and Bollmus, S. and Humar, M. and Plaschkies, K. and Scheiding, W. and Alfredsen, G. and Van Acker, J. and De Windt, I.},\n\tyear = {2014},\n\tpages = {129--133},\n\tfile = {art%3A10.1007%2Fs00107-013-0764-6:/home/maicher/Zotero/storage/F2JJ6JPH/art%3A10.1007%2Fs00107-013-0764-6.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n In Europe, the durability of wood against wood-destroying basidiomycetes is tested according to CEN/TS 15083-1 (Durability of wood and wood-based products-determination of the natural durability of solid wood against wood-destroying fungi, test methods-part 1: basidiomycetes, 2005). Existing experience with this standard is quite heterogeneous wherefore six research institutions teamed up and established a new round-robin trial. Fagus sylvatica, Quercus robur, Robinia pseudoacacia as well as sap- and heartwood of Pinus sylvestris, were tested against Coniophora puteana and Trametes versicolor without any pre-treatment, with pre-leaching (EN 84) and with 6 months natural weathering of the specimens. Durability classification revealed differences between test laboratories and depended on pre-treatment and respective statistical measures applied.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Effect of size on tensile, compression and bending strengths of six European hardwood species.\n \n \n \n\n\n \n Schlotzhauer, P.; Nelis, P. A.; Militz, H.; and Bollmus, S.\n\n\n \n\n\n\n In 2014. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{schlotzhauer_effect_2014,\n\ttitle = {Effect of size on tensile, compression and bending  strengths of six {European} hardwood species},\n\tauthor = {Schlotzhauer, Philipp and Nelis, Philipp Alexander and Militz, Holger and Bollmus, Susanne},\n\tyear = {2014},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Wood natural durability testing under laboratory conditions: results from a round-robin test.\n \n \n \n \n\n\n \n Brischke, C.; Welzbacher, C. R.; Gellerich, A.; Bollmus, S.; Humar, M.; Plaschkies, K.; Scheiding, W.; Alfredsen, G.; Van Acker, J.; and De Windt, I.\n\n\n \n\n\n\n European Journal of Wood and Wood Products, 72(1): 129–133. January 2014.\n \n\n\n\n
\n\n\n\n \n \n \"WoodPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_wood_2014-1,\n\ttitle = {Wood natural durability testing under laboratory conditions: results from a round-robin test},\n\tvolume = {72},\n\tissn = {1436-736X},\n\turl = {https://doi.org/10.1007/s00107-013-0764-6},\n\tdoi = {10.1007/s00107-013-0764-6},\n\tabstract = {In Europe, the durability of wood against wood-destroying basidiomycetes is tested according to CEN/TS 15083-1 (Durability of wood and wood-based products—determination of the natural durability of solid wood against wood-destroying fungi, test methods—part 1: basidiomycetes, 2005). Existing experience with this standard is quite heterogeneous wherefore six research institutions teamed up and established a new round-robin trial. Fagus sylvatica, Quercus robur, Robinia pseudoacacia as well as sap- and heartwood of Pinus sylvestris, were tested against Coniophora puteana and Trametes versicolor without any pre-treatment, with pre-leaching (EN 84) and with 6 months natural weathering of the specimens. Durability classification revealed differences between test laboratories and depended on pre-treatment and respective statistical measures applied.},\n\tnumber = {1},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Brischke, Christian and Welzbacher, Christian R. and Gellerich, Antje and Bollmus, Susanne and Humar, Miha and Plaschkies, Katharina and Scheiding, Wolfram and Alfredsen, Gry and Van Acker, Joris and De Windt, Imke},\n\tmonth = jan,\n\tyear = {2014},\n\tpages = {129--133},\n}\n\n
\n
\n\n\n
\n In Europe, the durability of wood against wood-destroying basidiomycetes is tested according to CEN/TS 15083-1 (Durability of wood and wood-based products—determination of the natural durability of solid wood against wood-destroying fungi, test methods—part 1: basidiomycetes, 2005). Existing experience with this standard is quite heterogeneous wherefore six research institutions teamed up and established a new round-robin trial. Fagus sylvatica, Quercus robur, Robinia pseudoacacia as well as sap- and heartwood of Pinus sylvestris, were tested against Coniophora puteana and Trametes versicolor without any pre-treatment, with pre-leaching (EN 84) and with 6 months natural weathering of the specimens. Durability classification revealed differences between test laboratories and depended on pre-treatment and respective statistical measures applied.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2013\n \n \n (2)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Untersuchungen zum Befallsdruck an Freileitungsholzmasten.\n \n \n \n\n\n \n Gellerich, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Holztechnologie, 54(3): 32–37. 2013.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{gellerich_untersuchungen_2013,\n\ttitle = {Untersuchungen zum {Befallsdruck} an {Freileitungsholzmasten}},\n\tvolume = {54},\n\tshorttitle = {Untersuchungen zum {Befallsdruck} an {Freileitungsholzmasten}},\n\tnumber = {3},\n\tjournal = {Holztechnologie},\n\tauthor = {Gellerich, A. and Bollmus, S. and Militz, H.},\n\tyear = {2013},\n\tpages = {32--37},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Weathering performance of coatings on acetylated, furfurylated and heat treated wood at two exposure sites in Europe.\n \n \n \n\n\n \n Podgorski, L.; Grüll, G.; Truskaller, M.; Lanvin, J. D.; Georges, V.; and Bollmus, S.\n\n\n \n\n\n\n In Medved, S.; and Kutnar, A., editor(s), Characterization of modified wood in relation to wood bonding and coating performance. COST FP0904, pages 140–148. 2013.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@incollection{medved_weathering_2013,\n\ttitle = {Weathering performance of coatings on acetylated, furfurylated and heat treated wood at two exposure sites in {Europe}},\n\tshorttitle = {Weathering performance of coatings on acetylated, furfurylated and heat treated wood at two exposure sites in {Europe}},\n\tbooktitle = {Characterization of modified wood in relation to wood bonding and coating performance. {COST} {FP0904}},\n\tauthor = {Podgorski, L. and Grüll, G. and Truskaller, M. and Lanvin, J. D. and Georges, V. and Bollmus, S.},\n\teditor = {Medved, S. and Kutnar, A.},\n\tyear = {2013},\n\tpages = {140--148},\n\tfile = {COST FP0904 und FP1006:/home/maicher/Zotero/storage/26AMM2VZ/COST FP0904 und FP1006.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2012\n \n \n (6)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n The Impact of Various Modification Processes on the Structural Integrity of Wood.\n \n \n \n\n\n \n Brischke, C.; Zimmer, K.; Ulvcrona, T.; Bollmus, S.; Welzbacher, C. R.; and Thomsen, O.\n\n\n \n\n\n\n In Jones, D.; Militz, H.; Petrič, M.; Pohleven, F.; Humar, M.; and Pavlič, M., editor(s), pages 91–98, 2012. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{jones_impact_2012,\n\ttitle = {The {Impact} of {Various} {Modification} {Processes} on the {Structural} {Integrity} of {Wood}},\n\tshorttitle = {The {Impact} of {Various} {Modification} {Processes} on the {Structural} {Integrity} of {Wood}},\n\tauthor = {Brischke, C. and Zimmer, K. and Ulvcrona, T. and Bollmus, S. and Welzbacher, C. R. and Thomsen, O.},\n\teditor = {Jones, D. and Militz, H. and Petrič, M. and Pohleven, F. and Humar, M. and Pavlič, M.},\n\tyear = {2012},\n\tpages = {91--98},\n\tfile = {01_ECWM6_Proceedings:/home/maicher/Zotero/storage/8GDHFZGM/01_ECWM6_Proceedings.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Use of Furfurylated Wood for the Production of Windows. Results from the WinFur Project.\n \n \n \n\n\n \n Bollmus, S.; Treu, A.; Westin, M.; Brynildsen, P.; and Militz, H.\n\n\n \n\n\n\n In Jones, D.; Militz, H.; Petrič, M.; Pohleven, F.; Humar, M.; and Pavlič, M., editor(s), pages 99–108, 2012. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{jones_use_2012,\n\ttitle = {Use of {Furfurylated} {Wood} for the {Production} of {Windows}. {Results} from the {WinFur} {Project}.},\n\tshorttitle = {Use of {Furfurylated} {Wood} for the {Production} of {Windows}. {Results} from the {WinFur} {Project}.},\n\tauthor = {Bollmus, S. and Treu, A. and Westin, M. and Brynildsen, P. and Militz, H.},\n\teditor = {Jones, D. and Militz, H. and Petrič, M. and Pohleven, F. and Humar, M. and Pavlič, M.},\n\tyear = {2012},\n\tpages = {99--108},\n\tfile = {01_ECWM6_Proceedings:/home/maicher/Zotero/storage/CGNB7VN3/01_ECWM6_Proceedings.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Influence of Moisture Conditions on the Colonisation of Modified wood by Sapstaining Fungi during Outside Weathering.\n \n \n \n\n\n \n Gellerich, A.; Bollmus, S.; Militz, H.; and Krause, A.\n\n\n \n\n\n\n In Jones, D.; Militz, H.; Petrič, M.; Pohleven, F.; Humar, M.; and Pavlič, M., editor(s), pages 127–136, 2012. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{jones_influence_2012,\n\ttitle = {Influence of {Moisture} {Conditions} on the {Colonisation} of {Modified} wood by {Sapstaining} {Fungi} during {Outside} {Weathering}},\n\tshorttitle = {Influence of {Moisture} {Conditions} on the {Colonisation} of {Modified} wood by {Sapstaining} {Fungi} during {Outside} {Weathering}},\n\tauthor = {Gellerich, A. and Bollmus, S. and Militz, H. and Krause, A.},\n\teditor = {Jones, D. and Militz, H. and Petrič, M. and Pohleven, F. and Humar, M. and Pavlič, M.},\n\tyear = {2012},\n\tpages = {127--136},\n\tfile = {01_ECWM6_Proceedings:/home/maicher/Zotero/storage/8VEB6QAT/01_ECWM6_Proceedings.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Weathering Performance of Coatings on Acetylated, Furfurylated and Heat Treated Wood at Two Exposure Sites in Europe.\n \n \n \n\n\n \n Podgorski, L.; Grüll, G.; Truskaller, M.; Lanvin, J. D.; Georges, V.; and Bollmus, S.\n\n\n \n\n\n\n In Jones, D.; Militz, H.; Petrič, M.; Pohleven, F.; Humar, M.; and Pavlič, M., editor(s), pages 311–316, 2012. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{jones_weathering_2012,\n\ttitle = {Weathering {Performance} of {Coatings} on {Acetylated}, {Furfurylated} and {Heat} {Treated} {Wood} at {Two} {Exposure} {Sites} in {Europe}},\n\tshorttitle = {Weathering {Performance} of {Coatings} on {Acetylated}, {Furfurylated} and {Heat} {Treated} {Wood} at {Two} {Exposure} {Sites} in {Europe}},\n\tauthor = {Podgorski, L. and Grüll, G. and Truskaller, M. and Lanvin, J. D. and Georges, V. and Bollmus, S.},\n\teditor = {Jones, D. and Militz, H. and Petrič, M. and Pohleven, F. and Humar, M. and Pavlič, M.},\n\tyear = {2012},\n\tpages = {311--316},\n\tfile = {01_ECWM6_Proceedings:/home/maicher/Zotero/storage/G2RZCGJ3/01_ECWM6_Proceedings.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Changes in microstructure and stiffness of Scots pine (Pinus sylvestris L) sapwood degraded by Gloeophyllum trabeum and Trametes versicolor–Part II: Anisotropic stiffness properties.\n \n \n \n\n\n \n Bader, T. K.; Hofstetter, K.; Alfredsen, G.; and Bollmus, S.\n\n\n \n\n\n\n Holzforschung, 66(2): 199–206. 2012.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@article{bader_changes_2012,\n\ttitle = {Changes in microstructure and stiffness of {Scots} pine ({Pinus} sylvestris {L}) sapwood degraded by {Gloeophyllum} trabeum and {Trametes} versicolor–{Part} {II}: {Anisotropic} stiffness properties},\n\tvolume = {66},\n\tissn = {1437-434X},\n\tshorttitle = {Changes in microstructure and stiffness of {Scots} pine ({Pinus} sylvestris {L}) sapwood degraded by {Gloeophyllum} trabeum and {Trametes} versicolor–{Part} {II}: {Anisotropic} stiffness properties},\n\tnumber = {2},\n\tjournal = {Holzforschung},\n\tauthor = {Bader, T. K. and Hofstetter, K. and Alfredsen, G. and Bollmus, S.},\n\tyear = {2012},\n\tkeywords = {WHITE ROT, Scots pine (Pinus sylvestris), softwood, biodegradation, brown rot, chemical and physical properties, micromechanics},\n\tpages = {199--206},\n\tfile = {hf.2011.153:/home/maicher/Zotero/storage/I2N8U7QZ/hf.2011.153.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Untersuchungen zum Befallsdruck an Freileitungs-Holzmasten – Weiterführende Ergebnisse.\n \n \n \n\n\n \n Gellerich, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In Militz, H., editor(s), Deutsche Holzschutztagung – Trends und Chancen, pages 74–82, Göttingen, Germany, September 2012. Deutsche Gesellschaft für Holzforschung (DGfH)\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{gellerich_untersuchungen_2012,\n\taddress = {Göttingen, Germany},\n\ttitle = {Untersuchungen zum {Befallsdruck} an {Freileitungs}-{Holzmasten} – {Weiterführende} {Ergebnisse}},\n\tshorttitle = {Untersuchungen zum {Befallsdruck} an {Freileitungs}-{Holzmasten} – {Weiterführende} {Ergebnisse}},\n\tabstract = {Das vorgestellte Projekt hatte eine vierjährige Laufzeit und wurde in enger Zusammenarbeit mit dem Energieversorgungsunternehmen RWE bearbeitet. Das Projekt beinhaltet Untersuchungen zu einem möglichen Befallsdruck an Maststandorten, an denen es zu Frühausfällen kam, d.h. die Standzeit der Masten maximal 15 Jahre betrug. Zur Untersuchung eines möglicherweise erhöhten Befallsdruckes an den ausgewählten Maststandorten, verursacht durch bereits im Boden angesiedelte Pilz- und Bakterienstämme, wurden Freilandversuche unter Berücksichtigung verschiedener Bodenklassen durchgeführt. Außerdem wurden über die gesamte Projektlaufzeit weitere Mastfrühausfälle auf einen Befall durch holzzerstörende Pilze sowie deren Schutzmittelmenge zum Zeitpunkt des Ausfalles hin untersucht.\nVorläufige und bereits berichtete Ergebnisse haben gezeigt, dass einige Standorte eine überdurchschnittlich hohe Befallsaktivität aufweisen. Der Befall konnte nicht auf einzelne Bodenklassen und Bodentypen zurückgeführt werden. Diese vorläufigen Ergebnisse konnten durch die durchgeführten Freilandversuche bestätigt werden. Der Befallsdruck ist dabei standortabhängig und bei der Mehrzahl der untersuchten Maststandorte auf die unmittelbare Mastnähe beschränkt. Allerdings gibt es auch Standorte, wo ein erhöhter Befallsdruck nicht auf die unmittelbare Mastnähe beschränkt ist.\nWeitere Untersuchungen von Mastfrühausfällen zeigten an einer Vielzahl von Mastabschnitten einen Befall durch holzzerstörende kupfertolerante Pilze. Es wurde ebenfalls eine Bestimmung des Kupfergehaltes zum Zeitpunkt des Mastausbaues durchgeführt. Dabei zeigte sich, dass ein Befall durch kupfertolerante Pilze in vielen Fällen nicht nur auf Masten mit einer zu geringen Einbringmenge des Schutzmittels zurückzuführen ist.},\n\tbooktitle = {Deutsche {Holzschutztagung} – {Trends} und {Chancen}},\n\tpublisher = {Deutsche Gesellschaft für Holzforschung (DGfH)},\n\tauthor = {Gellerich, A. and Bollmus, S. and Militz, H.},\n\teditor = {Militz, H.},\n\tmonth = sep,\n\tyear = {2012},\n\tpages = {74--82},\n\tfile = {8_Gellerich:/home/maicher/Zotero/storage/TRICGBIF/8_Gellerich.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Das vorgestellte Projekt hatte eine vierjährige Laufzeit und wurde in enger Zusammenarbeit mit dem Energieversorgungsunternehmen RWE bearbeitet. Das Projekt beinhaltet Untersuchungen zu einem möglichen Befallsdruck an Maststandorten, an denen es zu Frühausfällen kam, d.h. die Standzeit der Masten maximal 15 Jahre betrug. Zur Untersuchung eines möglicherweise erhöhten Befallsdruckes an den ausgewählten Maststandorten, verursacht durch bereits im Boden angesiedelte Pilz- und Bakterienstämme, wurden Freilandversuche unter Berücksichtigung verschiedener Bodenklassen durchgeführt. Außerdem wurden über die gesamte Projektlaufzeit weitere Mastfrühausfälle auf einen Befall durch holzzerstörende Pilze sowie deren Schutzmittelmenge zum Zeitpunkt des Ausfalles hin untersucht. Vorläufige und bereits berichtete Ergebnisse haben gezeigt, dass einige Standorte eine überdurchschnittlich hohe Befallsaktivität aufweisen. Der Befall konnte nicht auf einzelne Bodenklassen und Bodentypen zurückgeführt werden. Diese vorläufigen Ergebnisse konnten durch die durchgeführten Freilandversuche bestätigt werden. Der Befallsdruck ist dabei standortabhängig und bei der Mehrzahl der untersuchten Maststandorte auf die unmittelbare Mastnähe beschränkt. Allerdings gibt es auch Standorte, wo ein erhöhter Befallsdruck nicht auf die unmittelbare Mastnähe beschränkt ist. Weitere Untersuchungen von Mastfrühausfällen zeigten an einer Vielzahl von Mastabschnitten einen Befall durch holzzerstörende kupfertolerante Pilze. Es wurde ebenfalls eine Bestimmung des Kupfergehaltes zum Zeitpunkt des Mastausbaues durchgeführt. Dabei zeigte sich, dass ein Befall durch kupfertolerante Pilze in vielen Fällen nicht nur auf Masten mit einer zu geringen Einbringmenge des Schutzmittels zurückzuführen ist.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2011\n \n \n (6)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Innovative Ergebnisse aus der Holzmodifizierung - Modifiziertes Holz für die Herstellung hochwertiger Fenster.\n \n \n \n\n\n \n Bollmus, S.\n\n\n \n\n\n\n In pages 38–48, 2011. Werner Mankel\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{bollmus_innovative_2011,\n\ttitle = {Innovative {Ergebnisse} aus der {Holzmodifizierung} - {Modifiziertes} {Holz} für die {Herstellung} hochwertiger {Fenster}},\n\tshorttitle = {Innovative {Ergebnisse} aus der {Holzmodifizierung} - {Modifiziertes} {Holz} für die {Herstellung} hochwertiger {Fenster}},\n\tpublisher = {Werner Mankel},\n\tauthor = {Bollmus, S.},\n\tyear = {2011},\n\tpages = {38--48},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Biologische und technologische Eigenschaften von Buchenholz nach einer Modifizierung mit 1,3-dimethylol-4,5-dihydroyethyleneurea (DMDHEU).\n \n \n \n\n\n \n Bollmus, S.\n\n\n \n\n\n\n Ph.D. Thesis, Georg-August-Universität Göttingen, 2011.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@phdthesis{bollmus_biologische_2011,\n\ttype = {Dissertation},\n\ttitle = {Biologische und technologische {Eigenschaften} von {Buchenholz} nach einer {Modifizierung} mit 1,3-dimethylol-4,5-dihydroyethyleneurea ({DMDHEU})},\n\tshorttitle = {Biologische und technologische {Eigenschaften} von {Buchenholz} nach einer {Modifizierung} mit 1,3-dimethylol-4,5-dihydroyethyleneurea ({DMDHEU})},\n\tschool = {Georg-August-Universität Göttingen},\n\tauthor = {Bollmus, S.},\n\tyear = {2011},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Improving dimensional stability of thermally treated wood by secondary modification – potential and limitations.\n \n \n \n\n\n \n Behr, G.; Mahnert, K.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In May 2011. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 1 download\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@inproceedings{behr_improving_2011,\n\ttitle = {Improving dimensional stability of thermally treated wood by secondary modification – potential and limitations},\n\tdoi = {IRG/WP 14-40664},\n\tabstract = {The potential of treating thermally modified wood with melamine resin to improve the dimensional stabilization is tested in this research. Two different boards of poplar (Populus ssp.) were cut into two halves. One half of each board was thermally modified (T1 and T2) in a commercial process, the other half was used as untreated reference material. The material was thermally modified using the vacu³ process under vacuum and maximum temperatures of 210 °C and 230 °C. Ten samples of each material were impregnated with a solution of a commercially available methyloated melamine resin and dry-cured in a laboratory oven at a maximum temperature of 120°C. The anti-swell-efficiency (ASE) based on the swell rate was tested during ten cycles of repeated drying and wetting. The melamine treatment caused a higher bulking in the references than in thermally modified wood. The ASE of T1 was improved by secondary modification, whereas the ASE of T2 remained higher than that of the secondary modified material. The melamine treatment of thermally modified poplar yielded good results for solution uptake and weight percent gain, but the bulking was lower than expected. Reasons may be found in the same mechanisms providing good dimensional stability of thermally modified wood in the first place: The cell walls are more inaccessible for melamine oligomers due to hydrophobation resulting from thermal modification.},\n\tauthor = {Behr, G. and Mahnert, K.-C. and Bollmus, S. and Militz, H.},\n\tmonth = may,\n\tyear = {2011},\n\tkeywords = {anti-swell-efficiency, bulking, impregnation modification, melamine treatment, thermal modification},\n\tfile = {IRG 14-40664:/home/maicher/Zotero/storage/PKP3US88/IRG 14-40664.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n The potential of treating thermally modified wood with melamine resin to improve the dimensional stabilization is tested in this research. Two different boards of poplar (Populus ssp.) were cut into two halves. One half of each board was thermally modified (T1 and T2) in a commercial process, the other half was used as untreated reference material. The material was thermally modified using the vacu³ process under vacuum and maximum temperatures of 210 °C and 230 °C. Ten samples of each material were impregnated with a solution of a commercially available methyloated melamine resin and dry-cured in a laboratory oven at a maximum temperature of 120°C. The anti-swell-efficiency (ASE) based on the swell rate was tested during ten cycles of repeated drying and wetting. The melamine treatment caused a higher bulking in the references than in thermally modified wood. The ASE of T1 was improved by secondary modification, whereas the ASE of T2 remained higher than that of the secondary modified material. The melamine treatment of thermally modified poplar yielded good results for solution uptake and weight percent gain, but the bulking was lower than expected. Reasons may be found in the same mechanisms providing good dimensional stability of thermally modified wood in the first place: The cell walls are more inaccessible for melamine oligomers due to hydrophobation resulting from thermal modification.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Thermogravimetric analysis for wood decay characterisation.\n \n \n \n\n\n \n Alfredsen, G.; Bader, T. K.; Dibdiakova, J.; Filbakk, T.; Bollmus, S.; and Hofstetter, K.\n\n\n \n\n\n\n European Journal of Wood and Wood Products, 70(4): 527–530. 2011.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{alfredsen_thermogravimetric_2011,\n\ttitle = {Thermogravimetric analysis for wood decay characterisation},\n\tvolume = {70},\n\tissn = {0018-3768},\n\tshorttitle = {Thermogravimetric analysis for wood decay characterisation},\n\tnumber = {4},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Alfredsen, G. and Bader, T. K. and Dibdiakova, J. and Filbakk, T. and Bollmus, S. and Hofstetter, K.},\n\tyear = {2011},\n\tpages = {527--530},\n\tfile = {art%3A10.1007%2Fs00107-010-0472-4:/home/maicher/Zotero/storage/PMUR6UXK/art%3A10.1007%2Fs00107-010-0472-4.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Coating performance on different types of modified wood: natural and artificial weathering results.\n \n \n \n\n\n \n Podgorski, L.; Grüll, G.; Georges, V.; Truskaller, M.; and Bollmus, S.\n\n\n \n\n\n\n Surface Coatings International, 94(4): 139–150. 2011.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{podgorski_coating_2011,\n\ttitle = {Coating performance on different types of modified wood: natural and artificial weathering results},\n\tvolume = {94},\n\tissn = {1754-0925},\n\tshorttitle = {Coating performance on different types of modified wood: natural and artificial weathering results},\n\tnumber = {4},\n\tjournal = {Surface Coatings International},\n\tauthor = {Podgorski, L. and Grüll, G. and Georges, V. and Truskaller, M. and Bollmus, S.},\n\tyear = {2011},\n\tpages = {139--150},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Maintenance procedures and definition of limit states for exterior wood coatings.\n \n \n \n \n\n\n \n Grüll, G.; Truskaller, M.; Podgorski, L.; Bollmus, S.; and Tscherne, F.\n\n\n \n\n\n\n European Journal of Wood and Wood Products, 69(3): 443–450. August 2011.\n \n\n\n\n
\n\n\n\n \n \n \"MaintenancePaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{grull_maintenance_2011,\n\ttitle = {Maintenance procedures and definition of limit states for exterior wood coatings},\n\tvolume = {69},\n\tissn = {0018-3768, 1436-736X},\n\turl = {http://link.springer.com/10.1007/s00107-010-0469-z},\n\tdoi = {10.1007/s00107-010-0469-z},\n\tlanguage = {en},\n\tnumber = {3},\n\turldate = {2018-08-23},\n\tjournal = {European Journal of Wood and Wood Products},\n\tauthor = {Grüll, G. and Truskaller, M. and Podgorski, L. and Bollmus, S. and Tscherne, F.},\n\tmonth = aug,\n\tyear = {2011},\n\tpages = {443--450},\n\tfile = {Grüll et al. - 2011 - Maintenance procedures and definition of limit sta.pdf:/home/maicher/Zotero/storage/IA8GE6WQ/Grüll et al. - 2011 - Maintenance procedures and definition of limit sta.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2010\n \n \n (6)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Innovative Produkte aus vernetztem Buchenholz - Stand der Leitproduktherstellung.\n \n \n \n\n\n \n Rademacher, P.; Bollmus, S.; Puttmann, S.; Dieste, A.; Krause, A.; and Militz, H.\n\n\n \n\n\n\n In pages 101–115, April 2010. Deutsche Gesellschaft für Holzforschung (DGfH)\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{rademacher_innovative_2010,\n\ttitle = {Innovative {Produkte} aus vernetztem {Buchenholz} - {Stand} der {Leitproduktherstellung}},\n\tshorttitle = {Innovative {Produkte} aus vernetztem {Buchenholz} - {Stand} der {Leitproduktherstellung}},\n\tabstract = {Native Buche ist für den Einsatz im Außen- und Feuchtraum nicht geeignet, da Dauerhaftigkeit und Dimensionsstabilität gering sind. In einem vom BMBF geförderten Projekt „Modifizierte Buchenholz-produkte“ wurde ein Prozess entwickelt, durch den diese nachteiligen Eigenschaften verbessert werden (Rademacher et al. 2008). Dabei wird die Vernetzungschemikalie DMDHEU (Dimethyloldihydroxyethyleneurea) durch Vakuum-Druck-Imprägnierung in das Holz eingebracht und anschließend unter Heißdampfbedingungen ausreagiert. Es wird davon ausgegangen, dass es dabei zu einer Vernetzung der Hydroxylgruppen der Zellwandzucker mit dem DMDHEU sowie zu Polykondensationsprozessen kommt (Krause et al. 2008, Bollmus 2010).\nUmfangreiche Laborversuche zeigten, dass sich durch die Behandlung die Dauerhaftigkeit und Di-mensionsstabilität erhöhen lassen. Beschichtung und Verleimung des Holzes sind möglich (Xie 2006; Xie et al. 2006). Mechanische Eigenschaften werden dahingehend beeinflusst, dass Druck-festigkeit und Härte erhöht werden, Biegefestigkeit und Biege-Elastizitätsmodul sich nicht signifikant verändern, Scher- und Zugfestigkeit ebenso wie die Bruchschlagarbeit reduziert werden (Bollmus et al 2009). Im Weiteren wurde ein sich in der Praxis anwendbarer Prozess entwickelt. Unter Ein-bringen des wasserlöslichen Holzvernetzers DMDHEU im Vakuum-Druck-Imprägnierverfahren und die anschließende Ausreaktion im Heißdampftrockner lassen sich die Material- und Produkteigen-schaften deutlich verbessern (Mai und Militz 2007). In Zusammenarbeit mit den Industriepartnern Fahlenkamp, Variotec und Becker wurde für erste Vollholz- und Furnierformteilanwendungen der Modifizierungsprozess soweit optimiert, dass erste Produkte mit den hierfür erforderlichen Material-eigenschaften hergestellt werden konnten (Rademacher et al. 2009). Beispiele für solche in der Zu-sammenarbeit mit den Firmen bereits im Industriemaßstab realisierte Leit- oder marktfähige Serienprodukte sind Picknickbankgarnituren, Terrassendeckings; Außentüren oder Formholzsitz-möbel für den Außenbereich (Becker 2006).},\n\tpublisher = {Deutsche Gesellschaft für Holzforschung (DGfH)},\n\tauthor = {Rademacher, P. and Bollmus, S. and Puttmann, S. and Dieste, A. and Krause, A. and Militz, H.},\n\tmonth = apr,\n\tyear = {2010},\n\tpages = {101--115},\n\tfile = {12_Innovative Produkte aus vernetztem Buchenholz - Stand der Leitproduktion:/home/maicher/Zotero/storage/TJG76APD/12_Innovative Produkte aus vernetztem Buchenholz - Stand der Leitproduktion.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Native Buche ist für den Einsatz im Außen- und Feuchtraum nicht geeignet, da Dauerhaftigkeit und Dimensionsstabilität gering sind. In einem vom BMBF geförderten Projekt „Modifizierte Buchenholz-produkte“ wurde ein Prozess entwickelt, durch den diese nachteiligen Eigenschaften verbessert werden (Rademacher et al. 2008). Dabei wird die Vernetzungschemikalie DMDHEU (Dimethyloldihydroxyethyleneurea) durch Vakuum-Druck-Imprägnierung in das Holz eingebracht und anschließend unter Heißdampfbedingungen ausreagiert. Es wird davon ausgegangen, dass es dabei zu einer Vernetzung der Hydroxylgruppen der Zellwandzucker mit dem DMDHEU sowie zu Polykondensationsprozessen kommt (Krause et al. 2008, Bollmus 2010). Umfangreiche Laborversuche zeigten, dass sich durch die Behandlung die Dauerhaftigkeit und Di-mensionsstabilität erhöhen lassen. Beschichtung und Verleimung des Holzes sind möglich (Xie 2006; Xie et al. 2006). Mechanische Eigenschaften werden dahingehend beeinflusst, dass Druck-festigkeit und Härte erhöht werden, Biegefestigkeit und Biege-Elastizitätsmodul sich nicht signifikant verändern, Scher- und Zugfestigkeit ebenso wie die Bruchschlagarbeit reduziert werden (Bollmus et al 2009). Im Weiteren wurde ein sich in der Praxis anwendbarer Prozess entwickelt. Unter Ein-bringen des wasserlöslichen Holzvernetzers DMDHEU im Vakuum-Druck-Imprägnierverfahren und die anschließende Ausreaktion im Heißdampftrockner lassen sich die Material- und Produkteigen-schaften deutlich verbessern (Mai und Militz 2007). In Zusammenarbeit mit den Industriepartnern Fahlenkamp, Variotec und Becker wurde für erste Vollholz- und Furnierformteilanwendungen der Modifizierungsprozess soweit optimiert, dass erste Produkte mit den hierfür erforderlichen Material-eigenschaften hergestellt werden konnten (Rademacher et al. 2009). Beispiele für solche in der Zu-sammenarbeit mit den Firmen bereits im Industriemaßstab realisierte Leit- oder marktfähige Serienprodukte sind Picknickbankgarnituren, Terrassendeckings; Außentüren oder Formholzsitz-möbel für den Außenbereich (Becker 2006).\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Moisture conditions in coated wood panels during 18 months natural weathering at five sites in Europe.\n \n \n \n\n\n \n Grüll, G.; Truskaller, M.; Podgorski, L.; Bollmus, S.; De Windt, I.; and Suttie, E.\n\n\n \n\n\n\n In October 2010. PRA Coatings Technology Centre\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{grull_moisture_2010,\n\ttitle = {Moisture conditions in coated wood panels during 18 months natural weathering at five sites in {Europe}},\n\tisbn = {0-9561357-2-2},\n\tshorttitle = {Moisture conditions in coated wood panels during 18 months natural weathering at five sites in {Europe}},\n\tpublisher = {PRA Coatings Technology Centre},\n\tauthor = {Grüll, G. and Truskaller, M. and Podgorski, L. and Bollmus, S. and De Windt, I. and Suttie, E.},\n\tmonth = oct,\n\tyear = {2010},\n\tfile = {WCC2010_Paper_MoistureWeathering:/home/maicher/Zotero/storage/DP6C9KJX/WCC2010_Paper_MoistureWeathering.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Klassifizierung der Dauerhaftigkeit von modifiziertem Holz nach ver-schiedenen Normprüfungen.\n \n \n \n\n\n \n Bollmus, S.; Pfeffer, A.; and Militz, H.\n\n\n \n\n\n\n In pages 76–83, April 2010. Deutsche Gesellschaft für Holzforschung (DGfH)\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{bollmus_klassifizierung_2010,\n\ttitle = {Klassifizierung der {Dauerhaftigkeit} von modifiziertem {Holz} nach ver-schiedenen {Normprüfungen}},\n\tshorttitle = {Klassifizierung der {Dauerhaftigkeit} von modifiziertem {Holz} nach ver-schiedenen {Normprüfungen}},\n\tabstract = {Die Materialeigenschaft natürliche Dauerhaftigkeit von Holz wird nach CEN/TS 15083-1 bestimmt. Die Bestimmung einer Dauerhaftigkeitsklasse von chemisch geschütztem Holz ist auf Grundlage des Standards EN 113 in Kombination mit EN 350-1 möglich. Für modifiziertes Holz gibt es weder eine entsprechende Norm noch eine Richtlinie, nach der die Dauerhaftigkeit bestimmt werden soll-te. Es wurde deshalb die Dauerhaftigkeit von DMDHEU behandelter Buche und von thermisch be-handelter Buche nach beiden vorhandenen Standards untersucht.\nUnterschiede bei der Einstufung des Materials in die Dauerhaftigkeitsklassen wurden bei Prüfkör-pern, die mit DMDHEU 2,3M behandelt wurden sowie bei thermisch behandelter Buche nicht ermit-telt. Eine Behandlung mit DMDHEU 1,3M dagegen ergab je nach durchgeführtem Standard eine Dauerhaftigkeitsklasse zwischen 1 („sehr dauerhaft“) und 5 („nicht dauerhaft“).},\n\tpublisher = {Deutsche Gesellschaft für Holzforschung (DGfH)},\n\tauthor = {Bollmus, S. and Pfeffer, A. and Militz, H.},\n\tmonth = apr,\n\tyear = {2010},\n\tpages = {76--83},\n\tfile = {9_Klassifizierung der Dauerhaftigkeit von modifiziertem Holz nach verschiedenen Normprüfungen:/home/maicher/Zotero/storage/UP4K6TKM/9_Klassifizierung der Dauerhaftigkeit von modifiziertem Holz nach verschiedenen Normprüfungen.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Die Materialeigenschaft natürliche Dauerhaftigkeit von Holz wird nach CEN/TS 15083-1 bestimmt. Die Bestimmung einer Dauerhaftigkeitsklasse von chemisch geschütztem Holz ist auf Grundlage des Standards EN 113 in Kombination mit EN 350-1 möglich. Für modifiziertes Holz gibt es weder eine entsprechende Norm noch eine Richtlinie, nach der die Dauerhaftigkeit bestimmt werden soll-te. Es wurde deshalb die Dauerhaftigkeit von DMDHEU behandelter Buche und von thermisch be-handelter Buche nach beiden vorhandenen Standards untersucht. Unterschiede bei der Einstufung des Materials in die Dauerhaftigkeitsklassen wurden bei Prüfkör-pern, die mit DMDHEU 2,3M behandelt wurden sowie bei thermisch behandelter Buche nicht ermit-telt. Eine Behandlung mit DMDHEU 1,3M dagegen ergab je nach durchgeführtem Standard eine Dauerhaftigkeitsklasse zwischen 1 („sehr dauerhaft“) und 5 („nicht dauerhaft“).\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Material Evaluation and Product Performances of Beech Wood Modification with 1,3-dimethylol-4,5-dihydroxyethylenurea (DMDHEU).\n \n \n \n\n\n \n Bollmus, S.; Rademacher, P.; Krause, A.; and Militz, H.\n\n\n \n\n\n\n In Hill, C. A. S.; Militz, H.; and Andersons, B., editor(s), pages 15–22, 2010. Latvian State Institute of Wood Chemistry\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{hill_material_2010,\n\ttitle = {Material {Evaluation} and {Product} {Performances} of {Beech} {Wood} {Modification} with 1,3-dimethylol-4,5-dihydroxyethylenurea ({DMDHEU})},\n\tisbn = {9984-49-135-8},\n\tshorttitle = {Material {Evaluation} and {Product} {Performances} of {Beech} {Wood} {Modification} with 1,3-dimethylol-4,5-dihydroxyethylenurea ({DMDHEU})},\n\tpublisher = {Latvian State Institute of Wood Chemistry},\n\tauthor = {Bollmus, S. and Rademacher, P. and Krause, A. and Militz, H.},\n\teditor = {Hill, C. A. S. and Militz, H. and Andersons, B.},\n\tyear = {2010},\n\tpages = {15--22},\n\tfile = {ECWM5_2010_proceedings:/home/maicher/Zotero/storage/9IQ39ZVG/ECWM5_2010_proceedings.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Comparison of Wood Moisture Content in Coated Panels of Selected Types of Modified Wood during Natural Weathering.\n \n \n \n\n\n \n Truskaller, M.; Grüll, G.; and Bollmus, S.\n\n\n \n\n\n\n In Hill, C. A. S.; Militz, H.; and Andersons, B., editor(s), pages 267–270, 2010. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{hill_comparison_2010,\n\ttitle = {Comparison of {Wood} {Moisture} {Content} in {Coated} {Panels} of {Selected} {Types} of {Modified} {Wood} during {Natural} {Weathering}},\n\tshorttitle = {Comparison of {Wood} {Moisture} {Content} in {Coated} {Panels} of {Selected} {Types} of {Modified} {Wood} during {Natural} {Weathering}},\n\tauthor = {Truskaller, M. and Grüll, G. and Bollmus, S.},\n\teditor = {Hill, C. A. S. and Militz, H. and Andersons, B.},\n\tyear = {2010},\n\tpages = {267--270},\n\tfile = {ECWM5_2010_proceedings:/home/maicher/Zotero/storage/M4M9W3KG/ECWM5_2010_proceedings.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Feuchtehaushalt und Abwitterungsverhalten von modifiziertem Holz -Modifizierungsverfahren im Vergleich.\n \n \n \n\n\n \n Truskaller, M.; Grüll, G.; and Bollmus, S.\n\n\n \n\n\n\n In 2010. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{truskaller_feuchtehaushalt_2010,\n\ttitle = {Feuchtehaushalt und {Abwitterungsverhalten} von modifiziertem {Holz} -{Modifizierungsverfahren} im {Vergleich}},\n\tshorttitle = {Feuchtehaushalt und {Abwitterungsverhalten} von modifiziertem {Holz} -{Modifizierungsverfahren} im {Vergleich}},\n\tauthor = {Truskaller, M. and Grüll, G. and Bollmus, S.},\n\tyear = {2010},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2009\n \n \n (8)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Produktbeispiele fur die industrielle Anwendung von modifiziertem Buchenholz.\n \n \n \n\n\n \n Rademacher, P.; Bollmus, S.; Puttmann, S.; Dieste, A.; Krause, A.; and Militz, H.\n\n\n \n\n\n\n Forst und Holz, 64(7/8): 35–39. 2009.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{rademacher_produktbeispiele_2009,\n\ttitle = {Produktbeispiele fur die industrielle {Anwendung} von modifiziertem {Buchenholz}},\n\tvolume = {64},\n\tissn = {0932-9315},\n\tshorttitle = {Produktbeispiele fur die industrielle {Anwendung} von modifiziertem {Buchenholz}},\n\tnumber = {7/8},\n\tjournal = {Forst und Holz},\n\tauthor = {Rademacher, P. and Bollmus, S. and Puttmann, S. and Dieste, A. and Krause, A. and Militz, H.},\n\tyear = {2009},\n\tpages = {35--39},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Gluing ability of plywood produced with DMDHEU-modified veneers of\\textless i\\textgreater Fagus sp., Betula sp., and Picea sp.\n \n \n \n\n\n \n Dieste, A.; Krause, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n International Journal of Adhesion and Adhesives, 29(2): 206–209. 2009.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{dieste_gluing_2009,\n\ttitle = {Gluing ability of plywood produced with {DMDHEU}-modified veneers of{\\textless} i{\\textgreater} {Fagus} sp., {Betula} sp., and {Picea} sp.},\n\tvolume = {29},\n\tissn = {0143-7496},\n\tshorttitle = {Gluing ability of plywood produced with {DMDHEU}-modified veneers of{\\textless} i{\\textgreater} {Fagus} sp., {Betula} sp., and {Picea} sp.},\n\tnumber = {2},\n\tjournal = {International Journal of Adhesion and Adhesives},\n\tauthor = {Dieste, A. and Krause, A. and Bollmus, S. and Militz, H.},\n\tyear = {2009},\n\tpages = {206--209},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Beech Plywood Modified with DMDHEU: Anti-Swelling Efficiency, Mechanical Properties, Gluing Ability and Protection Against Weathering Discoloration.\n \n \n \n\n\n \n Dieste, A.; Krause, A.; Bollmus, S.; Kloeser, L.; and Militz, H.\n\n\n \n\n\n\n In Hughes, M.; Kotilahti, T.; and Rohumaa, A., editor(s), pages 239–246, 2009. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{hughes_beech_2009,\n\ttitle = {Beech {Plywood} {Modified} with {DMDHEU}: {Anti}-{Swelling} {Efficiency}, {Mechanical} {Properties}, {Gluing} {Ability} and {Protection} {Against} {Weathering} {Discoloration}},\n\tshorttitle = {Beech {Plywood} {Modified} with {DMDHEU}: {Anti}-{Swelling} {Efficiency}, {Mechanical} {Properties}, {Gluing} {Ability} and {Protection} {Against} {Weathering} {Discoloration}},\n\tauthor = {Dieste, A. and Krause, A. and Bollmus, S. and Kloeser, L. and Militz, H.},\n\teditor = {Hughes, M. and Kotilahti, T. and Rohumaa, A.},\n\tyear = {2009},\n\tpages = {239--246},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Optimierung des Modifizierungsprozesses und der Materialeigenschaften von Buchenholz.\n \n \n \n\n\n \n Bollmus, S.; Dieste, A.; Militz, H.; and Rademacher, P.\n\n\n \n\n\n\n Forst und Holz, 64(7/8): 30–34. 2009.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{bollmus_optimierung_2009,\n\ttitle = {Optimierung des {Modifizierungsprozesses} und der {Materialeigenschaften} von {Buchenholz}},\n\tvolume = {64},\n\tshorttitle = {Optimierung des {Modifizierungsprozesses} und der {Materialeigenschaften} von {Buchenholz}},\n\tnumber = {7/8},\n\tjournal = {Forst und Holz},\n\tauthor = {Bollmus, S. and Dieste, A. and Militz, H. and Rademacher, P.},\n\tyear = {2009},\n\tpages = {30--34},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Materialeigenschaften von modifiziertem Buchenholz.\n \n \n \n\n\n \n Bollmus, S.; Dieste, A.; Militz, H.; and Rademacher, P.\n\n\n \n\n\n\n Forst und Holz, 64(7/8): 30–34. 2009.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{bollmus_materialeigenschaften_2009,\n\ttitle = {Materialeigenschaften von modifiziertem {Buchenholz}},\n\tvolume = {64},\n\tshorttitle = {Materialeigenschaften von modifiziertem {Buchenholz}},\n\tnumber = {7/8},\n\tjournal = {Forst und Holz},\n\tauthor = {Bollmus, S. and Dieste, A. and Militz, H. and Rademacher, P.},\n\tyear = {2009},\n\tpages = {30--34},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Wet and dry adhesion of coatings on modified and unmodified wood: comparison of the pull-off test and the cross-cut test.\n \n \n \n\n\n \n Podgorski, L.; Grüll, G.; Truskaller, M.; Lanvin, J. D.; Georges, V.; and Bollmus, S.\n\n\n \n\n\n\n In May 2009. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@inproceedings{podgorski_wet_2009,\n\ttitle = {Wet and dry adhesion of coatings on modified and unmodified wood: comparison of the pull-off test and the cross-cut test},\n\tdoi = {IRG/WP 10-40524},\n\tabstract = {The objective of this paper is to study the influence of several types of modification (acetylation, furfurylation, thermal modification) on coatings adhesion and to compare two methods of assessing the adhesion: the cross-cut test and the pull-off test both tested in dry and wet conditions. The study also investigates the effect of other parameters of the wood substrates on adhesion like the ring orientation, the density, the surface preparation and conventional preservatives treatments. It has been shown that the pull-off test is more sensitive than the cross-cut test and gives more information about the influence of the substrate. For both tests wet adhesion is lower than dry adhesion. Compared to the reference, there is no improvement in the dry adhesion due to the different modifications, treatments or variations of the substrates. For some coatings a decrease in dry adhesion is observed on furfurylated and thermally modified wood.},\n\tauthor = {Podgorski, L. and Grüll, G. and Truskaller, M. and Lanvin, J. D. and Georges, V. and Bollmus, S.},\n\tmonth = may,\n\tyear = {2009},\n\tkeywords = {wood, adhesion, coating, cross-cut test, modification, pull-off test},\n\tfile = {IRG 10-40524:/home/maicher/Zotero/storage/8PCVM8EK/IRG 10-40524.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n The objective of this paper is to study the influence of several types of modification (acetylation, furfurylation, thermal modification) on coatings adhesion and to compare two methods of assessing the adhesion: the cross-cut test and the pull-off test both tested in dry and wet conditions. The study also investigates the effect of other parameters of the wood substrates on adhesion like the ring orientation, the density, the surface preparation and conventional preservatives treatments. It has been shown that the pull-off test is more sensitive than the cross-cut test and gives more information about the influence of the substrate. For both tests wet adhesion is lower than dry adhesion. Compared to the reference, there is no improvement in the dry adhesion due to the different modifications, treatments or variations of the substrates. For some coatings a decrease in dry adhesion is observed on furfurylated and thermally modified wood.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Innovative, modifizierte Buchenholzprodukte.\n \n \n \n\n\n \n Rademacher, P.; Militz, H.; Hansen, J.; Schmidt, M.; Nagel, J.; Spellmann, H.; Bollmus, S.; Dieste, A.; Puttmann, S.; Welling, H.; Ohlmeyer, M.; Rödl, A.; Albrecht, C. M.; and Bauer, H. H.\n\n\n \n\n\n\n Georg-August-Universität Göttingen, 2009.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@book{rademacher_innovative_2009,\n\ttitle = {Innovative, modifizierte {Buchenholzprodukte}},\n\tshorttitle = {Innovative, modifizierte {Buchenholzprodukte}},\n\tpublisher = {Georg-August-Universität Göttingen},\n\tauthor = {Rademacher, P. and Militz, H. and Hansen, J. and Schmidt, M. and Nagel, J. and Spellmann, H. and Bollmus, S. and Dieste, A. and Puttmann, S. and Welling, H. and Ohlmeyer, M. and Rödl, A. and Albrecht, C. M. and Bauer, H. H.},\n\tyear = {2009},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n \n Gluing ability of plywood produced with DMDHEU-modified veneers of Fagus sp., Betula sp., and Picea sp.\n \n \n \n \n\n\n \n Dieste, A.; Krause, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n International Journal of Adhesion and Adhesives, 29(2): 206–209. March 2009.\n \n\n\n\n
\n\n\n\n \n \n \"GluingPaper\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{dieste_gluing_2009-1,\n\ttitle = {Gluing ability of plywood produced with {DMDHEU}-modified veneers of {Fagus} sp., {Betula} sp., and {Picea} sp.},\n\tvolume = {29},\n\tissn = {01437496},\n\turl = {http://linkinghub.elsevier.com/retrieve/pii/S0143749608000584},\n\tdoi = {10.1016/j.ijadhadh.2008.05.001},\n\tlanguage = {en},\n\tnumber = {2},\n\turldate = {2018-08-23},\n\tjournal = {International Journal of Adhesion and Adhesives},\n\tauthor = {Dieste, A. and Krause, A. and Bollmus, S. and Militz, H.},\n\tmonth = mar,\n\tyear = {2009},\n\tpages = {206--209},\n\tfile = {Dieste et al. - 2009 - Gluing ability of plywood produced with DMDHEU-mod.pdf:/home/maicher/Zotero/storage/XYWKT89E/Dieste et al. - 2009 - Gluing ability of plywood produced with DMDHEU-mod.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2008\n \n \n (2)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Physical and mechanical properties of plywood produced with 1.3-dimethylol-4.5-dihydroxyethyleneurea (DMDHEU)-modified veneers of Betula sp. and Fagus sylvatica.\n \n \n \n\n\n \n Dieste, A.; Krause, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n Holz als Roh-und Werkstoff, 66(4): 281–287. 2008.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{dieste_physical_2008,\n\ttitle = {Physical and mechanical properties of plywood produced with 1.3-dimethylol-4.5-dihydroxyethyleneurea ({DMDHEU})-modified veneers of {Betula} sp. and {Fagus} sylvatica},\n\tvolume = {66},\n\tissn = {0018-3768},\n\tshorttitle = {Physical and mechanical properties of plywood produced with 1.3-dimethylol-4.5-dihydroxyethyleneurea ({DMDHEU})-modified veneers of {Betula} sp. and {Fagus} sylvatica},\n\tnumber = {4},\n\tjournal = {Holz als Roh-und Werkstoff},\n\tauthor = {Dieste, A. and Krause, A. and Bollmus, S. and Militz, H.},\n\tyear = {2008},\n\tpages = {281--287},\n\tfile = {art%3A10.1007%2Fs00107-008-0247-3:/home/maicher/Zotero/storage/BUPGZB47/art%3A10.1007%2Fs00107-008-0247-3.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Resistance against basidiomycetes of 1,3-dimethylol-4,5-dihydroxy ethylene urea (DMDHEU)-modified plywood of Pinus sylvestris.\n \n \n \n\n\n \n Dieste, A.; Pfeffer, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In May 2008. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@inproceedings{dieste_resistance_2008,\n\ttitle = {Resistance against basidiomycetes of 1,3-dimethylol-4,5-dihydroxy ethylene urea ({DMDHEU})-modified plywood of {Pinus} sylvestris},\n\tdoi = {IRG/WP 08-40398},\n\tabstract = {Plywood produced with rotary-cut veneers of Pinus sylvestris impregnated with a solution of 1.3 M 1.3-dimethylol-4.5-dihydroxyethyleneurea (DMDHEU) and glued with a phenolic resin (Prefere 4976 DYNEA) were inoculated with Coniophora puteana, Coriolus versicolor and Pleurotus ostreatus, following the European standard ENV 12038. The specimens were leached following European standard EN 84. The results of the virulence and size control samples reached the standard minimum required mass loss (20 \\%). Both treated and untreated samples presented less fungi attack when no leaching was performed, with the exception of the samples inoculated with P. ostreatus. Fungi inhibitor properties were attributed to the glue. The material proved to be highly susceptible to C. puteana, showing a mass loss of 40 \\% in untreated leached specimens. The mass losses observed in the treated non-leached samples were attributed to the loss of un-reacted DMDHEU during the inoculation time. This phenomenon was clear in the samples inoculated with P. ostreatus, which were surrounded by vermiculite in a high moisture content environment.},\n\tauthor = {Dieste, A. and Pfeffer, A. and Bollmus, S. and Militz, H.},\n\tmonth = may,\n\tyear = {2008},\n\tkeywords = {wood modification, Basidiomycetes, DMDHEU, plywood},\n\tfile = {IRG 08-40398:/home/maicher/Zotero/storage/64F8QKS8/IRG 08-40398.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Plywood produced with rotary-cut veneers of Pinus sylvestris impregnated with a solution of 1.3 M 1.3-dimethylol-4.5-dihydroxyethyleneurea (DMDHEU) and glued with a phenolic resin (Prefere 4976 DYNEA) were inoculated with Coniophora puteana, Coriolus versicolor and Pleurotus ostreatus, following the European standard ENV 12038. The specimens were leached following European standard EN 84. The results of the virulence and size control samples reached the standard minimum required mass loss (20 %). Both treated and untreated samples presented less fungi attack when no leaching was performed, with the exception of the samples inoculated with P. ostreatus. Fungi inhibitor properties were attributed to the glue. The material proved to be highly susceptible to C. puteana, showing a mass loss of 40 % in untreated leached specimens. The mass losses observed in the treated non-leached samples were attributed to the loss of un-reacted DMDHEU during the inoculation time. This phenomenon was clear in the samples inoculated with P. ostreatus, which were surrounded by vermiculite in a high moisture content environment.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2007\n \n \n (5)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Improvement of wood properties by wood modification.\n \n \n \n\n\n \n Rademacher, P.; Bollmus, S.; Militz, H.; and Krause, A.\n\n\n \n\n\n\n In Bejo, L., editor(s), The Beauty of Hardwood, pages 124–132. Faculty of Wood Sciences at the University of West Hungary, Sopron, Hungary, 2007.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@incollection{bejo_improvement_2007,\n\taddress = {Sopron, Hungary},\n\ttitle = {Improvement of wood properties by wood modification},\n\tshorttitle = {Improvement of wood properties by wood modification},\n\tbooktitle = {The {Beauty} of {Hardwood}},\n\tpublisher = {Faculty of Wood Sciences at the University of West Hungary},\n\tauthor = {Rademacher, P. and Bollmus, S. and Militz, H. and Krause, A.},\n\teditor = {Bejo, L.},\n\tyear = {2007},\n\tpages = {124--132},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Influence of the modification with different aldehydebased agents on the tensile strength of wood.\n \n \n \n\n\n \n Mai, C.; Xie, Y.; Xiao, Z.; Bollmus, S.; Vetter, G.; Krause, A.; and Militz, H.\n\n\n \n\n\n\n In Hill, C. A. S.; Jones, D.; Militz, H.; and Ormondroyed, G. A., editor(s), pages 49–56, 2007. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{hill_influence_2007,\n\ttitle = {Influence of the modification with different aldehydebased agents on the tensile strength of wood},\n\tshorttitle = {Influence of the modification with different aldehydebased agents on the tensile strength of wood},\n\tauthor = {Mai, C. and Xie, Y. and Xiao, Z. and Bollmus, S. and Vetter, G. and Krause, A. and Militz, H.},\n\teditor = {Hill, C. A. S. and Jones, D. and Militz, H. and Ormondroyed, G. A.},\n\tyear = {2007},\n\tpages = {49--56},\n\tfile = {pp49-56:/home/maicher/Zotero/storage/787G9GD4/pp49-56.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Performance testing of plywood produced with DMDHEU-modified veneers of Fagus sp., Betula sp., and Picea sp.\n \n \n \n\n\n \n Diesta, A.; Krause, A.; Bollmus, S.; and Militz, H.\n\n\n \n\n\n\n In Spear, M., editor(s), pages 71–80, 2007. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{spear_performance_2007,\n\ttitle = {Performance testing of plywood produced with {DMDHEU}-modified veneers of {Fagus} sp., {Betula} sp., and {Picea} sp.},\n\tshorttitle = {Performance testing of plywood produced with {DMDHEU}-modified veneers of {Fagus} sp., {Betula} sp., and {Picea} sp.},\n\tauthor = {Diesta, A. and Krause, A. and Bollmus, S. and Militz, H.},\n\teditor = {Spear, M.},\n\tyear = {2007},\n\tpages = {71--80},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Bestimmung der natürlichen Dauerhaftigkeit von Holz – Teil 2: Ergebnisse eines europäischen Ringversuchs.\n \n \n \n\n\n \n Brischke, C.; Welzbacher, C.; Gellerich, A.; Bollmus, S.; Plaschkies, K.; Scheiding, W.; Alfredsen, G.; Van Acker, J.; and De Windt, I.\n\n\n \n\n\n\n In pages 120–129, September 2007. Deutsche Gesellschaft für Holzforschung (DGfH)\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{brischke_bestimmung_2007,\n\ttitle = {Bestimmung der natürlichen {Dauerhaftigkeit} von {Holz} – {Teil} 2: {Ergebnisse} eines europäischen {Ringversuchs}},\n\tshorttitle = {Bestimmung der natürlichen {Dauerhaftigkeit} von {Holz} – {Teil} 2: {Ergebnisse} eines europäischen {Ringversuchs}},\n\tabstract = {Die Dauerhaftigkeit von Holz gegenüber Basidiomyceten wird in Europa nach CEN/TS 15083-1 (2005) bestimmt. Die bisherigen Erfahrungen mit diesem Standard sind sehr heterogen und Er-gebnisse früherer Ringversuche teilweise nicht oder nur unvollständig veröffentlicht. Insbesondere die Notwendigkeit einer natürlichen Vorbewitterung der Prüfkörper, u. a. mit dem Ziel einer Detoxifizierung des Materials, wird kontrovers diskutiert.\nFünf europäische Forschungseinrichtungen haben sich deshalb zu einem neuen Ringversuch zu-sammengeschlossen, in dem die Dauerhaftigkeit gegen holzzerstörende Pilze von fünf Holzarten mit und ohne Auswaschbeanspruchung bzw. 6-monatiger natürlicher Vorbewitterung gegen Coniophora puteana und Trametes versicolor geprüft wurden. Es ergaben sich Unterschiede in der Dauerhaftigkeitsklassifizierung zwischen den Prüfinstituten (bis zu vier Klassen) sowie in Abhän-gigkeit von der Vorbeanspruchung und den statistischen Auswertungsgrößen.\nDie natürliche Vorbewitterung der Prüfkörper hatte teilweise eine Angleichung der Dauerhaftig-keitsklassifizierung zwischen den Prüfinstituten zur Folge. In allen Fällen wurde eine Homogenisie-rung der Dauerhaftigkeitseinschätzung durch Vorbewitterung jedoch nicht erreicht. Generelle Aussagen zum Einfluss der Vorbeanspruchung auf die Klassifizierung der Dauerhaftigkeiten ließen sich somit nicht ableiten, weshalb diese weder zwingend zu empfehlen noch abzulehnen ist.},\n\tpublisher = {Deutsche Gesellschaft für Holzforschung (DGfH)},\n\tauthor = {Brischke, C. and Welzbacher, C. and Gellerich, A. and Bollmus, S. and Plaschkies, K. and Scheiding, W. and Alfredsen, G. and Van Acker, J. and De Windt, I.},\n\tmonth = sep,\n\tyear = {2007},\n\tpages = {120--129},\n\tfile = {13_Brischke:/home/maicher/Zotero/storage/WWXWJKWV/13_Brischke.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Die Dauerhaftigkeit von Holz gegenüber Basidiomyceten wird in Europa nach CEN/TS 15083-1 (2005) bestimmt. Die bisherigen Erfahrungen mit diesem Standard sind sehr heterogen und Er-gebnisse früherer Ringversuche teilweise nicht oder nur unvollständig veröffentlicht. Insbesondere die Notwendigkeit einer natürlichen Vorbewitterung der Prüfkörper, u. a. mit dem Ziel einer Detoxifizierung des Materials, wird kontrovers diskutiert. Fünf europäische Forschungseinrichtungen haben sich deshalb zu einem neuen Ringversuch zu-sammengeschlossen, in dem die Dauerhaftigkeit gegen holzzerstörende Pilze von fünf Holzarten mit und ohne Auswaschbeanspruchung bzw. 6-monatiger natürlicher Vorbewitterung gegen Coniophora puteana und Trametes versicolor geprüft wurden. Es ergaben sich Unterschiede in der Dauerhaftigkeitsklassifizierung zwischen den Prüfinstituten (bis zu vier Klassen) sowie in Abhän-gigkeit von der Vorbeanspruchung und den statistischen Auswertungsgrößen. Die natürliche Vorbewitterung der Prüfkörper hatte teilweise eine Angleichung der Dauerhaftig-keitsklassifizierung zwischen den Prüfinstituten zur Folge. In allen Fällen wurde eine Homogenisie-rung der Dauerhaftigkeitseinschätzung durch Vorbewitterung jedoch nicht erreicht. Generelle Aussagen zum Einfluss der Vorbeanspruchung auf die Klassifizierung der Dauerhaftigkeiten ließen sich somit nicht ableiten, weshalb diese weder zwingend zu empfehlen noch abzulehnen ist.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Bestimmung der natürlichen Dauerhaftigkeit von Holz – Teil 1: Stand der aktuellen Diskussion.\n \n \n \n\n\n \n Bollmus, S.; Gellerich, A.; Brischke, C.; and Melcher, E.\n\n\n \n\n\n\n In pages 109–119, September 2007. Deutsche Gesellschaft für Holzforschung (DGfH)\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{bollmus_bestimmung_2007,\n\ttitle = {Bestimmung der natürlichen {Dauerhaftigkeit} von {Holz} – {Teil} 1: {Stand} der aktuellen {Diskussion}},\n\tshorttitle = {Bestimmung der natürlichen {Dauerhaftigkeit} von {Holz} – {Teil} 1: {Stand} der aktuellen {Diskussion}},\n\tabstract = {Die natürliche Dauerhaftigkeit von Holz und Holzprodukten ist für die Holzverwendung eine wichti-ge Eigenschaft, die die Widerstandsfähigkeit von Holz und Holzprodukten gegenüber holzzerstö-renden Pilzen und Insekten beschreibt. Da die Gebrauchsdauer von Holz entscheidend von dieser Eigenschaft abhängt, gibt es eine Vielzahl von Normen und Regelwerken, die auf die natürliche Dauerhaftigkeit und hierbei speziell auf DIN EN 350-2 Bezug nehmen. Während in Teil 1 der DIN EN 350 insbesondere die Verfahren zur Bestimmung der natürlichen Dauerhaftigkeit beschrieben werden, findet sich in Teil 2 unter anderem eine Auflistung der Holzarten mit Angaben der Dauer-haftigkeitsklassen. Diese Norm befindet sich momentan in der Überarbeitung und gibt Anlass zur Diskussion unter Experten. Dieser Beitrag gibt einen Überblick über den aktuellen Stand der Dis-kussion.},\n\tpublisher = {Deutsche Gesellschaft für Holzforschung (DGfH)},\n\tauthor = {Bollmus, S. and Gellerich, A. and Brischke, C. and Melcher, E.},\n\tmonth = sep,\n\tyear = {2007},\n\tpages = {109--119},\n\tfile = {12_Bollmus:/home/maicher/Zotero/storage/WPMTGP7W/12_Bollmus.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n Die natürliche Dauerhaftigkeit von Holz und Holzprodukten ist für die Holzverwendung eine wichti-ge Eigenschaft, die die Widerstandsfähigkeit von Holz und Holzprodukten gegenüber holzzerstö-renden Pilzen und Insekten beschreibt. Da die Gebrauchsdauer von Holz entscheidend von dieser Eigenschaft abhängt, gibt es eine Vielzahl von Normen und Regelwerken, die auf die natürliche Dauerhaftigkeit und hierbei speziell auf DIN EN 350-2 Bezug nehmen. Während in Teil 1 der DIN EN 350 insbesondere die Verfahren zur Bestimmung der natürlichen Dauerhaftigkeit beschrieben werden, findet sich in Teil 2 unter anderem eine Auflistung der Holzarten mit Angaben der Dauer-haftigkeitsklassen. Diese Norm befindet sich momentan in der Überarbeitung und gibt Anlass zur Diskussion unter Experten. Dieser Beitrag gibt einen Überblick über den aktuellen Stand der Dis-kussion.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2006\n \n \n (4)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n 1. Zwischenbericht im BMBF-Vorhaben Nachhaltige Waldwirtschaft.\n \n \n \n\n\n \n Rademacher, P.; Militz, H.; Albrecht, C. M.; Bollmus, S.; Hansen, J.; Krause, A.; Schwerdtfeger, L.; and Welling, H.\n\n\n \n\n\n\n Technical Report Georg-August-Universität Göttingen, 2006.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@techreport{rademacher_1._2006,\n\ttitle = {1. {Zwischenbericht} im {BMBF}-{Vorhaben} {Nachhaltige} {Waldwirtschaft}},\n\tshorttitle = {1. {Zwischenbericht} im {BMBF}-{Vorhaben} {Nachhaltige} {Waldwirtschaft}},\n\tinstitution = {Georg-August-Universität Göttingen},\n\tauthor = {Rademacher, P. and Militz, H. and Albrecht, C. M. and Bollmus, S. and Hansen, J. and Krause, A. and Schwerdtfeger, L. and Welling, H.},\n\tyear = {2006},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Biozidfreier Holzschutz mit Ölen und Wachsen.\n \n \n \n\n\n \n Brischke, C.; Welzbacher, C.; Rapp, A. O.; and Bollmus, S.\n\n\n \n\n\n\n Holz-Zentralblatt, 132: 206–208. 2006.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{brischke_biozidfreier_2006,\n\ttitle = {Biozidfreier {Holzschutz} mit Ölen und {Wachsen}},\n\tvolume = {132},\n\tshorttitle = {Biozidfreier {Holzschutz} mit Ölen und {Wachsen}},\n\tjournal = {Holz-Zentralblatt},\n\tauthor = {Brischke, C. and Welzbacher, C. and Rapp, A. O. and Bollmus, S.},\n\tyear = {2006},\n\tpages = {206--208},\n}\n\n
\n
\n\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Analyses of premature failure of utility poles.\n \n \n \n\n\n \n Bollmus, S.; Rangno, N.; Militz, H.; and Gellerich, A.\n\n\n \n\n\n\n In May 2006. \n \n\n\n\n
\n\n\n\n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n\n
\n
@inproceedings{bollmus_analyses_2006,\n\ttitle = {Analyses of premature failure of utility poles},\n\tdoi = {IRG/WP 12-40584},\n\tabstract = {In this study a total number of 18 utility poles of Scots pine (Pinus sylvestris) impregnated with a copper-chromium containing preservative were investigated. They were part of different lower voltage transmission lines in the western part of Germany and failed before predicted minimum service life. All poles in this study were less than 15 years in use. The type of decay and fungi were evaluated. Furthermore the copper content of undecayed areas of the same poles was analysed. The poles were strongly decayed in the sapwood area as well as in sap- and heartwood areas. The major part of the pole sections were infested by brown rot particularly by the copper tolerant fungi Antrodia spp.. The species of fungi were determined by molecular diagnostics. The analyses of Cu content of undecayed areas of poles after utilization showed a wide range (0.7- 4.7 kg/m³). The Cu content before utilization was not known.},\n\tauthor = {Bollmus, S. and Rangno, N. and Militz, H. and Gellerich, A.},\n\tmonth = may,\n\tyear = {2006},\n\tkeywords = {Antrodia vaillantii, DNA microarray, utility poles, wood decay fungi, wood preservative},\n\tfile = {IRG 12-40584:/home/maicher/Zotero/storage/QVZG5RI3/IRG 12-40584.pdf:application/pdf},\n}\n\n
\n
\n\n\n
\n In this study a total number of 18 utility poles of Scots pine (Pinus sylvestris) impregnated with a copper-chromium containing preservative were investigated. They were part of different lower voltage transmission lines in the western part of Germany and failed before predicted minimum service life. All poles in this study were less than 15 years in use. The type of decay and fungi were evaluated. Furthermore the copper content of undecayed areas of the same poles was analysed. The poles were strongly decayed in the sapwood area as well as in sap- and heartwood areas. The major part of the pole sections were infested by brown rot particularly by the copper tolerant fungi Antrodia spp.. The species of fungi were determined by molecular diagnostics. The analyses of Cu content of undecayed areas of poles after utilization showed a wide range (0.7- 4.7 kg/m³). The Cu content before utilization was not known.\n
\n\n\n
\n\n\n
\n \n\n \n \n \n \n \n Innovative Produkte aus modifiziertem Buchenholz.\n \n \n \n\n\n \n Rademacher, P.; Militz, H.; Krause, A.; and Bollmus, S.\n\n\n \n\n\n\n In 2006. \n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{rademacher_innovative_2006,\n\ttitle = {Innovative {Produkte} aus modifiziertem {Buchenholz}},\n\tshorttitle = {Innovative {Produkte} aus modifiziertem {Buchenholz}},\n\tauthor = {Rademacher, P. and Militz, H. and Krause, A. and Bollmus, S.},\n\tyear = {2006},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2005\n \n \n (1)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Hydrophobierung von Holz - Erfahrungen nach 7 Jahren Freilandtests.\n \n \n \n\n\n \n Rapp, A.; Berninghausen, C.; Bollmus, S.; Brischke, C.; Frick, T.; Haas, T.; Sailer, M.; and Welzbacher, C.\n\n\n \n\n\n\n In pages 157–169, April 2005. Deutsche Gesellschaft für Holzforschung (DGfH)\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@inproceedings{rapp_hydrophobierung_2005,\n\ttitle = {Hydrophobierung von {Holz} - {Erfahrungen} nach 7 {Jahren} {Freilandtests}},\n\tshorttitle = {Hydrophobierung von {Holz} - {Erfahrungen} nach 7 {Jahren} {Freilandtests}},\n\tpublisher = {Deutsche Gesellschaft für Holzforschung (DGfH)},\n\tauthor = {Rapp, A. and Berninghausen, C. and Bollmus, S. and Brischke, C. and Frick, T. and Haas, T. and Sailer, M. and Welzbacher, C.},\n\tmonth = apr,\n\tyear = {2005},\n\tpages = {157--169},\n\tfile = {17_Hydrophobierung von Holz - Erfahrungen nach 7 Jahren Freilandtests:/home/maicher/Zotero/storage/PGU5DERZ/17_Hydrophobierung von Holz - Erfahrungen nach 7 Jahren Freilandtests.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n
\n
\n  \n 2004\n \n \n (1)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n Untersuchungen zum biozidfreien Holzschutz durch Hydrophobierung von Vollholz mit Ölen und Wachsen.\n \n \n \n\n\n \n Bollmus, S.\n\n\n \n\n\n\n Technical Report Universität Hamburg, Fachbereich Biologie, Hamburg, 2004.\n \n\n\n\n
\n\n\n\n \n\n \n\n \n link\n  \n \n\n bibtex\n \n\n \n\n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@techreport{bollmus_untersuchungen_2004,\n\taddress = {Hamburg},\n\ttype = {Diplomarbeit},\n\ttitle = {Untersuchungen zum biozidfreien {Holzschutz} durch {Hydrophobierung} von {Vollholz} mit Ölen und {Wachsen}},\n\tlanguage = {de},\n\tinstitution = {Universität Hamburg, Fachbereich Biologie},\n\tauthor = {Bollmus, Susanne},\n\tyear = {2004},\n\tfile = {Bollmus - 2004 - Untersuchungen zum biozidfreien Holzschutz durch H.pdf:/home/maicher/Zotero/storage/S27D5W2Z/Bollmus - 2004 - Untersuchungen zum biozidfreien Holzschutz durch H.pdf:application/pdf},\n}\n\n
\n
\n\n\n\n
\n\n\n\n\n\n
\n
\n\n\n\n\n
\n\n\n \n\n \n \n \n \n\n
\n"}; document.write(bibbase_data.data);